
Inference on the limiting false discovery rate and

the p-value threshold parameter assuming weak

dependence between gene expression levels within subject

Glenn Heller1 and Jing Qin2

1Department of Epidemiology and Biostatistics

Memorial Sloan-Kettering Cancer Center

New York, NY 10021, USA

2Biostatistics Research Branch

National Institute of Allergy and Infectious Diseases

Bethesda, Maryland 20892, USA

Corresponding author: Glenn Heller

email: hellerg@mskcc.org

phone: 646 735 8112

fax: 646 735 0010

Running Head: FDR analysis with dependent data

1



Summary. An objective of microarray data analysis is to identify gene expressions

that are associated with a disease related outcome. For each gene, a test statistic is

computed to determine if an association exists, and this statistic generates a marginal

p-value. In an effort to pool this information across genes, a p-value density function

is derived. The p-value density is modeled as a mixture of a uniform (0,1) density and

a scaled ratio of normal densities derived from the asymptotic normality of the test

statistic. The p-values are assumed to be weakly dependent and a quasi-likelihood

is used to estimate the parameters in the mixture density. The quasi-likelihood and

the weak dependence assumption enables estimation and asymptotic inference on the

false discovery rate for a given rejection region, and its inverse, the p-value threshold

parameter for a fixed false discovery rate. A false discovery rate analysis on a local-

ized prostate cancer data set is used to illustrate the methodology. Simulations are

performed to assess the performance of this methodology.

Keywords: Asymptotic normal test statistic, confidence interval, microarray, p-value

mixture model, quasi-likelihood, weak dependence.
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1 Introduction

Microarray analysis is used to identify gene expressions that are associated

with a disease related outcome. It is typically exploratory, with no apriori

hypothesis concerning the association between a specific gene expression and

the outcome variable. The intent of the analysis is to generate hypotheses

for further exploration, either in the laboratory or in the clinic. Microarray

technology is currently applied in many areas including: clinical staging, cell

line classification, distinguishing tumor type, and understanding the effect of

a biological agent. Scientists believe that identification of informative genes

will provide insight into a disease mechanism, a genetic pathway, or isolation

of a therapeutic target.

Microarray analysis generates a vast amount of data. In a typical study,

tens of thousands of gene expressions are recorded on the subjects under study.

For each gene, a test of association of gene expression and outcome variable

is performed. The statistical challenge is how to determine which genes are

truly associated with outcome. Simply testing each gene individually, without

adjustment for the number of genes examined, provides little confidence that

true associations are identified and nonimportant genes are eliminated from

further study. For example, if a test statistic is computed for each gene, and

the genes with the highest test statistic are found discriminatory, the cut-off for

the test statistic is still problematic. Due to the thousands of tests performed,

use of a standard nominal significance level to determine this critical region

will result in overstating the number of significant associations identified.

Traditionally, protection against multiple comparisons is undertaken by

choosing the critical region of a test to satisfy a familywise error rate of α,

where the familywise error rate is defined as the probability of rejecting at least

one true hypothesis (Hochberg and Tamhane, 1987). While protecting against

falsely rejecting tests, the familywise error rate is a conservative approach,

resulting in a loss of power in each of the individual tests. As a result, using this

approach to adjust for the multiple tests could potentially miss genes that are

associated with outcome. To correct for this conservativeness, Benjamini and

Hochberg (1995) developed the false discovery rate (FDR), which is defined as



the expected proportion of false rejections of the null hypothesis. The FDR

represents a compromise between the conservative familywise error rate and

testing each gene at the nominal significance level.

Variations of the false discovery rate, termed the positive, conditional, and

marginal false discovery rates, have been proposed in the literature (Benjamini

and Hochberg 1995, Storey 2002, Tsai 2003). Assuming weak dependence and

at least one test statistic is rejected, as the number of genes tested increases,

these false discovery rates all converge to the probability a gene is not associ-

ated with the outcome conditional on the test statistic lying in the rejection

region. As a result of the asymptotic equivalence of these false discovery rates,

we call this conditional probability the limiting false discovery rate. For the

analysis of gene array data, where tens of thousands of tests are carried out,

this asymptotic evaluation of the FDR is reasonable.

The limiting FDR has been estimated in the literature by pooling informa-

tion across genes and using a mixture model for the density of the test statistic

or corresponding p-value. Pan et al. (2003) employ a normal mixture model

for the density of the t-statistic. Parker and Rothenberg (1988), Allison et al.

