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ABSTRACT 
	
  
Approximately seventy percent of the breast cancer patients present with estrogen 

receptor alpha (ERα) positive disease. Targeting ERα with hormonal therapy (HT) is 

effective in reducing the risk of disease recurrence and for treating disease. Expression 

levels of ERα vary in tumors and metastases, which correlates with response to HT. 

Thus, understanding the mechanisms underlying ERα expression could lead to 

improved therapeutic strategies. The tumor microenvironment has been shown to 

promote tumor growth and metastases by secreting cytokines and growth factors during 

disease progression. Interleukin-6 (IL-6). IL-6, a pleotropic pro-inflammatory cytokine 

has been described in vivo as a potent growth factor in ERα positive breast cancers. IL-

6, which signals through the IL-6 and gp130 receptors leads to the tyrosine 

phosphorylation of signal transducer and activator of transcription (pStat3), a known 

mediator of tumorigenesis activated in a variety of cancers including breast cancers.  

 
Using ERα positive breast cancer cell lines treated with IL-6 at various time points, we 

determined expression of ERα and ERα regulated genes via qRT-PCR and western 

blots. We also used chromatin immuno-precipitation (ChIP) to determine the presence of 

transcriptional modifiers on the ERα promoter and changes in histone marks.  

 
We observed an inverse relationship between the IL-6/pStat3 signaling pathway and 

ERα expression in breast cancer patient samples and breast cancer cell lines. We show 

that in ERα positive breast cancer cell lines (MCF-7, T47D, BT-474), IL-6 induced 

activation of Stat3 led to the recruitment and binding of Stat3 to the ERα promoter. We 

demonstrated that Stat3 is acetylated and interacts to HDAC1 and known transcriptional 

repressor on the ERα promoter. We observed a decrease in ERα mRNA and protein, 

and a decrease in expression of ERα target genes (PGR, GREB1, RET, EGR3) as a 
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consequence of IL-6 signaling. Our results demonstrated that the recruitment of Stat3 

and HDAC1 to the ERα promoter led to decreased histone H3K9 acetylation and H3K4 

mono-methylation and increased histone H3K9 tri-methylation.  

 
Our results suggest a model whereby Stat3, functions as a transcriptional repressor of 

ERα by recruiting the histone-modifying enzyme HDAC1 to the ERα promoter.  
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CHAPTER ONE 
INTRODUCTION 

 

Breast cancer is the most common invasive cancer in females worldwide. It currently 

affects approximately 230,000 women and 2500 men in the United States each year. In 

2009, approximately 41,000 women died from breast cancer, (CDC data). Currently, the 

survival rate of breast cancer depends on the stage at which the disease	
  was 

discovered. Typically, cancers discovered at stage 0, I & II have a 90-100% survival rate, 

while those discovered at stage III have a 72% survival rate. Unfortunately, those 

discovered at much later stage IV have the lowest survival rate of only 25 percent.  

Classifying breast cancer into molecular subtypes has been crucial in planning 

treatment, developing new therapies and improving the survival rate. The different 

molecular subtypes of breast cancer include; Luminal A – (ER+ and/or PR+, HER2-), 

Luminal B – (ER+ and/or PR+, HER2+), Triple negative/basal like (ER-, PR-, HER2-) 

and HER2 type – (ER-, PR- and HER2+). The prevalence of the molecular subtypes are 

as follows; luminal A and B – (60-70%), triple negative (15-20%) and HER2 – (10-15%).  

 
The objective of my research is to provide further understanding into how luminal A and 

B breast cancers (ER+) are regulated by the pleiotropic cytokine – IL-6, using luminal A 

and B breast cancer cell lines. My focus was on determining whether ERα positive 

breast cancer cell lines can be made ERα negative through STAT3 transcriptional 

repression of the ERα gene. My research revealed a novel role for the IL-6/JAK/STAT3 

pathway in modulating ERα expression through epigenetic modifications of the ERα 

promoter.  
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The Estrogen Receptor alpha (ERα) 

The estrogen receptor alpha (ERα) is the most important target in breast cancer 

treatment. About 70 percent of breast cancers express ERα, a key indicator of prognosis 

and response to endocrine therapy [1]. The role of ERα, and its ligands in breast 

carcinogenesis has been recognized for some time[2]. Estrogens play a crucial in sexual 

development, reproduction and many physiological processes [3].  ER plays a vital role 

in the development, progression, treatment and outcome of breast cancer [3].  In the 

absence of ligand, ERα is sequestered in target cell nuclei within a large inhibitory heat 

shock protein complex [4]. In the classic pathway, estrogen binding to the estrogen 

receptors a and b induces a dynamic conformational change that leads to ER 

dimerization and association with co-regulatory proteins with the subsequent 

transcriptional activation of estrogen-responsive genes [5]. The interaction of ERα with 

target gene promoters can occur directly, through specific estrogen response elements 

(ERE) or indirectly by using other DNA bound transcription factors such as AP1, SP1 or 

NF-κB [6-8]. ERα co-factors interact with different target proteins that link it to other 

signaling pathways. These proteins often affect ERα signaling directly or indirectly [9] . A 

number of studies using Chromatin Immunoprecipitation (ChIP) with microarrays or high 

throughput sequencing in MCF-7 breast cancer cells have mapped ERα binding events 

genome wide. It shows that Forkhead motifs were enriched in ER binding events [10, 

11]. The Forkhead protein FoxA1 has been shown to be present in many ERα binding 

regions [12]. Hurtado et al. showed that FOXA1 is a critical determinant that influences 

differential chromatin interactions and that almost all ER-chromatin interaction and gene 

expression changes are dependent on the presence of FOXA1 [13]. Clinically, it’s been 

shown to predict outcome in ERα positive breast cancer patients [14].  
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The full human ERα gene spans about 300kb of chromosome 6 [15]. Two years after 

cloning the human ERα cDNA, the genomic organization of ERα was described. ERα 

consists of 8 exons, spanning 140kb of chromosome locus 6q25.1 [15, 16]. Further 

analysis of nuclear receptors indicated that multiple promoters might be common feature 

of steroid hormone receptors and to date, several exons encoding 5’-untranslated 

regions of ERα mRNA have been identified. The human ERα gene has also been shown 

to be transcribed from at least seven promoters into multiple transcripts that differ in their 

5’-UTR.  

 
Estrogen receptor alpha (ERα) therapy 

ERα is the principal biomarker for response of breast cancer to tamoxifen treatment [17]. 

Anti-estrogens such as selective estrogen receptor modulators (SERMs) act as 

competitive blockers of estrogen-ER binding, and have been successfully used in the 

treatment of ERα positive breast cancer [1]. In the adjuvant setting, tamoxifen reduces 

the rate of disease recurrence and has led to a significant reduction in breast cancer 

mortality in the past few decades [18].Tamoxifen is able to inhibit the expression of ERα 

target genes that regulate cell cycle and apoptosis. Tamoxifen leads to repression of 

cyclin D1 and MYC, reduces the activity of transcription factors SP1 and NF-κB and 

down-regulates NF-κB target gene BCL2 [19-22]. Overall, a third of the women treated 

with tamoxifen for 5 years will have recurrence of breast cancer within 15 years [21].  

Reported mechanisms of tamoxifen resistance include alterations in levels of CUEDC2 

and LMTK3, and over expression of ERBB2 [21]. Data suggests that level of ERα 

expression correlates with response to tamoxifen therapy [23]. Kim et al. [23] showed 

that patients with low levels of ERα do not respond to tamoxifen when compared to 

patients on placebo (Figure 1.1). Essentially, low-level expression of ERα is a key  
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Figure 1.1. Quantitative estrogen receptor expression by reverse transcriptase 
polymerase chain reaction and distant recurrence at 10 years. Each Kaplan-Meier 
plot represents tamoxifen and placebo arms of patients diagnosed with tumors that 
express (A) low, (B) middle, and (C) high tertile levels of ESR1 mRNA. HR, hazard ratio. 
Re-printed with permission Kim C, Tang G, Pogue-Geile KL et al. Estrogen receptor 
(ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of 
estrogen receptor-positive breast cancer. Journal of clinical oncology [23].  

RESULTS

Assessment to Determine Predictive Markers of
Tamoxifen Benefit in NSABP B-14

The B-14 study subset was similar to all eligible randomly as-
signed patients in the B-14 (Data Supplement). The results from the
assessment to determine markers of tamoxifen benefit in B-14 are
listed in Table 1. Among clinical variables, ER by the LBA (! 50
fmol/mg v ! 50 fmol/mg) and patient age (! 50 years v ! 50 years)
showed a significant interaction with tamoxifen treatment (interac-
tion P " .024 and 0.023, respectively). The interaction P value for ER
by LBA for the parent B-14 study cohort approached, but did not
achieve, statistical significance (P " .075). By gene expression, the
quantitative assessment of two genes, ESR1 (P ! .001) and SCUBE2
(P " .004), and the ER group (P " .008) showed a highly significant
interaction with tamoxifen treatment, and higher gene expression was
associated with greater degree of benefit from tamoxifen. Even after
adjusting for the interaction between treatment and age, ESR1
(P " .005) and SCUBE1 (P " .009) still had significant interactions
with treatment. Notably, PGR or HER2 were not predictive. The
21-gene recurrence score showed a trend for interaction (P " .06) in
which high-risk patients derived little benefit from tamoxifen. Kaplan-
Meier estimates of placebo- and tamoxifen-treated patients according to
tertiles of ESR1 mRNA expression showed increased benefit of tamox-
ifen treatment with increasing levels of ESR1 expression (Fig 2).

The reason for the different strength of interaction observed
between two measures of ER (LBA v RT-PCR) was investigated by
examining the linearity of the relationship between distant recurrence
and the quantitative level of ER as continuous measures by these
assays. The relative risk reduction by tamoxifen (the differential be-
tween two curves in Fig 3A) increases with increasing ESR1 mRNA
expression. A formal statistical test for nonlinearity of the relationship
between the log-hazard of tamoxifen-treated patients and ESR1 mRNA
expression was not significant (P " .457), which confirmed the linear
nature of the association (Fig 3B). On the basis of data from the 2,817
randomly assigned patients on B-14, ER protein by LBA was neither a
significant prognostic factor for tamoxifen-treated patients (P " .1)
nor a significant predictor of treatment effect (P " .14; Fig 3C).

In a subset of 177 of the 290 tamoxifen-treated patients, the ER
protein expression level of tumors was measured by using quantitative
image analysis after staining with a US Food and Drug Administration–
approved ER immunostaining kit (PharmDx; Dako). ER by IHC was
strongly associated with distant recurrence (P " .004); its relationship
with distant recurrence–free interval tended to be volatile, though the
test for nonlinearity was not significant (P " .129; Fig 3D). When data
were combined from 115 tamoxifen-registered patients on B-14, the
nonlinearity was significant (P " .008; Data Supplement). These data
suggest that a low level of ESR1 mRNA expression is an important
determinant of tamoxifen resistance in ER-positive breast cancer.

Microarray Gene Expression Profiling of P-1 Breast
Cancer Events

It would be of great interest to confirm in another data set the
observation that low ESR1 mRNA is associated with tamoxifen resis-
tance. However, to our knowledge, no other clinical trial cohort of
randomly assigned patients with an annotated tissue bank available
exists to directly confirm these findings. Therefore, we examined the
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Fig 2. Quantitative estrogen receptor expression by reverse transcriptase
polymerase chain reaction and distant recurrence at 10 years. Each Kaplan-Meier
plot represents tamoxifen and placebo arms of patients diagnosed with tumors
that express (A) low, (B) middle, and (C) high tertile levels of ESR1 mRNA. HR,
hazard ratio.
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RESULTS

Assessment to Determine Predictive Markers of
Tamoxifen Benefit in NSABP B-14

The B-14 study subset was similar to all eligible randomly as-
signed patients in the B-14 (Data Supplement). The results from the
assessment to determine markers of tamoxifen benefit in B-14 are
listed in Table 1. Among clinical variables, ER by the LBA (! 50
fmol/mg v ! 50 fmol/mg) and patient age (! 50 years v ! 50 years)
showed a significant interaction with tamoxifen treatment (interac-
tion P " .024 and 0.023, respectively). The interaction P value for ER
by LBA for the parent B-14 study cohort approached, but did not
achieve, statistical significance (P " .075). By gene expression, the
quantitative assessment of two genes, ESR1 (P ! .001) and SCUBE2
(P " .004), and the ER group (P " .008) showed a highly significant
interaction with tamoxifen treatment, and higher gene expression was
associated with greater degree of benefit from tamoxifen. Even after
adjusting for the interaction between treatment and age, ESR1
(P " .005) and SCUBE1 (P " .009) still had significant interactions
with treatment. Notably, PGR or HER2 were not predictive. The
21-gene recurrence score showed a trend for interaction (P " .06) in
which high-risk patients derived little benefit from tamoxifen. Kaplan-
Meier estimates of placebo- and tamoxifen-treated patients according to
tertiles of ESR1 mRNA expression showed increased benefit of tamox-
ifen treatment with increasing levels of ESR1 expression (Fig 2).

