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Summary

We consider the problem of inferring the relationship between two homogeneous popu-

lations, and the prevalence of each population. Sample data from the two distributions as

well as from a third population consisting of a mixture of the two will be used. Under the

transformation model assumption on the two distribution functions, we develop a pairwise

rank based likelihood. Simultaneous inference on the mixture proportion and the transfor-

mation parameter defining the relationship between the two populations is based on this

likelihood. Under some regularity conditions, it is shown that the maximum pairwise rank

likelihood estimator is consistent and has an asymptotic normal distribution. Simulation

results indicate that the performance of this statistic is satisfactory. The methodology is

demonstrated on a data set in prostate cancer.

Some key words: Lehmann alternative; Mixture proportion; Pairwise rank likelihood; Semi-

parametric model; Transformation parameter.
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Introduction

We consider the two sample problem where the group identifier is missing on a subset

of the observations. In this setting, we identify the outcome data as being generated from

either one of two distinct univariate distributions (F, G) or from the mixture distribution

H = λF + (1 − λ)G, 0 < λ < 1. It is presumed that the missing group identification is

unrelated to either the subject’s outcome or group affiliation. Our objective is to perform

inference on the relationship between the distribution functions F and G and the mixture

parameter λ.

Our interest in this problem emanated from an application in cancer research, where

significant effort is underway to develop novel therapeutics directed at specific genetic targets

on the cancer cell. Genetic profiling of cancer cells is now a reality, and with this technology

comes an understanding of the genetic control of the cancer cell. The ultimate objective in

implementing this technology is to identify and then degrade those genes that control the

cancer cell and thus improve the clinical outcome of the patient. One path in this research,

is to empirically explore the association between oncogenes and adverse clinical outcome.

We anticipate that genes associated with poor clinical outcome and prevalent in the cancer

population will become the primary targets of the cancer therapy.

While the use of genetic profiling holds great promise for the future, currently this tech-

nology is applied to only a small subset of the cancer population due to the high cost of the

technology, as well as limited access to the tumor cell. However, there is available clinical

outcome data on all subjects which can be used to infer genetic information on the larger

population not included in the gene studies. Focusing on a single gene for the purpose of

exposition, subjects who are tested and express the gene are members of population F , sub-
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jects who do not express the gene are members of G, and the remaining patients who are

not tested belong to the mixture population H. Thus we have three independent data sets:

x1, ..., xn1 , iid with distribution F (x),

y1, ..., yn2 , iid with distribution G(y), (1.1)

z1, ..., zn3 , iid with distribution H(z) = λF (x) + (1− λ)G(x).

The corresponding density functions are denoted by f(x) = dF (x)/dx, g(y) = dG(y)/dy and

h(z) = dH(z)/dz, respectively.

The problem of inference with this type of mixture data was studied by Hosmer (1973),

using normality assumptions on F and G. Bayes and nonparametric estimation of mixing

proportion have been discussed by Murray & Titterington (1978), Hall (1981), Titterington

(1983) & Hall and Titterington (1984). Anderson (1979) proposed the semiparametric model

g(x) = exp(β0 + xβ1)f(x), (1.2)

where f(x) is an arbitrary density function. The data in (1.1) then come from distributions

dF (x), exp(β0 + xβ1)dF (x), [λ + (1− λ)exp(β0 + xβ1)]dF (x) (1.3)

respectively.

The attractive feature of (1.2) compared with the normal mixture model is that the

distributions are modeled nonparametrically, except for a parametric “exponential tilt” that

is used to relate one distribution to the other. This is similar to the Cox proportional hazards

model and the Lehmann two sample alternative model, where the ratio of the two hazard

functions is assumed to have a known parametric form (Lehmann 1953, Cox 1972).

In this paper, we assume that F and G are related through a transformation function

Ḡ(x) = C(F̄ (x), θ) (1.4)
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where Ḡ(x) = 1 − G(x), and C(u, θ) is a continuous distribution function on (0, 1) whose

functional form is known and θ is a scalar parameter. Furthermore, we assume that C(u, θ)

is monotonically increasing in θ and continuously differentiable in both u and θ. The trans-

formation model includes many familiar semiparametric models. For example, C(u, θ) = uθ

corresponds to the Cox proportional hazards models or the Lehmann two sample alternative

model, and C(u, θ) = θu/(1 − u + θu), corresponds to the proportional odds ratio model

(Bennett 1983 and Pettitt 1984). Based on a specified transformation function, likelihood

based estimation and inference of the transformation and mixture parameters (θ, λ) is pro-

posed. It is anticipated that simultaneous inference will result in additional information

when compared to methodology that examines each parameter separately.