(2002), and Pounds and Morris (2003) use a Uniform-Beta mixture to model

the p-value density. The accuracy of the resulting FDR estimates rely on the

adequacy of the mixture density specification. To avoid this specification, non-

parametric estimates of the mixture density have been proposed by Efron et

al. (2001), Storey (2002), and Black (2004). In addition to estimation of the

limiting FDR, estimates of the p-value threshold, adapted from the sequential

p-value method of Benjamini and Hochberg (1995), have been developed by

Benjamini and Hochberg (2000), Genovese and Wasserman (2004), and Storey

et al. (2004). Although these FDR and p-value threshold estimates are com-

monly employed in the analysis of microarray data, their precision is typically

ignored. One exception is Owen (2005), who computed the variance of the

number of false discoveries when genes are dependent, but this calculation is

conditional on the observed gene expression data and assumes all genes are

unrelated to the outcome variable.

In this paper, we develop estimates of the limiting false discovery rate eval-

uated at a p-value threshold, and its inverse, the p-value threshold evaluated



at a fixed FDR, from a quasi-likelihood derived from marginal p-value mix-

ture densities. The asymptotic normality of the FDR and p-value threshold

estimates stem from quasi-likelihood based results and a weak dependence as-

sumption between gene expression values within subject. Estimation of the

asymptotic variance for the limiting FDR estimate is derived and confidence

intervals for the limiting FDR and p-value threshold parameters are devel-

oped, accounting for the potential dependence between genes. We believe

these estimates of precision provide a unique perspective to error rate analysis

of microarray data.

The methodology is demonstrated on a microarray gene expression data set

obtained from 79 patients who underwent a radical prostatectomy for localized

prostate cancer. The data were obtained from tissue samples taken at the time

of surgery. In the analysis, patients were followed for at least seven years; 37

patients were classified with recurrent disease based on a rising PSA profile,

whereas 42 patients classified with nonrecurrent disease, remained with an

undetectable PSA seven years after surgery (Stephenson et al. 2005). Prostate

specific antigen (PSA) is a biomarker that is commonly used to determine

the existence of prostate tumor cells in the patient. The gene expression

analysis was carried out using the Affymetrix U133A human gene array, which

has 22,283 genes. Expression values on each array were preprocessed using

Affymetrix MAS 5.0. This preprocessing algorithm includes a background

adjustment of the expression values, and a within array scale transformation,

producing a 2% trimmed mean within each array equal to 500. The choice of

500 is the default value for MAS 5.0.

2 P-value Mixture Model

To determine differential gene expression between the recurrent/nonrecurrent

outcomes, a t-test was performed for each gene, and the accompanying p-value,

based on the standard normal reference distribution, was computed to test the

hypothesis

H0g: no difference in gene g expression between outcome groups



H1g: gene g expression is different between outcome groups (g = 1, . . . G).

Each p-value is generated from one of these two classes (not different/different).

A random variable Dg, indicates whether the observed p-value for gene g,

denoted by pg, was generated from the null class (Dg = 0) or the alternative

class (Dg = 1). The marginal distribution of Dg is Bernoulli with parameter

λ = Pr(not different) and the density of P given D is written as fD(p). Since

the Dg are not observed, the marginal density of P is represented as a mixture

of two density functions

f(p) = λf0(p) + (1− λ)f1(p).

In the null class, the distribution of P is uniform (0,1),

f0(p) = 1 0 < p < 1.

The alternative density is

f1(p; τ) =
1

2

φτ,1(Φ
−1(1− p/2))

φ0,1(Φ−1(1− p/2))
,

where φµ,σ(u) denotes a normal density function with location and scale pa-

rameters µ and σ, and Φ is the standard normal distribution function. This

density is derived from the asymptotic normality of the test statistic T and

the change of variable P = 2(1− Φ(|T |)) (Hung et al. 1997).

Estimation and inference in this work are based on the marginal p-values

derived from the asymptotic normality of the test statistic. The accuracy

of the inference derived from the proposed methodology is a function of the

accuracy of the asymptotic normal approximation and thus improves as the

sample size increases. Although Student’s t-statistic is used to generate the

p-values for the prostate cancer gene expression data, the application is wide

ranging and can be applied to any k-sample comparison or test of association

that is based on an asymptotic normal test statistic.

The mixture model used to represent the density of the p-values is

f(p; λ, τ) = λ + (1− λ)
1

2

φτ,1(Φ
−1(1− p/2))

φ0,1(Φ−1(1− p/2))
0 < p ≤ 1. (1)



In this model, the parameter τ measures the strength of the differentially

expressed genes, with a large value signaling that there are a group of genes

with very small p-values. For the two-sample t-test, assuming a common

variance σ2, and n1, n2 subjects in the two groups,

τ =

(
n1n2

n1 + n2

)1/2 (
|µ1 − µ2|

σ

)
.