The reason for the different strength of interaction observed
between two measures of ER (LBA v RT-PCR) was investigated by
examining the linearity of the relationship between distant recurrence
and the quantitative level of ER as continuous measures by these
assays. The relative risk reduction by tamoxifen (the differential be-
tween two curves in Fig 3A) increases with increasing ESR1 mRNA
expression. A formal statistical test for nonlinearity of the relationship
between the log-hazard of tamoxifen-treated patients and ESR1 mRNA
expression was not significant (P " .457), which confirmed the linear
nature of the association (Fig 3B). On the basis of data from the 2,817
randomly assigned patients on B-14, ER protein by LBA was neither a
significant prognostic factor for tamoxifen-treated patients (P " .1)
nor a significant predictor of treatment effect (P " .14; Fig 3C).

In a subset of 177 of the 290 tamoxifen-treated patients, the ER
protein expression level of tumors was measured by using quantitative
image analysis after staining with a US Food and Drug Administration–
approved ER immunostaining kit (PharmDx; Dako). ER by IHC was
strongly associated with distant recurrence (P " .004); its relationship
with distant recurrence–free interval tended to be volatile, though the
test for nonlinearity was not significant (P " .129; Fig 3D). When data
were combined from 115 tamoxifen-registered patients on B-14, the
nonlinearity was significant (P " .008; Data Supplement). These data
suggest that a low level of ESR1 mRNA expression is an important
determinant of tamoxifen resistance in ER-positive breast cancer.

Microarray Gene Expression Profiling of P-1 Breast
Cancer Events

It would be of great interest to confirm in another data set the
observation that low ESR1 mRNA is associated with tamoxifen resis-
tance. However, to our knowledge, no other clinical trial cohort of
randomly assigned patients with an annotated tissue bank available
exists to directly confirm these findings. Therefore, we examined the

0

HR = 1.2 (95% CI, 0.72 to 2.02)
P = .487

Tamoxifen
Placebo

No. at risk
Tamoxifen 94 84 73 66 60 52 47 43
Placebo 122 109 95 88 82 76 69 63

Di
st

an
t R

ec
ur

re
nc

e 
Fr

ee
(p

ro
po

rti
on

)

Time (years)

1.0

0.8

0.6

0.4

0.2

2 4 8 106 12 14

0

HR = 0.59 (95% CI, 0.32 to 1.09)
P = .087

Tamoxifen
Placebo

No. at risk
Tamoxifen 90 84 75 68 65 61 52 48
Placebo 124 114 100 87 81 72 63 60

Di
st

an
t R

ec
ur

re
nc

e 
Fr

ee
(p

ro
po

rti
on

)

Time (years)

1.0

0.8

0.6

0.4

0.2

2 4 8 106 12 14

0

HR = 0.39 (95% CI, 0.2 to 0.77)
P = .005

Tamoxifen
Placebo

No. at risk
Tamoxifen 106 99 94 87 81 73 66 60
Placebo 109 97 90 80 71 65 60 51

Di
st

an
t R

ec
ur

re
nc

e 
Fr

ee
(p

ro
po

rti
on

)

Time (years)

1.0

0.8

0.6

0.4

0.2

2 4 8 106 12 14

A

B

C

Fig 2. Quantitative estrogen receptor expression by reverse transcriptase
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plot represents tamoxifen and placebo arms of patients diagnosed with tumors
that express (A) low, (B) middle, and (C) high tertile levels of ESR1 mRNA. HR,
hazard ratio.
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RESULTS

Assessment to Determine Predictive Markers of
Tamoxifen Benefit in NSABP B-14

The B-14 study subset was similar to all eligible randomly as-
signed patients in the B-14 (Data Supplement). The results from the
assessment to determine markers of tamoxifen benefit in B-14 are
listed in Table 1. Among clinical variables, ER by the LBA (! 50
fmol/mg v ! 50 fmol/mg) and patient age (! 50 years v ! 50 years)
showed a significant interaction with tamoxifen treatment (interac-
tion P " .024 and 0.023, respectively). The interaction P value for ER
by LBA for the parent B-14 study cohort approached, but did not
achieve, statistical significance (P " .075). By gene expression, the
quantitative assessment of two genes, ESR1 (P ! .001) and SCUBE2
(P " .004), and the ER group (P " .008) showed a highly significant
interaction with tamoxifen treatment, and higher gene expression was
associated with greater degree of benefit from tamoxifen. Even after
adjusting for the interaction between treatment and age, ESR1
(P " .005) and SCUBE1 (P " .009) still had significant interactions
with treatment. Notably, PGR or HER2 were not predictive. The
21-gene recurrence score showed a trend for interaction (P " .06) in
which high-risk patients derived little benefit from tamoxifen. Kaplan-
Meier estimates of placebo- and tamoxifen-treated patients according to
tertiles of ESR1 mRNA expression showed increased benefit of tamox-
ifen treatment with increasing levels of ESR1 expression (Fig 2).

The reason for the different strength of interaction observed
between two measures of ER (LBA v RT-PCR) was investigated by
examining the linearity of the relationship between distant recurrence
and the quantitative level of ER as continuous measures by these
assays. The relative risk reduction by tamoxifen (the differential be-
tween two curves in Fig 3A) increases with increasing ESR1 mRNA
expression. A formal statistical test for nonlinearity of the relationship
between the log-hazard of tamoxifen-treated patients and ESR1 mRNA
expression was not significant (P " .457), which confirmed the linear
nature of the association (Fig 3B). On the basis of data from the 2,817
randomly assigned patients on B-14, ER protein by LBA was neither a
significant prognostic factor for tamoxifen-treated patients (P " .1)
nor a significant predictor of treatment effect (P " .14; Fig 3C).

In a subset of 177 of the 290 tamoxifen-treated patients, the ER
protein expression level of tumors was measured by using quantitative
image analysis after staining with a US Food and Drug Administration–
approved ER immunostaining kit (PharmDx; Dako). ER by IHC was
strongly associated with distant recurrence (P " .004); its relationship
with distant recurrence–free interval tended to be volatile, though the
test for nonlinearity was not significant (P " .129; Fig 3D). When data
were combined from 115 tamoxifen-registered patients on B-14, the
nonlinearity was significant (P " .008; Data Supplement). These data
suggest that a low level of ESR1 mRNA expression is an important
determinant of tamoxifen resistance in ER-positive breast cancer.

Microarray Gene Expression Profiling of P-1 Breast
Cancer Events

It would be of great interest to confirm in another data set the
observation that low ESR1 mRNA is associated with tamoxifen resis-
tance. However, to our knowledge, no other clinical trial cohort of
randomly assigned patients with an annotated tissue bank available
exists to directly confirm these findings. Therefore, we examined the
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polymerase chain reaction and distant recurrence at 10 years. Each Kaplan-Meier
plot represents tamoxifen and placebo arms of patients diagnosed with tumors
that express (A) low, (B) middle, and (C) high tertile levels of ESR1 mRNA. HR,
hazard ratio.
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determinant of tamoxifen resistance in ERα positive breast cancers [23]. Aromatase 

inhibitors, which target estrogen synthesis, have also been successfully used in the 

treatment of breast cancer. Aromatase inhibitors have also been noted to have greater 

efficacy than tamoxifen when used in late-stage disease [24, 25]. Besides tamoxifen, 

another SERM, used in the treatment of breast cancer is toremifene [26]. Toremifene 

has also been shown to prevent progression of high-grade prostatic intraepithelial 

neoplasia (PIN) to prostate cancer [26]. SERMS and aromatase inhibitors have 

limitations. This is because tamoxifen is able to inhibit the expression of ERα target 

genes that regulate cell cycle and apoptosis. Tamoxifen leads to repression of cyclin D1 

and MYC, reduces the activity of transcription factors SP1 andNF-κB and down-

regulates NF-κB target gene BCL2 [19-22].  

 
Transcriptional regulators of Estrogen receptor alpha (ERα)  

The transcription of ERα is regulated by several factors, which include GATA binding 

factor 3 (GATA-3), Forkhead box protein O3a, (FoxO3a), Forkhead box protein M1 

(FoxM1) and ERα which can regulate it own transcription[11, 13, 27, 28].  

GATA-3 is a direct positive regulator of ERα expression, it binds to two cis-regulatory 

elements located within the ERα gene [27]. GATA-3 is also required for the recruitment 

of RNA Pol II to the ERα promoter and is crucial for the response of ERα positive breast 

cancers to estradiol [27]. Interestingly, ERα has been shown to directly stimulate the 

transcription of GATA-3 [29].  

Madureira et al. [28] identified FoxM1 as a physiological regulation of ERα expression in 

breast cancers. They revealed that FoxM1 expression led to up-regulation of ERα 

mRNA and protein and showed that FoxM1 can activate the transcriptional activity of 

ERα promoter through two closely located Forkhead response elements located at the 
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proximal region of the ERα promoter [28]. Interestingly, they observed that FoxO3a co-

immunoprecipitated with FoxM1 in vivo, suggesting the possibility that both Forkhead 

box proteins cooperatively regulate ERα gene transcription [28].  

FoxO3a, is a key regulator of ERα gene transcription [30]. Levels of FoxO3a have been 

correlated with ERα expression in breast cancer. FoxO3a expression was shown to 

induce ERα promoter activity and protein levels [30]. Electro-mobility shift assays 

(EMSA’s) showed that FoxO3a directly binds to the ERα promoter, and this was 

confirmed in vivo by ChIP. Although FoxO3a has been shown as a transcriptional 

activator of ERα, some reports have also linked it to ERα repression [31]. 

Recently, a number of negative transcriptional regulators of the estrogen receptor have 

been reported. One of those regulators is Twist. ‘Twist contributes to hormone 

resistance in breast cancer by down-regulating estrogen receptor-α’ [32] and ‘TWIST 

Represses Estrogen Receptor-alpha Expression by Recruiting the NuRD Protein 

Complex in Breast Cancer Cell’ [33] both discuss Twist as down-regulators of ERα. Both 

show an inverse correlation between Twist and ERα in breast cancer cell lines. They 

also show that forced expression of Twist in ERα positive breast cancer cell lines 

reduced ERα expression and that knockdown of Twist in ERα negative breast cancer 

cells such as MDA-MB-435 increased ERα expression [33]. Twist was also shown to 

recruit DNA methyltransferase 3B to the ERα promoter, leading to higher promoter 

methylation in ERα positive cell lines compared to parental cells. Also Twist was shown 

to recruit HDAC1 to the ERα promoter and further reduce ERα transcript levels [32].  

 
SNAIL [34] has also been reported as a transcriptional regulator of the estrogen 

receptor. Wade et al showed that an inverse relationship exists between Snail and ERα 

in breast cancer cell lines. Over-expression of Snail in MCF-7 cell line, led to decrease in 



	
  7	
  

cell-cell adhesion and increased cell invasive. ERα mRNA and protein were also 

decreased/lost in response to Snail binding to regulatory DNA sequences at the ESR1 

locus. Essentially, the transcription factor Snail mediated epithelial to mesenchymal 

transitions by repression of ERα. [34]. 

It is important to note here that although Twist and Snail, genes involved in EMT have 

been shown to be transcriptional regulators of ERα expression, ERα has also been 

shown to transcriptionally regulate Snail and Slug expression in breast cancer cell lines 

[35, 36]. 

 
Epigenetics & Estrogen receptor alpha (ERα) 

Epigenetic modifications principally regulate ERα expression [37]. Epigenomics refers to 

the study of heritable changes in gene expression, which occur without a change in DNA 

sequence. ERα synthesis is repressed by the methylation of the ERα promoter [38]. 

Promoter hypermethylation is significantly associated with the loss of ERα in primary 

breast cancer and breast cancer cell lines [38]. 

 
DNA methylation 

One of the ways in which ERα is epigenetically regulated, is by DNA methyltransferase 1 

(DNMT1) mediated promoter methylation, which leads to a decrease in ER expression 

[39]. DNMT1 is a large enzyme composed of a C-terminal catalytic domain and a large 

N-terminal regulatory domain with several functions [40]. Methylation of the ERα 

promoter mediates transcriptional silencing of the ER gene in ER negative breast tumors 

[41].  

 
DNA methylation is an epigenetic mark that involves the addition of a methyl group on 

the fifth position of cytosine within CpG dinucleotides. DNA methylation is mediated by 

three conserved DNA methyltransferases: DNMT1, DNMT3A, DNMT3B. DNMT1 has 
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been shown to maintain DNA methylation patterns, while DNMT3A and DNMB3B are 

responsible for de novo methylation [42]. DNA methylation occurs in repetitive regions 

across the genome at dense CG regions, called CpG islands. CpG islands mostly occur 

around transcriptional regulatory regions of house keeping and essential development 

regulatory genes [43]. In ERα, the CpG island is found in exon1, adjacent to promoters A 

and B. Overall, DNA methylation leads to stable gene silencing [44].  

 
DNA methylation not only leads to methylation of DNA around the promoter region, but it 

can also lead to inhibition of transcription via two main mechanisms: methyl groups at 

CpG islands can hinder the binding of transcription factors to the promoter and 

methylation at the CpG dinucleotide can create a docking site for the binding of methyl-

CpG-binding proteins and their associated repressors, resulting in constant gene 

suppression [43] [45].  These effects of DNA methylation interfere with transcription. 

Approximately 20-30% of breast cancers are diagnosed as ERα negative and some 

cancers loose ERα expression as they progress. In many of these breast cancers DNA 

methylation plays a role in loss of ERα expression. Yang et al [46] demonstrated that 

reduced ERα expression is due to increased DNA methylation. DNA methylation is no 

longer considered a permanent epigenetic mark. In breast cancer, it’s been shown that 

inhibiting DNMT1 using 5-aza-2’-deoxycytidine induced ERα expression. Treatment of 

cancer cell lines with this inhibitor has been shown to enhance re-expression of a gene 

[47].  