This paper is organized as follows. In section 2, we develop the pairwise rank based like-

lihood. Maximum pairwise rank likelihood estimation is proposed for the mixture parameter

λ and the transformation parameter θ. An asymptotic normal distribution is derived for

the pairwise rank likelihood estimates. In section 3, simulation studies are undertaken to

examine the adequacy of the inference procedure for realistic sample sizes. An example us-

ing prostate cancer patient data is presented in section 4. We conclude in section 5 with a

discussion of possible extensions of the proposed methodology.

2. Main results

Since the baseline survival function F̄ is not specified in the transformation model (1.4),

it is desirable to make inference on λ and θ without using the form of F̄ (x). A natural

approach is to consider a rank based method. Note that

P (Y > X) = E{Ḡ(X)} = −
∫

Ḡ(x)dF̄ (x) = −
∫

C(F̄ (x), θ)dF̄ (x) = D(θ),
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P (Z > X) = −
∫
{λF̄ (x) + (1− λ)Ḡ(x)}dF̄ (x) = 0.5λ + (1− λ)D(θ)

and

P (Z > Y ) = −
∫
{λF̄ (x) + (1− λ)Ḡ(x)}dḠ(x) = λD1(θ) + 0.5(1− λ),

where

D(θ) = −
∫

C(F̄ (x), θ)dF̄ (x) =
∫ 1

0
C(u, θ)du,

D1(θ) = −
∫

F̄ (x)dC(F̄ , θ) =
∫ 1

0
udC(u, θ) = C(1, θ)−D(θ).

Denote p1(θ) = P (Y > X), p2(λ, θ) = P (Z > X) and p3(λ, θ) = P (Z > Y ), then the

pairwise rank likelihood is constructed as

LP =
∏
i,j

{p1(θ)}I(yj>xi){1− p1(θ)}I(yj≤xi)
∏
i,k

{p2(λ, θ)}I(zk>xi)

∏
i,k

{1− p2(λ, θ)}I(zk≤xi)
∏
j,k

{p3(λ, θ)}I(zk>yj)
∏
j,k

{1− p3(λ, θ)}I(zk≤yj), (2.1)

where I(·) is indicator function, and i = 1, 2, .., n1, j = 1, 2, .., n2 and k = 1, 2, ..., n3. Thus

the log pairwise rank likelihood is written as

lP =
∑
i,j

I(yj > xi) log p1(θ) +
∑
i,j

I(yj ≤ xi) log{1− p1(θ)}+
∑
i,k

I(zk > xi) log p2(λ, θ)

+
∑
i,k

I(zk ≤ xi) log{1− p2(λ, θ)}+
∑
j,k

I(zk > yj) log p3(λ, θ) +
∑
j,k

I(zk ≤ yj) log{1− p3(λ, θ)}

and the maximum pairwise rank likelihood estimates (λ̂, θ̂) satisfy the score equations

∂lP
∂λ

= 0,
∂lP
∂θ

= 0.

For convenience, denote

η = (θT , λ)T , η̂ = (θ̂T , λ̂)T .

Let n = n1 + n2 + n3, ni/n → νi, i = 1, 2, 3, where 0 < νi < 1.
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Theorem 1 Under some regularity conditions,

√
n(η̂ − η) → N(0, Σ) (2.2)

in distribution, where

Σ = A−1(η)B(η)A−1(η)

and A, B are given in the Appendix.

The proof of Theorem 1 will be given in the Appendix.

3. Simulation results

To examine the adequacy of the proposed method a simulation experiment was performed.

Three independent samples from three distinct populations were generated. Two samples

of size 50 were generated from exponential distributions. The first sample was drawn from

a unit exponential and the second from an exponential distribution with scale parameter

taking values 2,4,6 and 8. The third sample, derived as a mixture of the two exponentials,

consisted of 200 observations. The mixture parameter ranged from .20 to .80. There were

5000 replications for each simulation run.

The simulation structure represents the Lehmann two-sample alternative model, 1 −

G(x) = {1 − F (x)}θ, or using the transformation function representation C(u, θ) = uθ.

Under this model, the pairwise probabilities in the likelihood are evaluated as

p1(θ) =
1

θ + 1
, p2(λ, θ) = 0.5λ + (1− λ)

1

θ + 1
, p3(λ, θ) =

λθ

θ + 1
+ 0.5(1− λ).

