Epidemiology & Biostatistics

The Wesley Tansey Lab

Research

Wesley Tansey
Wesley Tansey, PhD


Assistant Professor

The Tansey lab focuses on solving frontier problems in cancer data science through the development of innovative statistical machine learning methods. How do we discover effective combination therapies when the search space of possible combinations is vast? Are there patterns of spatial architecture in the tumor microenvironment that predict whether a patient will respond to a specific therapy? How do we build powerful-yet-interpretable multimodal models of medical images, laboratory tests, and clinical records that can inform and improve treatment decisions in the clinic? The goal of our lab is to distill these kinds of important scientific questions into precise mathematical statements, then derive answers in the form of computationally efficient and statistically principled methods. We are interested in a number of areas in statistics and computer science, including graphical models, Bayesian methods, deep learning, hypothesis testing, conditional density estimation, spatial statistics, active learning, and causal inference. Ultimately, we seek to lay the statistical and computational foundations necessary to deliver on the promise of precision medicine: delivering the right treatment, for the right patient, at the right moment, and at the right dose.

The Wesley Tansey Lab

Publications Highlights

Zhang H, Hunter MV, Chou J, Quinn JF, Zhou M, White RM, Tansey W. BayesTME: An end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. Cell Syst. 2023 Jul 19;14(7):605-619.e7. doi: 10.1016/j.cels.2023.06.003. PMID: 37473731; PMCID: PMC10368078.

Freeman BA, Jaro S, Park T, Keene S, Tansey W, Reznik E. MIRTH: Metabolite Imputation via Rank-Transformation and Harmonization. Genome Biol. 2022 Sep 1;23(1):184. doi: 10.1186/s13059-022-02738-3. PMID: 36050754; PMCID: PMC9438248.

Tansey W, Li K, Zhang H, Linderman SW, Rabadan R, Blei DM, Wiggins CH. Dose-response modeling in high-throughput cancer drug screenings: an end-to-end approach. Biostatistics. 2022 Apr 13;23(2):643-665. doi: 10.1093/biostatistics/kxaa047. PMID: 33417699; PMCID: PMC9007438.

Sudarshan M, Tansey W, Ranganath R. Deep direct likelihood knockoffsAdv Neural Inf Process Syst. 2020 Dec;33:5036-5046. PMID: 33953523; PMCID: PMC8096517.

View All Publications

People

Wesley Tansey

Wesley Tansey, PhD



Assistant Professor

  • The Tansey lab focuses on solving frontier problems in cancer data science through the development of innovative statistical machine learning methods.
  • PhD, University of Texas at Austin
[email protected]
Email Address
646-608-7669
Office Phone

Members

Graduate student in Physiology, Biophysics, and Systems Biology at Weill Cornell Medical College
Postdoctoral Fellow
Graduate Student
Graduate Student
Feiyang Huang
Graduate Student - Tri-Institutional Program for Computational Biology and Medicine
Karl Pichotta
MSK MIND Scholar
Jeffrey Quinn
Bioinformatics Engineer IV
Christopher Tosh
Associate Research Scientist
Jessica White
Graduate Student in the Tri-Institutional Program for Computational Biology and Medicine
Haoran Zhang
Graduate Student in Computer Science at the University of Texas at Austin
Casey Bradshaw
PhD student in Statistics at Columbia University
Shounak Chattopadhyay
PhD student in Statistics at Duke University
Mauricio Garcia Tec
PhD student in Statistics and Data Sciences at the University of Texas at Austin
Brian Manzo
PhD student in Statistics at University of Michigan
Amy Xie
Graduate Student in the BCMB Allied Program in the Graduate School of Weill Cornell

Open Positions

To learn more about available postdoctoral opportunities, please visit our Career Center

To learn more about compensation and benefits for postdoctoral researchers at MSK, please visit Resources for Postdocs

Get in Touch

Disclosures

Members of the MSK Community often work with pharmaceutical, device, biotechnology, and life sciences companies, and other organizations outside of MSK, to find safe and effective cancer treatments, to improve patient care, and to educate the health care community. These activities outside of MSK further our mission, provide productive collaborations, and promote the practical application of scientific discoveries.

MSK requires doctors, faculty members, and leaders to report (“disclose”) the relationships and financial interests they have with external entities. As a commitment to transparency with our community, we make that information available to the public. Not all disclosed interests and relationships present conflicts of interest. MSK reviews all disclosed interests and relationships to assess whether a conflict of interest exists and whether formal COI management is needed.

Wesley Tansey discloses the following relationships and financial interests:

No disclosures meeting criteria for time period


The information published here is a complement to other publicly reported data and is for a specific annual disclosure period. There may be differences between information on this and other public sites as a result of different reporting periods and/or the various ways relationships and financial interests are categorized by organizations that publish such data.


This page and data include information for a specific MSK annual disclosure period (January 1, 2024 through disclosure submission in spring 2025). This data reflects interests that may or may not still exist. This data is updated annually.

Learn more about MSK’s COI policies here. For questions regarding MSK’s COI-related policies and procedures, email MSK’s Compliance Office at [email protected].


View all disclosures