 
Histone Methylation 

Recently, there have been several studies demonstrating the importance of histone 

methylases and histone demethylases in regulating estrogen receptor alpha (ERα) 

activity and expression [48]. Histone methylating enzymes directly interact with DNA 
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methylating enzymes [49]. Methylation of histones occurs on either lysine or alanine 

residues, resulting in either condensation of relaxation of chromatin structure [50]. 

Methylation provides binding sites for regulatory proteins with specialized binding 

domains [49]. The main sites of methylation of histones occur on either heterochromatin 

or euchromatin. Heterochromatin is a tightly packed form of DNA that is considered 

transcriptionally silent, whereas euchromatin is less densely packed and transcriptionally 

active. Within heterochromatin, there are methylation lysine residues which demarcate 

subdomains [49]. Methylated histones also serve as a docking site for repressive 

proteins, including the polycomb protein (PC) and heterochromatin protein (HP1), which 

recognize histone H3, K27, or H3 K9 respectively [51]. HP1 and PC recognize 

methylated lysine residues through their chromo domain [50]. Other proteins recognize 

methylated lysine through two other motifs, known as the Tudor domain and the WD40 

repeat domain. Histone lysine methylases share a common Suvar Enhancer of Zeste, 

Trithorax (SET) domain.  

 
Histones package euchromatin DNA into nucleosomes containing 147 base pairs of 

DNA and core histone proteins (H2A, H2B, H3 and H4) [50]. Alterations of chromatin 

structure are modulated through post translational modification of lysine tails [52]. The 

amino terminal tails of all four core histones contain conserved lysine residues. One of 

the marks that occur on lysine residues is acetylation, which was initially thought to 

neutralize the basic charge of histone tails, in order to decrease affinity between histone 

and negatively charged DNA [52]. However further research has proven that acetylation 

provides recognition motifs for docking of proteins that recruit transcriptional activators or 

repressors, such as acetyllysine-binding bromodomain [53].  

 
Histone Acetyltransferases (HATs) 
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Histone acetyl-transferase (HAT) enzymes acetylase lysine amino acids on histone 

proteins by transferring an acetyl group from acetyl CoA to form N-acetyllisine [53]. They 

are described as Type A and Type B. Type A HATs are located in the nucleus while type 

B HATs are located in the cytoplasm. Type B HATs perform housekeeping roles, 

acetylating newly synthesized free histone, while Type A HATs acetylate nucleosomal 

histones in the nucleus within the chromatin [52]. Histone acetylation is generally 

associated with transcriptional activation, eurchromatin, and an increase in gene 

expression [52].  

In ERα positive breast cancer cell lines, the lysines on histones in the promoter region 

are on average acetylated [41]. Co-activator and co-repressors, which encode enzymes 

with HAT-modulating activity, mediate ERα functional activity in the nucleus. HAT activity 

is encoded in co-integrators CBP/p300 (CREB-binding factor). Binding of HATs to ERα 

allows for acetylation of local histones [53].  

 
Histone deacetylases (HDACs) 

Histone deacetylates (HDACs) have been shown bind to ERα and over-expression of 

HDACs leads to silencing of the ERα gene [54]. HDACs are divided into three different 

groups of proteins. Class I HDACs, which include HDACs 1, 2, 3 and 8 are related to the 

Scacchromyces Cerevisea transcriptional regulator RPD3. Class II HDACs include 

HDAC 4, 5, 6, 7, 9 and 10 are expressed in a cell specific manner. Class III HDACs are 

Sir2/Hst homologues, and their structure and enzymatic mechanisms are different from 

Class I and II HDACs [55]. HDAC proteins are responsible for transcriptional repression 

[55]. Together with co-repressor complexes such as N-COR and transcription factors 

they mediate gene repression. HDAC inhibitors for class I and II are currently been used 

in clinical trials for patients that lack ERα expression[55, 56]. HDAC inhibitors such as 

Trichostatin A (TSA) have led to re-expression of ERα. However, it is important to note 
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that the use of both TSA and 5-aza-dc (DNMT inhibitor) enhanced re-expression of both 

ERα mRNA and protein [46, 47, 54].  

 
Other mechanisms of ERα silencing include several multi-molecular ERα repression 

complexes. pRB2/p130-E2F4/5-HDAC1-SUV39H1-p300 or pRB2/p130-E3F4/5-HDAC1-

DNMT1-SUV39H1 proteins were found on the ERα promoter. These complexes 

included HDACs, DMNTs, histone methyltransferase, SUV39H1 and cell cycle 

regulatory protein pRb2/p130 [57].  

 
Regulation of ERα  by phosphorylation 

Phosphorylation of ERα is one of the mechanisms by which ERα signaling can be 

regulated. Phosphorylation of ERα induced by growth factors play an important role in 

enhancing estrogen signal activation [58]. Identified phosphorylation sites of ERα include 

S104/106, S118, S167, S236, T311, Y537 [59]. These sites are targeted by kinases, 

which include MAPK, Akt and c-Src [58]. There is still a lot unknown about the roles of 

each phosphorylation site.  Chen et al. [60]showed that phosphorylation of ERα on S118 

promotes dimerization and Kikhite et al [61] showed that kinase-specific phosphorylation 

of ERα changes receptor interactions with ligands, DNA and estrogen associated co-

regulators. Thus far, phosphorylation sites S118 and S167 are located within the action 

function (AF-1) region and this seems to be the most important component for activation 

of ERα signal because phosphorylation at these sites leads to enhanced activation of 

genomic action in both an estrogen-dependent and estrogen-independent manner [62]. 

 

Estrogen Receptor alpha (ERα) regulated genes 

ERα is the driving transcription factor in ERα positive breast cancers and via its target 

genes; it dictates cell growth and endocrine responses [63]. It is therefore important to 
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identify and study ERα target genes to better understand and manage the disease. 

Several studies have identified ERα target genes. More recently two papers used 

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in 

primary breast cancers to better identify ERα target genes[64]. They performed ERα 

ChIP-seq on eight ERα positive, PR positive and HER2 negative breast tumors and 

seven ER+ PR- HER2- or ER+ PR+ HER2+, stating that PR- and HER2+ tumors are 

more likely to be aggressive. The results identified hundreds of binding events [64]. I’ll 

specifically discuss ERα target genes that were examined in this study.  

 
Progesterone Receptor (PGR) 

Progesterone is an important hormone in breast cancer. Just like ERα, PGR signaling 

has a distinct role in mammary gland biology. PGR levels are regulated by estrogen-

dependent and estrogen-independent pathways [65]. PGR is a nuclear receptor that 

regulates the expression of many downstream target genes [66]. In human breast 

cancer cells, the proximal promoters controlling PGR transcription contain estrogen 

response elements (ERE), which are recognized by ER plus binding sites for other 

transcription factors which ER interacts with [67, 68].  

 
Growth Regulation by Estrogen Receptor in Breast Cancer (GREB1) 

GREB1 is an ERα target gene and its expression correlates with ERα expression in 

breast cancer cell lines and breast cancer tissue [69]. GREB1 expression also inversely 

correlates with HER2 status. Similarly to ERα patients, patients that express GREB1 

exhibit significant sensitivity and prolonged survival compared to GREB1 negative 

expression [70, 71]. A recent paper found that transducing MCF-7 cells with GREB1 

increased the metabolic activity of the cells suggesting the GREB1 may function as a 

growth promoter in breast cancer. Also IL-6 inhibited E2-induced GREB1 transcription 
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activity and led to a reduction of GREB1 mRNA. Likewise over-expression of a 

constitutively active form of STAT3, STAT3-C led to a decrease in GREB1 mRNA [69]. 

This suggests that IL-6/STAT3 pathway plays a role in regulating ERα in ERα positive 

breast cancers and cell lines.  

 
Early Growth Response 3 (EGR3) 

Analysis of estradiol treated breast cancer cell lines identified EGR3 as a bonafied ERα 

target that plays a key role in ERα signaling [72]. EGR3 is a member of the EGR family 

and shares the common EGR response element with other members involved in DNA 

binding and transactivation [73]. Very little is known about EGR3 and breast cancer 

other than it’s an intracellular mediator of the estrogen-signaling pathway in breast 

cancer. My research study provides further evidence that indeed EGR3 is a mediator of 

ERα signaling [72].  

 
Rearranged during transfection (RET) proto-oncogene 

Ret encodes a receptor tyrosine kinase for members of the glial cell line derived 

neurotropic factor family of extracellular signaling molecules. Although Ret is a target of 

ERα, its regulation has also been shown to the independent of the estrogen receptor 

[74].  A recent study revealed that down-regulation of Ret using a RET inhibitor blocks a 

feed-forward loop of decreasing Fak, an integrator of IL-6-Ret signaling [75].  

 
Triple negative breast cancers 

About 20% of breast cancers are triple negative. Triple negative breast tumors lack 

expression of estrogen receptor (ERα), progesterone (PR), and HER2 [76]. This cancer 

is challenging to deal with because they do not respond to endocrine therapy or other 

available targeted agents. Although the metastatic potential of triple-negative breast 

cancer is similar to that of other breast cancer subtypes, these tumors are associated 
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with a shorter median time to relapse and death [77]. Also, once a metastatic triple-

negative breast cancer is present, there is a much shorter median time from relapse to 

death. Higher rates of triple negative breast cancer have been observed in women who 

are younger and woman of African or Hispanic ancestry have been shown to have 

higher rates of triple negative breast cancer [78, 79]. Chemotherapy remains the main 

treatment for triple negative breast cancers. Current treatment includes the use of 

anthracyclines, taxanes, ixabepilone, platinum agents and some biologic agents [80, 81].  

The lack of effective therapies for triple negative breast cancers has led researchers to 

look for further sub-classifications of triple negative tumors. A recent study by Brown et 

al revealed that IL-6 inhibition in addition to IL-8 inhibition dramatically inhibited colony 

formation and cell survival in vitro and staunched tumor engraftments and growth in vivo 

in triple negative breast cancer cell lines; thereby linking IL-6 pathway as an important 

pathway in triple negative breast cancer progression [82].   

 
I will employ the use of triple negative breast cancer cell lines MDA-MB-231, MDA-MB-

468, HCC1806, HCC38, HCC 1937, in my research study. The IL-6/STAT3 pathway is 

active in triple negative breast cancer cell lines and inactive ERα positive cell lines, thus 

these cell lines provide a way to explore the importance of IL-6 in tumor progression. In 

conjunction with ERα positive cell lines (T47D, MCF-7 and BT-474), I am particularly 

interested in determining whether sustained IL-6 signaling can lead to loss of ERα 

expression. Understanding the mechanisms of ERα gene regulation is of fundamental 

importance to the management of breast cancers. 
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Interleukin- 6 (IL-6) 

Interleukin-6 (IL-6) is both a pro-inflammatory and an anti-inflammatory cytokine [83]. It 

is involved in the regulation of immune response, hematopoiesis and acute phase 

reactions as well as cell growth and differentiation and is produced by a variety of cells 

including macrophages, synovial cells, endothelial cells, glia cells, karatinocytes, B-cells, 

T-cells and fibroblasts [84]. IL- 6 expression is induced by a variety of cytokines such as 

IL-1, tumor necrosis factor (TNF) and platelet-derived growth factor (PDGF). In addition, 

bacterial and viral infections and microbial components such as lipopolysaccharide have 

been known to induce IL-6 [85]. A knockout mouse model of IL-6 revealed that IL-6 is 

essential for antiviral antibody response [86].  

 
IL-6 has been shown to serve as a growth factor in a number of cancers including 

multiple myeloma, prostrate cancer and cholangiocarcinoma [87]. IL-6 is associated with 

different features of tumor biology, including metastasis, higher stages of disease 

progression and decreased survival [88]. In breast cancer, IL-6 appears to be both tumor 

promoting and tumor degrading. In MCF-7 cells, pretreatment with IL-6 led to an 

eightfold increase in resistance to doxorubicin indicating that the presence of 

endogenous IL-6 increased the resistance of breast cancer cells to doxorubicin 

treatment [89].  Chiu et al. [90] demonstrated that in ERα positive breast cancer cell 

lines, IL-6 inhibited proliferation by inducing apoptosis. Treatment of ERα positive cells 

with IL-6 induced DNA fragmentation in MCF-7’s and ZR-75’s. In vitro, IL-6 has been 

shown to decrease cell adhesions of three breast cancer cell lines, which has been 

linked to decreasing E-cadherin expression [91]. High circulating levels of IL-6 have 

been shown to directly correlate with disease staging and unfavorable clinical outcomes 

in women with metastatic breast cancer and a variety of cancers, including prostrate, 

colorectal and myeloma[92-104].  IL-6 has also been shown to promote breast cancer 
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cell motility, which suggests that it may have a role in metastasis [105]. IL-6 is also 

hypothesized as a vulnerability factor that may contribute to the ethnic disparities in 

breast cancer mortality [106].  

 
IL-6 signaling 

IL-6 signals by binding to the specific membrane-bound receptor gp80 (IL-6R) to form 

the IL-6/IL-6R complex[107]. This complex then associates with two gp130 molecules 

and induces signal transduction through the intracellular domains of gp130 (Figure 1.1). 