The results of the simulations presented in Table 1 demonstrate that the likelihood based

estimation and asymptotic inference procedure for the transformation parameter θ and mix-

ture parameter λ is accurate. The bias of the mixture parameter estimate is small over the
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range of (θ, λ), with the bias improving as θ moves away from 1. In contrast, the bias of

θ̂ becomes considerable as θ increases. This pattern holds throughout the range of λ. The

empirical coverage probabilities of the asymptotic 95% confidence intervals are all close to

the nominal .95 level.

4. Prostate Cancer Example

A fundamental tenet in clinical research is that the continued discovery of genetic infor-

mation will result in an increased understanding of patient risk. One well-studied genetic

marker is the amplification of the Her-2 gene. Its amplification has been observed in breast,

ovary, lung and prostate cancer. Research is currently underway to ivestigate the role Her-2

plays in controlling the signalling pathway of a tumor cell. One path in this research de-

velopment is to empirically examine the relationship between Her2 gene amplification and

the level of disease burden. If it is determined that Her2 gene amplification is an important

component in tumor growth and its prevalence is high in the population, then their is a

strong rationale for the development of therapy that targets this gene abnormality.

At Memorial Sloan-Kettering Cancer Center, only a small percentage of prostate cancer

patients with localized disease are tested for Her2 gene amplification. Data on 83 patients

with pathologically organ confined disease were tested for specific genetic markers, including

Her2 status along with their PSA (Prostate Specific Antigen) values. Of the 83 localized

prostate cancer patients who were tested for the Her2 gene amplification, 32 tested positive.

Evidence of an association between Her2 amplification and high PSA values was determined

through the Mann-Whitney U-statistic (p= ). An additional 200 local disease patients with

only their PSA values was then included into the analysis. Our objective was to use the
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association between PSA and Her2 status to enhance our estimate of the prevalence of Her2

amplification in this prostate cancer population.

The proposed pairwise likelihood is derived conditional on (n1, n2, n3), with information

regarding λ stemming from z1, ..., zn3 ∼ H. However in the current example, further infor-

mation on the mixture parameter λ can be obtained through consideration of the sampling

distribution of (n1, n2), the total number of subjects observed in the Her 2 amplified and

nonamplified groups. Conditioning on n† = n1 + n2, n1 has a binomial distribution with

parameters (n†, λ). Thus a simple estimate of λ based on the marginal totals (n1, n2) is

λ̂M = n1/n
†. A straightforward strategy to provide a more informative estimate of the

mixture parameter is to combine λ̂M with the pairwise likelihood estimate λ̂P . The convex

combination that minimizes the variance of the estimate is

λ̂ =

(
σ̂2

M

σ̂2
M + σ̂2

P

)
λ̂P +

(
σ̂2

P

σ̂2
M + σ̂2

P

)
λ̂M , (4.1)

where

σ̂2
M ≡ ˆvar[λ̂M ] =

λ̂M(1− λ̂M)

n†
and σ̂2

P ≡ ˆvar[λ̂P ],

the estimate of the latter term is provided in (2.2).

Using the Lehmann two sample alternative in the pairwise rank based likelihood, θ̂ =

x.xx(seθ̂ = x.xx), and the estimated prevalence shows a marked decline λ̂ = .314(seλ̂M =

.049) from the binomial estimated based on the 83 tested patients. An examination of the

data shows that the distribution of PSA for the mixture group was closer in shape to the

nonamplified Her2 group PSA data, resulting in this downward adjustment in the probability

of a Her2 amplification in this population. We are currently exploring explanations for this

unusual sampling pattern. To summarize this analysis, with the addition of xx patients with

PSA values only, we confirm the association between PSA and Her2 status, but the initial
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finding that Her2 amplification is prevalent in this population has been called into question,

requiring further investigation.

5. Discussions

By assuming a transformation model, we have used a pairwise rank likelihood approach

for estimating the underlying parameters. The advantage of this approach is its simplic-

ity. Alternatively, a triple-wise rank or all sample based rank approach can be employed.

Implementation of these alternative approaches would involve additional complexity in the

computation of the rank likelihood and its corresponding score and information statistics.

Further research is required to determine if this increase in complexity is offset by an increase

in efficiency of the resulting estimators.

We are currently exploring implementation of the pairwise likelihood to the case where

outcome data is possibly right censored. This extension would enable us to examine the

relationship, for example, between Her2 status and survival time in the population explored

in Section 5. We are also persuing the development of a hypothesis testing framework, testing

the hypothesis that the mixture parameter λ = 0.