Although the IL-6 receptor is not directly involved in signaling it is required in other to 

present ligand IL-6 to gp130, which leads to activation of the receptor complex [107]. IL-

6 family; including leukemia inhibitory factor (LIF) and oncostatin M (OSM), as well as IL-

11 and cardiotropin-1 (CT-1) all signal through the gp130 receptor also known as CD130 

[83, 108-111].  

 
Targeting IL-6 signaling pathway  

IL-6 mediated activation of STAT3 is a principal pathway involved in promoting 

tumorigenesis [112]. STAT3 has been shown to be critical in tumor formation and 

metastatic progression, therefore targeting this signaling pathway is important to the 

treatment and management of breast cancer [113]. Given the importance of IL-6 

signaling, in driving STAT3 activation, IL-6 blockade using IL-6 ligand binding antibodies 

such as (CNTO-328) and IL-6R blocking antibodies such as (tocilizumab) currently in 

clinical trials may prove as effective therapeutics [114-116]. In addition, inhibition of Jak 

signaling, which is currently in clinical testing for myeloproliferative models may also 

prove effective in the treatment of breast cancers with activated IL-6/Jak/STAT3 

signaling [117]. STAT3 inhibitors, such as STAT3 decoy and targets of the SH2 domain 

which prevent STAT3 phosphorylation is an additional therapeutic that may be 

successful in inhibiting this signaling pathway in vivo [118].  
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Figure 1.2. IL-6 signaling and receptor complex. [107]  
Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D: The IL-6/sIL-6R complex 
as a novel target for therapeutic approaches. Expert opinion on therapeutic targets, 2007, 
11(5):613-624, copyright © 2007 Informa Healthcare. Reproduced with permission of 
Informa Healthcare.  
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Signal Transducer and Activator of Transcription 3 (STAT3) 
 
STAT3 is a member of the STAT transcription factor family that plays critical roles in 

cytokine signaling, mediating cell proliferation, survival, as well as tumorigenesis. STAT3 

is one of the primary intracellular targets activated after exposure to IL-6. As previously 

stated, IL-6 signals through the soluble IL-6R (gp80) coupled with the common signal-

transducing receptor β subunit gp130, a 130kDa transmembrane signaling glycoprotein 

(Figure 1.1) [119, 120]. Signal transduction involves gp130 dimerization and activation of 

receptor-associated Janus kinases (JAKs), leading to the recruitment and 

phosphorylation of a number of signaling molecules including the Stat3 on tyrosine 

residue 705 (pTyr705) [119, 121] [122] (Figure 1.2). STAT3 is generally maintained in the 

cytoplasm in its un-phosphorylated/inactive manner; following its phosphorylation, 

STAT3 forms homodimers, and enters the nucleus, where is activates several pro-

growth and pro-survival genes [119].  

Studies performed by the Bromberg lab and others provide strong evidence for a critical 

role of Stat3 in mammary tumorigenesis [112, 113, 123-126]. They’ve shown that Stat3 

is constitutively active (tyrosine phosphorylated) in more than 50% of primary breast 

tumors and tumor-derived cell lines [112, 124, 126]. Side-population breast cancer stem-

like cells express and require persistently activated Sat3 for viability and maintenance 

[127]. In its canonical role, STAT3 mediates its effects primarily through its ability to 

regulate gene transcription, targeting genes like vascular endothelial growth factor 

(VEGF), survivin, matrix metalloproteinase-9 (MMP-9) and twist [123, 124, 128-131]. 

The principal mechanism of STAT3 activation in breast cancer derived cell lines and 

primary breast tumors is through the IL6/gp130/Jak2 pathway [112]. Inhibition or removal 

of STAT3, via knockdown approaches, led to increased apoptosis, chemosensitivity, and 

decreased angiogenesis and metastatic spread both in cell culture and in xenograft 

models [125, 132-134]. 
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Figure 1.3. Signal transducer and activator of transcription (STAT3) signaling. 
Canonical: Stat3 is tyrosine phosphorylated by Janus kinase (Jak) kinases in response 
to cytokine/growth factor activation of cell surface receptors (ex., receptor tyrosine 
kinases [RTKs], glycoprotein 130 [gp130] with either interleukin-6 receptor [IL-6R] or 
soluble IL-6R [sIL-6R]). On tyrosine phosphorylation (PY), Stat3 dimerizes and localizes 
to the nucleus, where it binds to Stat3 responsive elements. Stat3 is also serine 
phosphorylated (PS). Soluble factors that activate Stat3 include the IL-6 family of 
cytokines. Non-canonical: Unphosphorylated Stat3 can bind to either nuclear factor _B 
(NF_B) or CD44 in the cytoplasm; the complexes translocate into the nucleus, where 
they bind NF_B (IKE) and Stat3 DNA-binding elements. Acetylated Stat3 is required for 
association with CD44. PS Stat3 and PY Stat3 can also localize into the mitochondria, 
where they modulate ATP production [135]. 
Reprinted with permission Sansone P and Bromberg J. J Clin Oncol 30(9), 2012. 
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Although a number of studies have shown that STAT3 is activated in epithelial tumors 

and have emphasized the necessity of IL-6 and the inflammatory response, the question 

about what regulates a continuous activation of STAT3 still remains largely unanswered. 

A paper by Zucman-Rossi identified in-frame somatic deletions of gp130, which activate 

gp130 in inflammatory hepatocellular tumors [136]. These deletions target the binding 

site of gp130 for IL-6; other mutations identified in gp130 led to constitutive activation of 

STAT3 in the absence of ligand. The identification of gain-of function gp130 mutations in 

human hepatocellular tumors elaborates on the acute inflammatory phase observed in 

these tumors, and suggests to us that similar mutations may be present in other 

inflammatory epithelial tumors with STAT3 activation, such as inflammatory breast 

cancer [136].  

 

Negative regulator of STAT3; Suppressor of Cytokine Signaling 3 (SOCS3) 
 
Suppressor of Cytokine Signaling 3 (SOCS3) is an important feedback inhibitor of 

several cytokines including IL-6, LIF, IL-11, ciliary neurotrophic factor (CNTF) and 

granulocyte colony stimulating factor (G-CSF). It was identified in a screen of murine 

thymus cDNA library after a STAT3 pull-down. Further experiments revealed that 

dominant negative STAT3 could inhibit the IL-6 or LIF-induced SOCS3 expression, 

indicating that it was one of the target genes of STAT3. It was also shown that over-

expression of SOCS3 inhibits LIF and IL-6 induced murine monocyctic leukemic M1 cell 

line differentiation [137]. SOCS3 expression is induced by JAK/STAT3 signaling. SOCS3 

inhibits JAK/STAT3 signaling by directly binding to the JAK1, JAK2 or TYK2 while they 

are bound to the gp130 receptor or by recruiting elongins B/C and Cullin5 to generate 

and E3 ligase that leads to ubiquitination of both JAK and gp130 receptor, thereby 

targeting them for degradation [138].  
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STAT3 as a transcriptional repressor 

 
In addition to its role as a transcription factor, STAT3 has been described as a 

transcriptional repressor for a number of genes.  Niu et al. [139] showed that STAT3 

binds to the p53 promoter in vitro and in vivo and mediates down regulation of p53. Also, 

work by the Wasik group showed that STAT3 interacts with histone deacetylase 

(HDAC1) and DNA methyltransferase 1 (DNMT1) [140]. Specifically, STAT3 binds to the 

SIE/GAS binding sites on the SHP-1 promoter and in association with DNMT1, promotes 

epigenetic silencing of SHP-1 tyrosine phosphatase gene in lymphomas [140]. In 

addition, STAT3 has been also shown to negatively regulate a number of genes. It 

negatively regulates IL-6, IL-17 [141] Interferon beta and gamma (IFNβ, IFNψ) [142] and 

C-X-C motif ligand (CXCL10) [143].  

 
Estrogen receptor and STAT3 
 
Estrogen receptor alpha (ERα) is the gold standard biomarker for predicting response to 

therapy thus fully understanding the mechanism by which it is regulated is important to 

the management of breast cancers. Although most acquired resistance to tamoxifen 

occur despite continue expression of ERα, about 20% of resistance occurs due 

decrease/lack of ERα expression. Examination of approximately 50 patient tumor 

samples revealed that an inverse relationship exists between ERα expression and IL-6 

(Figure 1.3). Furthermore it’s been reported that ERα negatively regulates IL-6 [144]. A 

few published data have also revealed a correlation between IL-6/STAT3 signaling and 

ERα expression in breast cancers. IL-6/STAT3 signaling has been linked to modulating 

GREB1 (an ERα target gene) functions in breast cancer [69]. My thesis will further the 

relationship between IL-6/STAT3 signaling and breast cancer. I will reveal a novel role 

for IL-6/STAT3 signaling pathway in regulating ERα.  
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Figure 1.4. Representative IHC showing ERα  and IL-6 expression in luminal breast 
cancer.  
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Introduction to Thesis  

My research is focused on understanding the role of the IL-6/Jak/STAT3 pathway in 

regulating estrogen receptor alpha (ERα) positive breast cancers. ERα positive tumors 

occur in approximately 70 percent of breast cancers. Currently, one of the known 

mechanisms for resistance is via down-regulation of ERα. Understanding the 

mechanisms by which the IL-6/Jak/STAT3 pathway plays a role in modulating ERα 

expression may lead to targeted therapies for ERα positive breast cancers.  

 
In chapter 3 of my research I investigated the role of IL-6/STAT3 mediated ERα 

regulation. Initial examination of ERα positive and triple negative breast cancer cell lines 

revealed an inverse relationship between ERα expression and IL-6/phospho-STAT3-

Y705 expression. Furthermore, treatment of ERα positive breast cancer cell lines (T47D, 

MCF-7 and BT-474) led to a decrease in ERα mRNA and protein expression. We also 

observed that IL-6 signaling led to decrease in ERα positive cell growth in vitro.  

We also showed that treatment of ERα positive breast cancer cells with IL-6 led to the 

recruitment of STAT3 to the ERα promoter; STAT3 bound to the putative STAT3 binding 

sites identified on the ERα promoter. We show that exogenous IL-6 treatment led to the 

recruitment of HDAC1, a transcriptional repressor to the ERα promoter, around the 

same sites we immunoprecipitated STAT3. The IL-6/STAT3 signaling pathway also led 

to changes in ERα promoter histone acetylation and methylation. Essentially, IL-

6/STAT3 led to a decrease in active histone H3K9Ac and H3K4Me1 and an increase in 

repressive histone H3K9Me3. 

 
Interestingly, we did not find STAT3 bound to the ERα promoter of triple negative breast 

cancer cell lines, MDA-MB-231 and MDA-MB-468. We hypothesize that is because the 
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CpG island located in exon 1 of ERα gene is hyper-methylated in triple negative breast 

cancer cell lines. In addition, only repressive histone marks are present on the ERα 

promoter of triple negative breast cancer cell lines. This suggests that the ERα DNA of 

triple negative breast cancer cell lines is in the heterochromatin state. Thus transcription 

factors like STAT3 cannot bind to the promoter.  The research done here has revealed a 

novel role for the IL-6/Jak/STAT3 pathway in down-regulating ERα expression by 

epigenetically modifying of the ERα promoter.  
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       CHAPTER TWO 
       MATERIALS AND METHODS 

 

 

Generation and infection of lenti-viruses 

To study the effects of Stat3 knockdown in breast cancer cell lines, 293T cells were 

transfected with shSTAT3 or shCTRL, using a previously established protocol (ref). Viral 

supernatant is collected and precipitated using PEG-it virus precipitation solution 

protocol. The resulting viral pellet is re-suspended in PBS and used immediately or 

stored at -80°C.  

Cells seeded at 60% density in six-well plates a day before infection were infected with 

high-tither virus in 1ml of serum free media, in the presence of 8ug/mL polybrene. Four 

hours after infection, serum-containing media is added to cells and cells are placed in 

the incubator for 48 hours.  
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Genomic DNA extraction 

Pelleted cells were lysed using a 10:1 ratio of tail lysis buffer: proteinase K and 

incubated at 56°C for 4 hours. After cells were lysed, phenol-chloroform extraction was 

carried out by adding 500ul of phenol-chloroform to each tube and spinning down for 5 

minutes at the highest speed (13,200 rpm). The aqueous layer was washed twice with 

chloroform and then re-suspended in 500ul of isopropanol and 50ul of 5M Sodium 

Acetate. DNA was precipitated by spinning at the highest speed for 10 mins at 4°C. The 

resulting supernatant was discarded and pellet was washed with 70% ethanol. The final 

pellet was resuspended in H20 and final DNA concentration was determined using a 

nano-drop. Genomic DNA was given to the Geoffrey Beene Translational Oncology Core 

for EpiTYPER quantitative DNA methylation analysis.  

 

EpiTYPER quantitative DNA methylation analysis 

Genomic DNA obtained from cells was sent to the Geoffrey Beene Translational 

Oncology Core for EpiTYPER DNA methylation studies. EpiTYPER uses base specific 

cleavage and matrix-assisted later desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS). Like other DNA methylation protocols, EpiTYPER involves bisulfite 

treatment of genomic DNA, which converts un-methylated cytosine to uracil. PCR 

amplification involving the use of a T7 promoter tag is followed by in vitro RNA 

transcription on the reserve strand and base specific cleavage. MALDI-TOF-MS analysis 

of the cleavage product results in distinct signal pair patter from the methylated and non-

methylated DNA template.  

 

 

 

 



	
  27	
  

Chromatin Immunoprecipitation (ChIP). 

 
Cross linking 

Chromatin immunoprecipitation (ChIP) assays were performed on control and IL-6 

treated cells at various time points. Cells (1x107) grown to 90% confluency are cross-

linked with formaldehyde (1%) and incubated at room temperature. Cross-linking 

reaction is stopped by the addition of glycine, a final concentration of 0.125M and 

incubation of cells at room temperature of 5 mins. Media is aspirated and cells are rinsed 

twice with 10mL of cold PBS containing (1mM PMSF, 1uM DTT, 1mM Roche protease 

inhibitor). Adherent cells are scraped from dishes with 1mL cold PBS containing (1mM 

protease inhibitor and 1mM PMSF). Scraped cells are spun at 800xg for 5 mins at 4°C 

and supernatant is carefully removed. Cell pellet is resuspended in 1mL of cell lysis 

buffer containing protease inhibitors and incubated on ice for 10mins with occasional 

vortexing. Cell is spun down using a micro-centrifuge at 800xg for 5 mins at 4°C to pellet 

the nuclei. 

 
Sonication/Chromatin Shearing 

Nuclei is resuspended in 200ul of SDS lysis buffer plus protease inhibitors and incubated 

on ice for 10mins. Nuclei are sonicated to average chromatin length of about 600bp 

while keep the samples cold. Sonicated chromatin is spun at highest speed (13200 rpm) 

for 10mins at 4C. Supernatant (chromatin) is used immediately for immune-precipitation 

or snap frozen and stored at -80C for several months.  

 
Immunoprecipitation 

Samples can be pre-cleared by adding 80ul of salmon sperm DNA/protein A agarose 

beads (50% slurry, with PBS containing 1mM PMSF, 1uM DTT, 1uM protease inhibitor) 

for 1hr at 4C with agitation. After pre-clearing, 10% of sample is saved at input and the 
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rest are divided into necessary fractions immunoprecipated using antibodies of choice. 

Antibodies used in this study include: anti-STAT3 – (cat. # SC-482X, Santa Cruz, CA), 

anti-HDAC1 (cat. # ab51825, Abcam), anti-Histone 3 (tri-methyl K9) antibody (cat. # 

ab8898, Abcam), anti-Histone 3 (mono-methyl K4) antibody (cat. # ab8895, Abcam), 

anti-Histone 3 (acetyl K9) (cat. #ab4441), RNA pol II (positive control and IgG (negative 

control).  

 
Wash and reserve crosslink 

After immunoprecipitation, magnetic beads are separated and washed with each of the 

following buffers, Low salt wash buffer 1: (0.1 SDS, 1% Triton X-100, 2mM EDTA, 20mM 

Tris-HCl pH8.1, 150mM NaCl), low salt wash buffer 2: (0.1 SDS, 1% Triton X-100, 2mM 

EDTA, 20mM Tris-HCl pH8.1, 500mM NaCl), high salt wash buffer: (0.25 LiCl, 1% NP40, 

1% sodium deoxycholate, 1mM EDTA, 10mM Tris-HCl pH8.1. and TE. 

Immunocomplexes are eluted using 250ul of 1% SDS in 0,1M NaHCO3 and reverse 

cross-linked at 65C for 4 hours. DNA is extracted via phenol-chloroform or via DNA 

purification column.  

 
PCR and qRT-PCR 

Eluted and purified DNA for Stat3 IP was analyzed via PCR using primers:  

Forward:      5’ GCAGGTTGCATTCTCCTGAT 3’ 
Reverse:      5’ ACTGGTCTCCCGAGCTCATA 3’ 

 
Eluted and purified DNA for Stat3-IP, HDAC1-IP, anti-histone 3 (acetyl K9) –IP, anti-

histone 3 (mono-methyl K4) –IP and anti-histone 3 (tri-methyl K9) –IP was analyzed via 

qRT-PCR with ViiA7 Real Time PCR System from Life Technologies using primers: 

 Forward:      5’ TCGCTCCAAATCGAGTTGTGCCTG 3’ 
Reverse:      5’ ACTGGTCTCCCGAGCTCATATGCA 3’ 
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Protein extractions, Western blotting and Antibodies 

Protein extracts were obtained by lysing cells with radio-immunoprecipitation assay 

(RIPA) buffer and protein concentrations were determined using Bradford assay 

(BioRad, Hercules, CA, USA). Western blots were carried out using a previously 

described method [145].  In summary, 25ug of protein is loaded onto an SDS-PAGE gel, 

and transferred to PVDF membranes for immunoblotting. A variety of antibodies were 

used in this study. They include, phospho-STAT3-Y705 (Cell signaling – #9135B), total 

STAT3 (Cell signaling – #9139S), estrogen receptor alpha (Santa Cruz Biotechnology – 

SC-543), actin (Santa Cruz Biotechnology – SC-1615), and acetyl-STAT3 (Cell signaling 

– #2523).  

 
ELISA 

Breast cancer cell lines used in this study were seeded in a six well dish 

(200,000cells/well).  After 24, cell media was aspirated. Seeded cells were subsequently 

washed with PBS and fresh serum free media was added. 24 hours later, conditioned 

media was analyzed for IL-6 production using a human IL-6 ELISA kit (catalogue # 

850.030.096; Cell science, Canton, MA) according to manufacturer’s instructions. 

Absorbance level was read at 450nm using a spectrophotometer.  

 
RNA isolation and quantitative real time PCR (qRT-PCR) 

RNA was isolated using Qiagen RNeasy kit (Qiagen, Valencia, CA, USA). One 

microgram of total RNA was converted to cDNA using iScript conversion kit (Bio-Rad) 

with oligo (dT) primers according to the manufacturers instructions. Real time PCR 

reactions were performed using the ViiA 7 Real Time PCR System from Life 

Technologies. qRT-PCR reactions were performed using Taqman Gene Expression 

Master Mix (Applied Biosystems, Foster City, CA) and pre-designed Taqman probes; 

ESR1 – HS00174860_m1, GAPDH – HS02758991_m1, EGR3 – HS00231780_m1, 
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PGR – HS01556702_m1, RET – HS01120030_m1, GREB1 – HS00536409_m1. To 

obtain normalized qPCR values for listed genes, triplicate threshold values were 

averaged amounts of targets were subtracted from GAPDH CT values and normalized to 

untreated samples. 

 
Cell culture, plasmids and reagents 

All human breast cancer cell lines were obtained from American Type Culture Collection 

(ATCC). Estrogen receptor positive breast cancer cells (T47D and ZR-75-1) were 

maintained in RPMI 1640, supplemented with glucose, hepes, 10% FBS, 1% Penicillin-

Streptomycin. BT-474 were cultured in Hybri-Care media supplemented with 10%FBS, 

1% Penicillin-Streptomycin. MCF-7 cells were maintained in EMEM media, containing 

10% FBS and 1% Penicillin-Streptomycin. Estrogen receptor negative cell lines, (MDA-

MB-231 and MDA-MB-468) were maintained in DMEM, supplemented with high glucose, 

sodium pyruvate and1% Penicillin-Streptomycin. HCC 1806, HCC 1143, HCC 38, were 

cultured in RPMI 1640, supplemented with glucose, 10% FBS, and 1% Penicillin-

Streptomycin. Stat3 shRNA lentiviral and scrambled control ShRNA consturcts were 

previously described[146]. PEG-it Virus Precipitation Solution (Catalogue # LV810A-

1/LV825A-1; system biosciences, Mountain View, CA). Other reagents used include: 

recombinant human IL-6 – 10n/mL (Cat. # 206-IL-050; R&D systems, Minneapolis, MN), 

1uM Jak inhibitor 1480 (AztraZeneca), lipofectamine 2000 (Cat. # 11668-027; Life 

Technologies, Carlsbad, CA) and 4-Hydroxytamoxifen (cat. # 7904; Sigma-Aldrich, Saint 

Louis, MO). 

  
MTT Assay 
 
Cells were seeded in a 96-well plate in 5 replicates for 24 hours (10,000 cells/well). Cells 

were then serum starved overnight prior to treatment with tamoxifen, IL-6 or a 

combination. After 5 days of treatment, with replenishment media at day 3, cell 
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proliferation was measured using MTT Cell Proliferation Assay Kit (ATCC). MTT was 

added to cells and incubated at 37°C for 4 hours (visible purple precipitate), it was then 

solubilized by detergent and quantified by absorbance at 570nm with a reference 

wavelength of 670nm.  

 
Electro-mobility Shift Assay (EMSA) 

EMSA’s were performed as previously described [147]. Briefly, nuclear proteins were 

extracted from T47D cells treated with IL-6 and incubated with 14 base long gamma p-

32 labeled DNA oligonucleotides. In the supershift EMSA, antii-Stat3 antibody and cold 

M67 probe (positive control) were added to the cell lysates before their incubation with 

probes.  

 
Statistical Analysis 

Statistical analysis conducted throughout this study, mean +/- SD (standard deviation) 

and group comparisons using students t-tests were carried out in Prism 6.0. Results 

were considered statistically significant when p < 0.05. (*, p < 0.05, **, p < 0.01, *, p < 

0.001). 
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CHAPTER THREE 
 RESULTS 

 
IL-6 levels in breast cancer cell lines 

Given the preliminary data in human breast cancer samples, where we observed an 

inverse relationship between IL-6 levels and ERα (Figure 1.3). We investigated whether 

a similar relationship exists in breast cancer derived cell lines. We examine 4 ERα 

positive breast cancer cell lines and 5 ERα negative breast cancer cell lines (Table 1). 

We performed an ELISA assay on conditioned media to measure how much IL-6 is 

produced by each cell line. We determined by ELISA that while ERα positive cell lines 

(T47D, BT-474, MCF-7, ZR-75) produce little to no IL-6 (0-10pg/mL), ERα negative cell 

lines (HCC 38, HCC 1143, HCC 1806, MDA-MB-468 and MDA-MB-231) produce 

significant amount of IL-6 (100-900pg/ml) with MDA-MB-231 producing the most highest 

amount – 900pg/mL (Figure 3.1). 
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Figure 3.1. IL-6 levels by ELISA in breast cancer cell lines. Conditioned media was 
collected from cell lines listed above and analyzed for production of IL-6 by Elisa. Cell 
lines were normalized by cell number (250000 cells /well). Error bars show SD of 
triplicates. 
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Inverse relationship between IL-6 signaling and ERα  in breast cancer cell lines 

We further characterized the inverse relationship between ERα positive and triple 

negative cell lines by determining the expression levels of ERα mRNA in each cell line. 

Using qRT-PCR, we show that ERα positive cell lines express varying amounts of ERα 

mRNA, and that MCF-7 cells express the highest amount of ERα.  As expected ERα 

negative cell lines lack expression of ERα mRNA (Figure 3.2A). Furthermore, western 

blot analysis confirmed that ERα positive cell lines make ERα protein and triple negative 

do not.  

 
ERα negative breast cancer cell lines produce IL-6, which activates and phosphorylates 

Stat3 at tyrosine 705 [112] . Western blot analysis revealed that ERα negative cell lines 

express phosphor-Stat3-Y705 and ERα positive cell lines which do not produce IL-6, 

lacked expression of phospho-Stat3-Y705. (Figure 3.2B).  

 

We examined MCF-7 xenografts to determine if what we observed in vitro occurred in 

vivo. We show that sections of the tumor that express ERα, were low/negative for 

phospho-Stat3 expression, while ERα low/negative sections of the tumor expressed high 

levels of phospho-Stat3-Y705. Our initial analysis and comparison of these 2 molecular 

subsets of breast cancer cell lines revealed the existence of an inverse relationship in 

breast cancer cell lines in vitro and in vivo. This inverse relationship between these two 

subsets of breast cancers led us to question whether IL-6/phosphor-Stat3 signaling, 

regulates ERα expression. 
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Figure 3.2. ERα expression in breast cancer cell lines. (A) mRNA was extracted from 
breast cancer cell lines listed above, ERα expression was detected by Q-PCR, the levels 
of ERα were normalized by comparison to GAPDH. Error bars show SD of 4 
experiments. (B) Cell lysates from breast cancer cell lines were prepared and Western 
blot was carried out using ERα, pStat3 and Stat3 and actin antibodies. p-Stat3 and 
ERα were normalized against total Stat3 and actin, respectively. 
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Figure 3.3. Representative IHC showing Inverse relationship between phospho-
Stat3-Y705 and ERα  in MCF-7 xenografts. IHC staining of pStat3 and ERα from tumor 
sections of MCF-7 xenografts. 
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IL-6 leads to a decrease in ERα  mRNA and protein in ERα  positive breast cancer 

cell lines  

Previous report by Yang et al [144] showed that ERα negatively regulates IL-6 and we 

observed an inverse relationship between IL-6/pStat3 signaling pathway and ERα 

expression in human breast cancers and breast cancer cell lines. We therefore wanted 

to determine whether IL-6/pStat3 signaling could regulate ERα expression. Exogenous 

treatment of ERα positive breast cancer cell lines T47D, BT-474 and MCF-7 with 

10ng/mL of IL-6 led to tyrosine phosphorylation of Stat3 (phospho-Stat3-Y705. Stat3 

remained constitutively active in these cells even at 48hours of IL-6 signaling. We also 

observed that ERα protein expression began decreasing at 24hours, with the lowest 

amount of ERα expression observed at 48hours in all three cell lines. (Figure 3.4A-C).  