Finally in Section 4, a convex combination of the pairwise likelihood estimate of the

mixture parameter and an estimate based on the marginal group totals was established.

The marginal estimate λ̂M was developed external to the pairwise likelihood approach. We

are currently exploring the development of a unified likelihood approach for estimation and

inference on (θ, λ), derived by combining the conditional pairwise rank based likelihood with
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the marginal binomial likelihood.

6. Appendix

In the appendix we present a proof of Theorem 1.

Denote

a1 =
∑
i,j

I(yj > xi), b1 =
∑
i,j

I(yj ≤ xi) = n0n1 − a1,

a2 =
∑
i,k

I(zk > xi), b2 =
∑
i,k

I(zk ≤ xi) = n0n2 − a2,

a3 =
∑
j,k

I(zk > yj), b3 =
∑
i,k

I(zk ≤ yj) = n1n2 − a3.

Then

lP =
3∑

l=1

al log pl(λ, θ) + bl log{1− pl(λ, θ)}

and η̂ = (λ̂, θ̂) satisfies

∂lP (θ̂)

∂η
=

3∑
l=1

al
∂ log pl(λ, θ)

∂η
+ bl

∂ log{1− pl(λ, θ)}
∂η

= 0.

By using Taylor expansion, we have

√
n(η̂ − η) =

√
n

(
∂2lP (η)

∂ηηT

)−1
∂lP (η)

∂η
+ op(1).

Note that in probability

1

n1n2

a1 → p1,
1

n1n2

b1 → 1− p1,

1

n1n3

a2 → p2,
1

n1n3

b1 → 1− p2,

1

n2n3

a3 → p3,
1

n2n3

b3 → 1− p3.
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Also note n = n1 + n2 + n3 and ni/n → νi, i = 1, 2, 3. Then in probability

1

n2

∂2lP (η)

∂η∂ηT
→ A(η)

= ν1ν2p1
∂2 log p1(η)

∂η∂ηT
+ ν1ν2(1− p1)

∂2 log(1− p1(η))

∂η∂ηT

+ ν1ν3p2
∂2 log p2(η)

∂η∂ηT
+ ν1ν3(1− p2)

∂2 log(1− p2(η))

∂η∂ηT

+ ν2ν3p3
∂2 log p3(η)

∂η∂ηT
+ ν2ν3(1− p3)

∂2 log(1− p3(η))

∂η∂ηT
. (6.1)

We can prove that

∂lP (η)

∂η
= d1

∑
j,i

{I(yj > xi)− p1}+ d2

∑
k,i

{I(zk > xi)− p2}+ d3

∑
k,j

{I(zk > yj)− p3},

where

dl =

[
∂ log pl(η)

∂η
− ∂ log{1− pl(η)}

∂η

]
, l = 1, 2, 3.

By using the results of Wilcox statistic and considering the correlation between terms, we

can show that

√
n

1

n2

∂lP (η)

∂η
→ N(0, B)

in distribution, where the expression of B = B(η) is extremly long involving twenty four

terms. We refer this to a technical report by the authors. As a result

√
n(η̂ − η) → N(0, Σ),

where

Σ = A−1(η)B(η)A−1(η).
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Table 1. Estimated mean values and observed empirical coverages, in parentheses,

for nominal 95% confidence intervals based on 5000 simulations

λ θ = 2 θ = 4 θ = 6 θ = 8

0.20 2.045 (0.929) 4.174 (0.942) 6.269 (0.943) 8.488 (0.932)

0.181 (0.846) 0.194 (0.911) 0.196 (0.928) 0.198 (0.921)

0.35 2.039 (0.944) 4.148 (0.952) 6.294 (0.947) 8.476 (0.941)

0.338 (0.906) 0.350 (0.934) 0.351 (0.925) 0.350 (0.937)

0.50 2.046 (0.952) 4.141 (0.954) 6.325 (0.951) 8.468 (0.947)

0.503 (0.940) 0.499 (0.934) 0.501 (0.941) 0.503 (0.942)

0.65 2.041 ( 0.945) 4.142 (0.949) 6.298 (0.950) 8.477 (0.948)

0.663 (0.944) 0.655 (0.941) 0.650 (0.933) 0.654 (0.936)

0.80 2.038 ( 0.940) 4.126 (0.945) 6.260 (0.943) 8.420 (0.939)

0.824 (0.950) 0.806 (0.930) 0.805 ( 0.936) 0.804 (0.937)
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