 

As seen in Figure 3.4A-B, ERα mRNA levels slightly increased 3 hours (3hours = 1.2, 

p<0.01) after exogenous treatment with IL-6 compared to control. After 12 hours of 

treating these ERα positive cell lines with IL-6, ERα mRNA began decreasing, with the 

most significant decrease observed in BT-474 cells (~40% decrease). 24 and 48 hours 

post IL-6 treatment, there was at least a 50% decrease in ERα mRNA expression 

compared to control in all three cell lines, with the most significant in BT-474 cells (60-

80% decrease). Interesting, MCF-7 cells which express the highest levels of ERα mRNA 

and protein, when compared to all other ERα positive breast cancer cell lines decreased 

by only 50% while T47D and BT-474 showed ~60 and 80 percent decreases (Figure 

3.5A-C).  
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Figure 3.4. IL-6 leads to a decrease in ERα protein. (A) T47D cells were subjected to 
serum starvation overnight followed by treatment with IL-6 (10ng/mL) at indicated time 
points. Cell lysates were prepared and subject to western blotting with antibodies against 
p-Stat3-Y705, Stat3, ERα and actin. phospho-Stat3-Y705 and ERα were normalized 
against total Stat3 and actin respectively. (B) BT-474 cells. (C) MCF-7.  
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Figure 3.5. IL-6 leads to a decrease in ERα mRNA. (A) T47D cells were subjected to 
serum starvation overnight and then IL-6 treatment at 10ng/mL at time points indicated. 
RNA samples were collected and ER〈 mRNA expression was detected by Q-PCR. The 
levels of ERα mRNA were normalized by comparison to GAPDH content. The error bars 
show an SD of 4 experiments. **, P < 0.01; *, P < 0.05 vs. 0h. (B) BT-747. (C) MCF-7. 
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ERα  target genes expression and down-regulation by IL-6 

The resulting decrease in ERα mRNA and protein levels after treatment with IL-6 led us 

to question the effects of IL-6 on ERα signaling. Essentially, we wanted to determine the 

functionality of the observed ERα decreases. ERα is the defining and driving 

transcription factor in most breast cancers and in the breast cancer cell lines used in this 

study [148]. ERα target genes determine cell proliferation, and other endocrine 

responses in breast cancer cells [63].  We therefore hypothesized that the decrease in 

ERα mRNA and protein expression would lead to a decrease in expression of ERα 

target genes. Examined ERα target genes were identified by ChIP-Seq in primary breast 

cancers from patients with different clinical outcomes and in distant ER-positive 

metastases [64, 149] and in breast cancer cell lines. We selected 4 ERα target genes – 

EGR3, PGR, GREB1 and RET and examined changes in these genes after treatment 

with IL-6. Prior to determining what changes occurred in these genes after treatment 

with IL-6, we observed the expression of these genes at baseline. We confirmed that, 

EGR3, PGR, GREB1 and RET are variably expressed in MCF-7, T47D and BT-474 

(ERα positive cell lines) and not in MDA-MB-231 and MDA-MB-468 cells (ERα negative 

cells) (Figure 3.6). 

We then treated T74D, BT-474 and MCF-7 cells with IL-6 and via qRT-PCR we 

determined the expression levels of ERα target genes – PGR, GREB1, RET and EGR3 

levels after treatment with IL-6.  We show that in all three cell lines, the levels of PGR, 

GREB1, RET and EGR3 increased slightly after 3 hours of treatment with IL-6, this 

increase mirrors the increase we see in ERα after 3 hours of IL-6 exposure. At 24 hours, 

we observe decreases in mRNA levels of these ERα target genes with the most 

significant decrease at 48 hours (Figure 3.7). The changes observed here are in 

agreement with the changes observed in ERα after treatment with IL-6 suggesting that 
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decreases we observe in ERα after treatment with IL-6 is functional.  

	
  
Figure 3.6. ERα  target gene expression in breast cancer cell lines. (A) RNA 
samples were extracted from breast cancer cell lines and EGR3 mRNA expression was 
detected by Q-PCR. The level of EGR3 was normalized by comparison to GAPDH. 
(B) RNA samples extracted from breast cancer cell lines and PGR expression was 
detected by Q-PCR. PGR was normalized by comparison to GAPDH. (C) RNA samples 
were extracted from breast cancer cell lines and GREB1 expression detected by Q-PCR 
was normalized by comparison to GAPDH. (D) RNA samples were extracted from breast 
cancer cell lines and RET expression was detected by Q-PCR, which was normalized to 
GAPDH. Error bars represent an SD of 3 experiments. 
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Figure 3.7. IL-6 leads to a decrease in ERα regulated genes in ERα positive breast 
cancer cell lines. (A) T47D cells were subjected to serum starvation overnight followed 
by treatment with IL-6 (10ng/mL) at indicated time-points. RNA samples were collected 
and PGR, GREB1, RET, EGR3 expression was detected by Q-PCR. The levels of PGR, 
GREB1, RET and EGR3 were independently normalized to GAPDH. The error bars 
show an SD of three different experiments. *, P < 0.05 vs. Ctrl (gray bars). (B) BT-474. 
(C). MCF-7. 
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Stat3 regulates ERα  expression 

IL-6 signaling is capable of activating 3 major proliferative pathways. IL-6 signaling 

activates not only the Jak/Stat3 pathway, but also the MEK/Erk and PI3K/Akt pathways 

[150]. Although our observation in patient breast samples and breast cancer cell lines 

suggested that the IL-6/Stat3 signaling pathway inversely correlates with ERα 

expression, we wanted to confirm that the observed decreases by IL-6 was mediated by 

Stat3 signaling.  

 

We hypothesized that inhibiting activation of Stat3 with a Jaki while treating with IL-6 will 

help us determine if Jak/Stat3 signaling was required for IL-6 mediated down regulation 

of ERα. The Jaki inhibitor would inhibit the kinase activity of Jak2 and as a result Stat3 

will not be phosphorylated. To do this, T47D cells were treated with Jak inhibitor – AZD 

1480 in the presence of IL-6. As seen in figure 3.8, ERα expression was decreased with 

IL-6 alone but not in the presence of a Jaki. This suggests that Stat3 activation is 

necessary for the IL-6 induced down-regulation of ERα expression. 
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Figure 3.8. Stat3 a downstream signaling pathway of IL-6 regulates to 
ERα  expression.  T47D cells were serum starved overnight followed by pretreatment 
with IL-6 or IL-6 + Jak inhibitor (AZD1480, 1uM) at time points indicated. Whole cell 
lysates were subject to western blotting with indicated antibodies. Actin protein is used 
as loading control. The levels of ERα were normalized against actin.   
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IL-6 leads to a decrease in cell growth in vitro 
 
We hypothesized that IL-6 mediated decrease in ERα will lead to a decrease in 

proliferation since these cells are dependent on ERα signaling for growth. We treated 

T47D, BT-474 and MCF-7 cells with IL-6 and measured proliferation over 5 days using a 

metabolic assay (MTT). We observed IL-6 led to a 20 percent decrease in cell growth in 

vitro in all three cell lines (Figure 3.9A).  

 

One of the most significant therapies in the treatment of in breast cancer therapy is the 

administration of tamoxifen [18]. Tamoxifen, a selective estrogen receptor modulator is 

used for the treatment of hormone receptor positive breast cancer. It works by 

competitively binding to the estrogen receptor thus inhibiting its ability to signal [151-

154]. We hypothesized that in combination with tamoxifen, IL-6 will lead to a further 

decrease in proliferation of these ERα positive breast cancer cell lines. We first 

determined the IC50’s of each ERα positive breast cancer cell line before treating with 

IL-6. Our results show that ERα positive cell lines have a low IC50 of 2-3uM compared 

to ERα negative cell lines, which have a higher IC50 of 7-10uM (Figure 3.9B).  

 

We then treated T47D, BT-474 and MCF-7 cells with IL-6 alone, tamoxifen alone or a 

combination of IL-6 and tamoxifen and assayed for cell proliferation via MTT. We 

observed that the combination of IL-6 and tamoxifen led to a further decrease in 

proliferation compared to treatment with tamoxifen alone. IL-6 and tamoxifen decreased 

cell proliferation by 60 percent at a concentration where tamoxifen decreased growth by 

50% (Figure 3.9C). 
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Figure 3.9. IL-6 leads to a decrease in cell growth in vitro. (A) T47D, BT-474 and 
MCF-7 cells were grown in 96-well plates for 24hours. The cells were then serum 
starved overnight followed by treatment with IL-6 for 96 hours under low serum (0.5%) 
condition. Cell proliferation was measured by MTT assay. Error bars represent an SD of 
5 wells and triplicate experiments. (B) Cells were grown in 96-well plates for 24hours. 
Cells were then serum starved overnight followed by treatment with tamoxifen. Cell 
proliferation was measured by MTT assay. Error bars represent SD of 5 identical wells 
and quadruple experiments. ***, p < 0.001. (C) T47D, BT-474 and MCF-7 cells were 
grown in 96 well plates for 24 hours. The cell were then serum starved overnight 
followed by treatment with either IL-6, tamoxifen or a combination of IL-6 and tamoxifen 
for 96 hours under low serum conditions. Cell proliferation was measured by MTT assay.  
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Stat3 binds to the ERα  promoter 

To investigate whether the observed down-regulation of ERα mRNA and protein after 

treatment with IL-6 was induced by Stat3’s activity on the ERα promoter, we examined 

the ERα gene including its promoter for Stat3 binding sites. We looked for Stat3 binding 

sites within the promoter region and around exon1 (location of CpG islands). Proximal to 

exon 1 were previously identified ERα promoters A and B, shown in purple and yellow 

boxes respectively. Within and around the ERα promoter region, we identified 4 putative 

Stat3, binding sites (TTN5AA) shown in red triangles (Figure 3.10). 

Next, we were interested in determining whether Stat3 can bind to the putative Stat3 

binding sites identified on the ERα promoter. Using electro-mobility shift assay (EMSA), 

we tested the ability of each putative site to bind Stat3. Our results revealed that lysates 

from IL-6 treated T47D cells bound to all four probes in vitro. (Figure 3.11B). To provide 

additional evidence on specificity of the binding, we performed EMSA-supershift by 

using a Stat3-specific antibody and a cold M67 probe. M67 is the optimal Stat3 binding 

site (ttcccgtaa). As shown in Figure 3.11C, antibody treatment led to diminished density 

of the basal band and to the formation of a “supershifted” band. 

The confirmation that Stat3 can bind in vitro to the putative Stat3 binding sites identified 

on the ERα promoter led us to question whether Stat3 can also bind to the ERα 

promoter in vivo. We designed primers that encompassed all 4 of the putative Stat3 

binding site identified on the ERα promoter (Figure 3.12) for a ChIP assay. Then, we 

carried out ChIP assays on T47D and MCF-7 cells treated with IL-6 for 3 and 24 hours to 

determine whether Stat3 binds to the ERα promoter. Our results revealed that Stat3 

binds to the ERα promoter in an IL-6 dependent manner. We observed Stat3 on the 

ERα promoter after 3 hours of treating with IL-6. By 24 there was a there a significant 

increase in the amount of Stat3 on the ERα promoter (Figure 3.13). 
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Figure 3.10. Organization of the promoter region of the human ERα gene. 
Schematic of the ERα promoter region. Red triangles represent putative stat3 binding 
sites yellow box shows promoter B, blue box shows promoter A. CpG island is located in 
exon 1, which also contains the first ATG. RefSeq accession: NM_000125.3 
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Figure 3.11. Stat3 binds in vitro to the putative Stat3 binding sites identified on the 
ERα promoter. (A) Probes with Stat3 binding sites used in EMSA. (B) EMSA with 4 
probes including positive control M67. (C) Supershift EMSA using anti-Stat3 antibody 
and cold M67 probe.  
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Figure 3.12. Putative Stat3 binding sites identified on the ERα  promoter. The red 
letters represent putative Stat3 binding sites identified on the ERα promoter. Arrows 
represent primers used in ChIP assays. RefSeq accession: NM_000125.3 

agtcaggctgagagaatctcagaaggttgtggaagggtctatctactttg 

ggagcattttgcagaggaagaaactgaggtcctggcaggttgcattctcc 

tgatggcaaaatgcagctcttcctatatgtataccctgaatctccgcccc 

cttcccctcagatgccccctgtcagttcccccagctgctaaatatagctg 

tctgtggctggctgcgtatgcaaccgcacaccccattctatctgccctat 

ctcggttacagtgtagtcctccccagggtcatcctatgtacacactacgt 

atttctagccaacgaggagggggaatcaaacagaaagagagacaa 

acagagatatatcggagtctggcacggggcacataaggcagcaca 

ttagagaaagccggcccctggatccgtctttcgcgtttattttaagcccag 

tcttccctgggccacctttagcagatcctcgtgcgcccccgccccctggc 

cgtgaaactcagcctctatccagcagcgacgacaagtaaagtaaag 

ttcagggaagctgctctttgggatcgctccaaatcgagttgtgcctggagtg 

atgtttaagccaatgtcagggcaaggcaacagtccctggccgtcctccag 

cacctttgtaatgcatatgagctcgggagaccagtacttaaagttggaggcccgggagccc 

+1 AGGAGCTGGCGGAGGGCGTTCGTCCTGGGACTGCACTTGC 
TCCCGTCGGGTCGCCCGGCTTCACCGGACCCGCAGGCTCCC 
GGGGCAGGGCCGGGGCCAGAGCTCGCGTGTCGGCGGGACAT 
GCGCTGCGTCGCCTCTAACCTCGGGCTGTGCTCTTTTTCCAGG 
TGGCCCGCCGGTTTCTGAGCCTTCTGCCCTGCGGGGACACGG 
TCTGCACCCTGCCCGCGGCCACGGACC+234 ATGACCATGACCCT 
CCACACCAAAGCATCTGGGATGGCCCTACTGCATCAGATCCAAG 
GGAACGAG 
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Figure 3.13. Binding of Stat3 to ERα promoter in vivo. (A and B) Cell lysates 
obtained from listed breast cancer cell lines at indicated time points were examined by 
ChIP assay using antibodies against Stat3 and PCR primer pairs corresponding to ERα 
promoter. 
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Since we observed Stat3 binding to the ERα promoter in an IL-6 dependent manner 

using a primer that encompassed all 4 putative Stat3 binding sites identified within and 

around the ERα promoter, we were curious to determine whether Stat3 bound to each 

site or if it bound to only one particular site.  We designed primers for each Stat3 binding 

site identified on the ERα promoter and then carried out a ChIP assay followed by qRT-

PCR using primers for each putative Stat3 binding site.   

 
We observed that the presence of Stat3 on the ERα promoter was not significantly 

increased after IL-6 treatment when we used primers P-1 to P-3 (Figure 3.14A). 

However, using primer P-4 (Figure 3.14B), we observed a 2-fold increase in the 

presence of Stat3 on the ERα promoter in T47D and MCF-7 cells, 3 hours after 

treatment with IL-6 (Figure 3.15). 24 hours after IL-6 treatment, we observed a 4-7 fold 

increase of Stat3 on the ERα promoter (Figure 3.15). Interestingly, Primer P-4 is 

encompasses not only the Stat3 binding site (that contains the CAAT box) but also the 

TATA box.  

 
To confirm that Stat3 bound to the ER promoter wasn’t an artifact, we looked for the 

presence of Stat3 on the SOCS3 promoter after IL-6 treatment. SOCS3, a bonafied 

Stat3 target is also a negative regulator of Stat3[155, 156]. We confirmed that Stat3 is 

also bound to the SOCS3 promoter in T47D and MCF-7 as a consequence of IL-6 

signaling, confirming that the presence of Stat3 on the ERα promoter is not an artifact 

(Figure 3.15). 
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Figure 3.14. Sub-section of ERα promoter region, showing CAAT and TATA box in 
proximity to Stat3 binding sites. The red letters represent a putative Stat3 binding site 
identified in proximity to the CAAT and TATA box. Arrows represent primers used for 
qRT-PCR analysis after immuno-precipitation. RefSeq accession: NM_000125.3 
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agtcaggctgagagaatctcagaaggttgtggaagggtctatctactttg 

ggagcattttgcagaggaagaaactgaggtcctggcaggttgcattctcc 

tgatggcaaaatgcagctcttcctatatgtataccctgaatctccgcccc 

cttcccctcagatgccccctgtcagttcccccagctgctaaatatagctg 

tctgtggctggctgcgtatgcaaccgcacaccccattctatctgccctat 

ctcggttacagtgtagtcctccccagggtcatcctatgtacacactacgt 

atttctagccaacgaggagggggaatcaaacagaaagagagacaa 

acagagatatatcggagtctggcacggggcacataaggcagcaca 

ttagagaaagccggcccctggatccgtctttcgcgtttattttaagcccag 

tcttccctgggccacctttagcagatcctcgtgcgcccccgccccctggc 

cgtgaaactcagcctctatccagcagcgacgacaagtaaagtaaag 

ttcagggaagctgctctttgggatcgctccaaatcgagttgtgcctggagtg 

atgtttaagccaatgtcagggcaaggcaacagtccctggccgtcctccag 

cacctttgtaatgcatatgagctcgggagaccagtacttaaagttggaggcccgggagccc 

 

P1 

P2 

P3 

A 

cagcctctatccagcagcgacgacaagtaaagtaaagttcagggaa 

gctgctctttgggatcgctccaaatcgagttgtgcctggagtgatgttta 

agccaatgtcagggcaaggcaacttgtccctggccgtcctccagcac 

ctttgtaatgcatatgagctcgggagaccagtacttaaagttggaggc 

ccgggagccc+1AGGAGCTGGCGGAGGGCGTTCGTCCT 
GGGACTGCACTTGCTCCCGTCGGGTCGCCCGGCTT 
CACCGGACCCGCAGGCTCCCGGGGCAGGGCCGGG 
GCCAGAGCTCGCGTGTCGGCGGGACATGCGCTGCG 
TCGCCTCTAACCTCGGGCTGTGCTCTTTTTCCAGGT 
GGCCCGCCGGTTTCTGAGCCTTCTGCCCTGCGGGG 
ACACGGTCTGCACCCTGCCCGCGGCCACGGACC 
+234ATGACCATGACCCT 

CAAT box 

TATA box 

P4 

B 
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Figure 3.15 Stat3 binds by ChIP to the estrogen receptor alpha (ERα)  promoter. 
ERα positive breast cancer cell lines were serum starved overnight, followed by 
treatment with IL-6 (10ng/mL) at indicated time-points. Cross-linked cell lysates were 
examined by ChIP assay using antibodies against Stat3 and PCR primer pairs 
corresponding to ER〈 promoter and SOCS3 promoter (positive control). Error bars show 
SD for triplicate experiments. **, P < 0.01, *, P < 0 .05 vs. control.  
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Triple negative breast cancer cell lines produce IL-6 and constitutively express Stat3. 

We hypothesized that because triple negative cell lines MDA-MB-231 and MDA-MB-468, 

constitutively express Stat3, Stat3 will be bound to the ERα. We carried out ChIP on 

these cells by immunoprecipitating Sta3 and using primers P-4 to see whether Stat3 was 

bound to the ERα promoter. Our ChIP assay revealed that Stat3 is not bound to the ERα 

promoter of triple negative breast cancer cell lines (Figure 3.16).  

 
We hypothesized that Stat3 is not bound to the ERα promoter of ERα negative cell lines, 

because the ERα chromatin in triple negative cell lines is modified and is in a repressed 

state. To confirm this, we used ChIP to assay for active ERα transcription via histone 

mark (H3K4Me1) and a repressed chromatin state via histone mark (H3K9Me3). Our 

analysis revealed that active transcription mark H3K4Me1 is expressed on the ERα 

promoter of ERα positive cell lines but not on the ERα promoter of triple negative cell 

lines. However, triple negative cell lines express H3K9Me3 – a repressed chromatin 

marker, but ERα positive breast cancer cell lines do not (Figure 3.17). 

 
In other to further understand the differences in the chromatin structure of ERα positive 

cell lines and ERα negative cell lines, we extensively examined CpG islands methylation 

of the ERα gene. Examination of the CpG islands of the ERα promoter revealed that 

methylation patterns in vary cell lines. Most importantly, we observed that ERα positive 

cell lines have much lower levels of methylation compared to ERα negative cell lines 

(Figure 3.18). The hypermethylation observed within the CpG island of ERα negative cell 

lines suggest that the gene is in an inactive/heterochromatin state hence transcription 

factors such as Stat3 are unable to bind. Deaton et al. [43] demonstrated that DNA 

methylation can lead to the inhibition of transcription by hindering the binding of 

transcription factors to the promoter. 
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Figure 3.16. Stat3 does not associate with ERα promoter in triple negative breast 
cancer cells. Cross linked cell lysates from MDA-MB-231 and MDA-MB-468 cells were 
examined by ChIP assay using antibodies against Stat3 and PCR primer pairs 
corresponding to ERα promoter. Error bars show SD for triplicate experiments. NS 
compared to IgG control.  
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Figure 3.17. ERα promoter of ERα positive cell lines express activating histone 
mark (H3K4Me1) and ERα negative cell lines express repressive histone mark 
(H3K9Me3). (A) Cross-linked cell lysates from listed cell lines are assayed by ChIP 
using an antibody against H3K4Me1 and PCR primer pairs corresponding to the 
ERα promoter. (B) Cross-linked cell lysate from each cell line is assayed by ChIP using 
an antibody against H3K9Me3 and PCR primer pairs corresponding to the 
ERα promoter. Error bars represent show SD for triplicates, normalized to input DNA. 
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Figure 3.18. Average ERα promoter methylation in breast cancer cell lines. (A) 
Schematic of ERα promoter and exon 1, which contains CpG islands. Brackets 
represent different primer pairs used in EpiTYPER methylation assay. (B) Average 
methylation of CpG islands within primer section 1 in indicated breast cancer cell lines. 
(C) Average methylation of CpG islands within primer section 2 in indicated breast 
cancer cell lines. (D) Average methylation of CpG islands within primer section 3 in 
indicated breast cancer cell lines. (E) Average methylation of CpG islands within primer 
section 4 in indicated breast cancer cell lines. (F) Average methylation of CpG islands 
within primer section 5 in indicated breast cancer cell lines. (G) Average methylation of 
CpG islands within primer section 6 in indicated breast cancer cell lines. 
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IL-6 induces HDAC1 binding to the ERα  promoter 

Stat3 has been shown to act as a transcriptional repressor by recruiting HDAC1 and 

DNMT1 to the SHP-1 promoter [140]. It’s also been shown to bind to the p53 promoter in 

vitro and in vivo and mediates p53 down-regulation [139]. We hypothesized the down-

regulation of ERα after treatment with IL-6 was due in part by the recruitment to 

transcriptional repressors such as HDAC1 to the ERα promoter.  

 
To test whether IL-6 signaling in ERα positive breast cancer cell lines leads to the 

recruitment of HDAC1 to the ERα promoter, we performed ChIP. We immuno-

precipitated HDAC1 using an anti-HDAC1 antibody from control and IL-6 treated cells, 

and then carried out a qRT-PCR using primer P-4, to determined whether HDAC1 was 

bound to the ERα promoter in the same region we observed Stat3 binding. Our results 

revealed that HDAC1 was detected at the ERα promoter of T47D, BT-474 and MCF-7’s 

cells 24 hours after exogenous addition of cells with IL-6 (Figure 3.19).  

 
Ray, S et al. [157] showed that IL-6 dependent acetylation of Stat3 at it’s NH2-terminal 

acetylation domain is required for the ability of Stat3 binding to HDAC1 and that a. 

Acetylation of Stat3 has also been linked with its ability to recruit DNMT1 to the promoter 

of tumor suppressor genes [158, 159]. We therefore wanted to determine whether IL-6 

signaling in ERα positive cell lines led to the acetylation of Stat3. Western blot analysis 

carried out on cell lysates from control and IL-6 treated cells at 3 and 24 hours revealed 

that IL-6 leads to the acetylation of Stat3 at 24 hours (Figure 3.20). The observance of 

acetyl-Stat3 at 24 hours is a likely explanation for the recruitment of HDAC1 at 24hours. 

Overall, the results suggest that IL-6 mediated down-regulation of ERα is observed at 24 

hours after Stat3 acetylation and HDAC1 recruitment to the ERα promoter to the ERα 

promoter.  
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Figure 3.19. IL-6 induces HDAC1 binding to the ERα promoter. Listed breast cancer 
cell lines were serum starved overnight and then treated with IL-6 at indicated time 
points. After treatment, cell lysates were examined by ChIP assay using antibody 
against HDAC1 and PCR primer pairs corresponding to ERα promoter. CT values were 
normalized to input DNA. Error bars show an SD of triplicates. **, P < 0.01 vs. Ctrl.  
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Figure 3.20. IL-6 leads to the acetylation of Stat3 in ERα  positive breast cancer 
cells. (A) T47D cells are serum starved overnight followed by treatment with IL-6 
(10ng/mL) at indicated time-points. Total lysates were prepared and subjected to 
western-blotting with Ac-Stat3, total Stat3 and actin. Ac-Stat3 was normalized against 
total Stat3 and actin. 



	
  65	
  

 IL-6 leads to changes in histone marks on the ERα  promoter.  

The presence of HDAC1 on the ERα promoter in response to IL-6 (Figure 3.19) and a 

subsequent decrease in ERα expression (Figure 3.4-3.5) led us to hypothesize that IL-6 

signaling in ERα positive cell lines leads to changes in histone marks.  

 
As shown in figure 3.17, the ERα promoter of ERα positive breast cancer cell lines 

T47D, MCF-7 and BT-474 are enriched for histone H3K4 mono-methylation (H3K4Me1), 

however after treatment with IL-6, we observed a 2-fold decrease in the level of H3K4 

mono-methylation (Figure 3.21). In addition, ChIP on H3K9 acetylation, another marker 

of an actively transcribed promoter revealed a 2-fold decrease in H3K9 acetylation 

(H3K9Ac) after treatment of ERα positive breast cancer cell lines with IL-6 (Figure 3.22).  

 
We also examined whether any changes occurred in the expression of H3K9 tri-

methylation (H3K9Me3). H3K9Me3 is a marker of gene repression found in constitutively 

repressed genes [160]. As observed in figure 3.17, the ERα promoter of T47D, BT-474 

and MCF-7’s cells does not express H3K9 tri-methylation at baseline. However, after 

treatment with IL-6, we observed approximately 2-fold increase in H3K9 tri-methylation 

at the ERα promoter compared to control (Figure 3. 23).  

 
Our result suggests that IL-6/pStat3 pathway down-regulates ERα expression by 

recruiting acetylated and phosphorylated Stat3 to the ERα promoter, which leads to the 

recruitment of HDAC1. The presence of HDAC1 and other co-repressors likely DNMT1 

leads to the de-acetylation of histones and also leads to an increase in histone 

trimethylation.  
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Figure 3.21. IL-6 alters activating histone mark (H3K4Me1) expression on the ERα  
promoter. ERα positive breast cancer cell lines were serum starved overnight and then 
treated with IL-6 (10ng/mL) for 24 hours. Cell lysates from each cell line were examined 
by ChIP using antibody against H3K4Me1 and PCR primer pairs corresponding to the 
ERα promoter. Values were normalized to input DNA. Error bars show SD of triplicates.   
**, P < 0.01 vs. Ctrl.  
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Figure 3.22. IL-6 alters activating histone mark (H3K9Ac) expression on the ERα  
promoter in ERα  positive breast cancer cell lines. ERα positive breast cancer cell 
lines were serum starved overnight and then treated with IL-6 (10ng/mL) for 24 hours. 
Cell lysates from each cell line were examined by ChIP using antibody against H3K9Ac 
and PCR primer pairs corresponding to the ERα promoter. Values were normalized to 
input DNA. Error bars show SD of triplicates.  **, P < 0.01 vs. Ctrl. 
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Figure 3.23. IL-6 led to an increase in repressive histone mark (H3K9Me3) 
expression on the ERα  promoter. ERα positive breast cancer cell lines were serum 
starved overnight and then treated with IL-6 (10ng/mL) for 24 hours. Cell lysates from 
each cell line were examined by ChIP using antibody against H3K9Me3 and PCR primer 
pairs corresponding to the ERα promoter. Values were normalized to input DNA. Error 
bars show SD of triplicates.  **, P < 0.01 vs. Ctrl.  
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Knockdown of Stat3 in triple negative breast cancer cell lines does not lead to re-

expression of ERα  

We revealed a novel role for the IL-6/phospho-Stat3 signaling pathway in mediating ERα 

expression. Essentially, we showed that exogenous treatment of ERα positive breast 

cancer cell lines with IL-6 led to the down-regulation of ERα via the recruitment of Stat3 

HDAC1 to the ERα promoter. We then hypothesized that since Stat3 mediated ERα 

down-regulation in ERα positive cell lines, knocking down Stat3 ERα negative breast 

cancer cell lines could lead to ERα re-expression. Zhang et al. [140] showed that 

knockdown of Stat3 with a siRNA Stat3 construct led to re-expression of the SHP-1 

gene.  

Using a previously described shStat3 construct [146], we knockdown Stat3 in two triple 

negative cell lines, (MDA-MB-468 and MDA-MB-231). Our results revealed a Stat3 

knockdown of about 70- 90% (Figure 3. 24) and no increase in ERα mRNA (not shown) 

or ERα protein expression (Figure 3.24). However, these results were not surprising 

because we have shown that ERα is in the heterochromatin state in triple negative 

breast cancer cell lines thus transcription factors such as Stat3 are not bound to the ERα 

promoter. ERα repression has been induced in triple negative breast cancer cell lines by 

treating with DNMT inhibitors such as 5-aza-dC and HDAC inhibitors such as TSA [161]. 

We hypothesize that knocking down Stat3 in conjunction with 5-aza-dC and TSA will 

lead to an even greater expression of ERα than using the inhibitors alone.  
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Figure 3.24. Knocking-down Stat3 in ERα  negative breast cancer cell lines does 
not lead to ERα  re-expression. After transfecting MDA-MB-468 and MDA-MDA-231 
cells with shStat3-GFP virus, cells were sorted for GFP expression.  Cell lysates from 
ctrl and shStat3 cell lines were prepared and subjected to western blotting using 
antibodies against Stat3, ERα and actin. Stat3 and ERα were normalized to actin.  
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CHAPTER FOUR 
DISCUSSION 

Summary 

The estrogen receptor signaling is a central regulator of mammary tumors with 

approximately 70% of breast cancers expressing ERα [23]. However, about 20% of 

breast cancers lose ERα expression and acquire estrogen-independent features during 

tumor progression [63]. Since ERα expression levels determine response to endocrine 

therapy with SERMS (such as tamoxifen [23]), a decrease in ERα expression results in 

resistance to therapy, which represents a daunting challenge in the treatment of breast 

cancer. Therefore, understanding the molecular mechanisms by which ERα expression 

is repressed is important for the management of breast cancer, since restoring ERα 

expression may lead to improved sensitivity to anti-estrogen therapies.  

 
 This study demonstrated that IL-6/phospho-Stat3-Y705 expression is inversely 

correlated with ERα expression in primary breast cancers and in breast cancer cell lines, 

suggesting a regulatory relationship between both pathways. Indeed, ERα has been 

shown to regulate IL-6 expression [144]. However, we hypothesized that there was more 

to this inverse relationship and that IL-6/Stat3 signaling pathway also regulates ERα 

signaling. Exogenous treatment of ERα positive breast cancer cell lines with IL-6 led to a 

significant decrease in ERα mRNA and protein levels, suggesting that the IL-6/Stat3 

signaling pathway may directly repress ERα expression and contribute to the 

progression of breast cancer by altering the sensitivity of the cancer to endocrine 

therapy.   
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Indeed, our molecular analyses provided compelling evidence for direct repression of 

ERα by Stat3. We identified functional Stat3 binding sites within and adjacent to the 

transcriptional start sites of the ERα promoter. Validation of these sites using EMSA (in 

vitro assay) and ChIP (in vivo assay) revealed that indeed Stat3 binds directly to these 

sites on the ERα promoter.  The IL-6 induced recruitment of Stat3, a known 

transcriptional activator, to the ERα promoter also led to the recruitment of HDAC1, a 

transcriptional repressor, to the ERα promoter. This result is consistent with the finding 

that Stat3 interacts with transcriptional repressors, HDAC1, DNMT1, NuRD complex and 

mediates repression of a number of genes [139, 140]. HDAC1 and DNMT1 recruitment 

to chromatin is linked to IL-6 induced acetylation of Stat3 [158, 159]. We also found that, 

IL-6 treatment of ERα positive cell lines also led to the acetylation of Stat3 at K-685.  

Our results demonstrated that the recruitment of Stat3 and HDAC1 to the ERα promoter 

led to decreased histone H3K9 acetylation and H3K4 mono-methylation. We also 

observed an increase in histone H3K9 tri-methylation. Taken together, our results 

demonstrate that ERα can be regulated by the Stat3 and that Stat3 recruits HDAC1 to 

directly repress ERα expression in breast cancer cells (Figure 4.1).  

  
The proposed model (Figure 4.1) demonstrates a mechanism by which ERα is regulated 

by the IL-6/Stat3 signaling pathway.  However, IL-6/Stat3 signaling pathway is not 

sufficient in regulating ERα expression. In triple negative breast cancer cell lines (MDA-

MB-231 and MBA-MB-468) where IL-6/pStat3 is expressed and ERα is not expressed, 

simply inhibiting Stat3 signaling using a shStat3 construct does not lead to ERα re-

expression (Fig. 3.24). These data demonstrate that in conjunction with IL-6/Stat3 

signaling, there are other mechanisms involved in regulating ERα expression.  
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Figure 4.1. Model of ERα repression by the IL-6/Jak/pStat3 pathway. In its active 
state, estrogen receptor alpha promoter DNA is un-methylated and the histones are 
acetylated. After IL-6 exposure, Stat3 is recruited to the Stat3 binding site on the ERα 
promoter. This leads to the acetylation of Stat3, recruitment of HDAC1 and other 
transcriptional repressors, which results in changes in histone marks like de-acetylation 
of histones and as well as increased histone tri-methylation. 
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Stat3: Activator? or Repressor?  

A fundamental aspect of transcriptional regulation is defining whether a protein or a 

transcription factor functions either as an activator or a repressor. We and others have 

shown that Stat3, a well known transcriptional activator, can function as a transcriptional 

repressor as well [139, 140]. Interestingly, we see evidence that activated Stat3 can 

increase the expression of ER. We show that 3 hours after treatment with IL-6, Stat3 is 

activated by phosphorylation at Y-705 and we observed an increase in ERα mRNA in all 

cell lines. We know this increase in ERα mRNA is functional because we also observe a 

similar increase in the expression of ERα regulated genes (PGR, GREB1, RET, EGR3). 

In addition, we observed by ChIP, binding of Stat3 to the ERα promoter at this time. 

Thus, we hypothesize that Stat3 is recruited to the promoter and acts as a transcriptional 

activator of ERα until transcriptional repressors that interact with Stat3 are also recruited 

to the ERα promoter. 

 

Stat3 can assemble a variety of multi-protein complexes that affects its regulatory 

functions [162]. These complexes are regulated by post-transcriptional modifications. 

For example, Yuan et al [163] showed that Stat3 is acetylated on lysine residue 685, and 

this acetylation is critical for Stat3’s ability to form dimers required for cytokine-stimulated 

DNA binding and transcriptional regulation. In our study, we show that acetylation of 

Stat3, which occurs much later than 3-hours after treatment with IL-6 enhances Stat3’s 

ability to recruit and interact with HDAC1. We observed that Stat3 is acetylated 

approximately 24hours hours after treating with IL-6, which correlates with the 

recruitment of HDAC1 and a reduction in ERα expression. This has led to the hypothesis 

that sustained IL-6 signaling is necessary for Stat3’s ability to act as a transcriptional 

repressor.  Although we do not show what happens if IL-6 is withdrawn after 3 hours by 
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washing away ligand, we hypothesize that the activated Stat3 currently in the nucleus 

would not lead to repression of ERα because it needs to be acetylated in order to 

interact with HDAC1.  

 

IL-6 signaling up-regulates a number of other signaling pathways including the MEK/Erk 

and PI3K/Akt pathways [150]. In addition IL-6 has been linked to induction of epithelial to 

mesenchymal transition (EMT) in breast cancer cells [164].  Induction of EMT involves 

the up-regulation of Vimentin, N-Cadherin, Snail and Twist, which occurs in a Stat3 

dependent manner [164]. Interestingly, both Snail and Twist have been shown to 

negatively regulate ERα expression by binding to the intronic regions of the ERα gene 

[32-34]. Our results show that Stat3 binds within the promoter region of the ERα gene. 

We hypothesize that Stat3-mediated increases in Twist and Snail expression potentiate 

transcriptional repression of ERα. Stat3 binds to the promoter, followed by its acetylation 

via CBP and recruitment of HDAC1.  Snail and Twist subsequently bind to the intronic 

regions, resulting in further recruitment of HDAC1 resulting in sustained repression.  

Although a decrease in ER levels was consistently observed in cell lines, the degree of 

repression was variable.  We hypothesize that the expression levels of these 

transcription factors can fluctuate as a function of culturing conditions (e.g. density and 

pH) and thus alter the effective repression by IL6/Stat3. 

 

We observed that IL-6 signaling led to a decrease in proliferation of ERα positive breast 

cancer cell lines. We attributed this decrease in proliferation to a decrease in ERα 

mRNA and protein expression. Although the attenuation of ER repression leads to 

decreased growth in vitro, these cells exhibit an EMT phenotype and are more 

migratory. ERα cells are highly dependent on ERα signaling, thus decreases in ERα 
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expression induced by IL-6/Stat3 signaling led to decrease in proliferation. However, we 

hypothesize that prolonged IL-6 signaling will lead to a sustained ERα repression and a 

likely shut down of ERα  expression, allowing surviving cells to turn-on other signaling 

pathways for survival. Likely, prolonged IL-6 signaling will lead to up-regulations of 

genes involved in EMT, thus allowing these cells to proliferate faster than when they 

depended on ERα signaling.  

 

We extensively analyzed estrogen receptor methylation patterns in five ERα positive 

breast cancer cell lines and six ERα negative breast cancer cell lines. First, we observed 

that methylation is extremely variable. Within ERα positive cell lines, the methylation 

pattern varied from cell line to cell line. For example, although ZR-75 is an ERα positive 

cell lines the level of methylation in particular sections of the CpG are comparable to 

ERα negative cell lines (appendix). In addition, the level of methylation in ERα negative 

cell lines such as MDA-MB-231, arguably the most common triple negative breast 

cancer cell line isn’t significantly higher than the level of methylation in ERα positive 

breast cancer cell lines. These data suggests that there may be a threshold for how 

much methylation is sufficient to shut off gene expression.  
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A reduction in ERα expression as well as discrepancy in ERα levels between primary 

tumors and metastatic disease are commonly observed with disease progression and 

are associated with worse prognosis and resistance to tamoxifen [23, 64]. Here we have 

demonstrated that the IL-6/Jak/Stat3 signaling pathway leads to decreased 

ERα expression in luminal A and B breast cancers. We show that Stat3 in conjunction 

with HDAC1 directly regulates ERα expression.  

 

Overall, we have described a novel role for the IL-6/Stat3 signaling pathway in regulating 

ERα expression in ERα positive breast cancers.  
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Primer 1 
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Primer 3 
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  99	
  

 
Primer 6 
 