Estimation of the parameters β = (λ, τ) is based on the loglikelihood

LG(λ, τ) ≡
G∑

g=1

lg(β) =
G∑

g=1

log

{
λ + (1− λ)

1

2

φτ,1(Φ
−1(1− pg/2))

φ0,1(Φ−1(1− pg/2))

}
. (2)

In the context of microarray analysis, it is not plausible to treat the G gene

derived p-values as independent. We therefore treat LG(λ, τ) as a log quasi-

likelihood. A form of weak dependence between the quasi-score components,

described in conditions (D1)-(D3) below, is sufficient to satisfy the central

limit theorem and the weak law of large numbers for the parameter estimates

(Serfling 1968). As a result, the theorem stated following these conditions

provides the asymptotic inferential structure for β.

Denote the quasi-score component as

sg(β) =
∂lg(β)

∂β
,

Ma as a σ-algebra generated by the quasi-score components {s1(β), . . . , sa(β)},
and the partial sum of the quasi-score as

Ta(β) = G−1/2

a+G∑
g=a+1

sg(β).

The following conditions are used to define weak dependence of the quasi-score

components

(D1) E[sg(β0)] = 0

(D2) limG→∞ var[Ta(β0)] = V (β0) uniformly in a

(D3) E[E2(Ta(β0)|Ma )] ≤ b(G)

E|var(Ta(β0)|Ma)− var(Ta(β0))| ≤ b(G)



where b(G) = O(G−θ); θ > 0.

theorem: Assume that the weak dependence conditions (D1-D3) are sat-

isfied. Define β̂ = (λ̂, τ̂) as the maximum quasi-likelihood estimate derived

from equation (2) and let β0 denote the true value of β. Let N (β0) denote

a bounded neighborhood around β0 and assume G−1LG(β) and its derivative

are uniformly bounded in N (β0). Then as n →∞ and G →∞,

(1) β̂ is a consistent estimator of β0,

(2)
√

G(β̂ − β0)
D→ N(0, Σ), Σ = A−1V A−1

where
1√
G

G∑
g=1

∂lg(β0)

∂β

D→ N(0, V )

1

G

G∑
g=1

∂2lg(β0)

∂β∂βT

P→ A
1

G

∑ ∑
g,h∈C

∂lg(β0)

∂β

∂lh(β0)

∂β

P→ V

and C is the set of quasi-score component pairs with nonzero correlation (Lum-

ley and Heagerty 1999). The matrices A and V are consistently estimated by

An(β̂) =
1

G

G∑
g=1

∂2lg(β)

∂β∂βT

∣∣∣∣
β=β̂

Vn(β̂) =
1

G

∑ ∑
g,h∈C

∂lg(β)

∂β

∂lh(β)

∂β

∣∣∣∣
β=β̂

Estimation of V requires knowledge of the correlated quasi-score compo-

nent pairs. The following argument is used to carry out this computation.

Let

t(eg) = Φ−1(1− pg/2)

represent the observed value of the t-statistic for gene g as a function of the

gene expression data for the n subjects, where eT
g = (e1g, . . . , eng) is the gene

expression data vector. These n elements are derived from the two outcome

groups (recurrence / no recurrence). It is assumed that the elements are



generated independently, and up to a shift in location, identically distributed.

The quasi-score for gene g is now written as

s(β; eg) =
∂

∂β
log

{
λ + (1− λ)

1

2

φτ,1(t(eg))

φ0,1(t(eg))

}
where we have added the gene expression vector as an argument to the quasi-

score component. Application of the mean value theorem produces the fol-

lowing covariance calculation for the quasi-score components corresponding to

genes (g, h)

cov[s(β; eg), s(β; eh)] =

cov
[
{s(β; µg) + W T (β; µ∗g)(eg − µg)}, {s(β; µh) + W T (β; µ∗h)(eh − µh)}

]
,

where E(eg) = µg, and W (β; µ∗g) = ∂s(β; eg)/∂eg is an n×2 matrix evaluated

at the point µ∗g which lies on a line between eg and µg. Letting σgh denote

the covariance of the gene expression data for genes g and h, it follows that

cov[s(β; eg), s(β; eh)] = σghW
T (β; µ∗g)W (β; µ∗h).

Thus, elimination of noncorrelated quasi-score component pairs can be accom-

plished by testing whether the corresponding gene expression data pairs are

correlated.

For the prostate cancer data, the sample correlation matrix R = (r)gh

was computed for the 22,283 genes and Fisher’s z-test statistic was used to

test whether each gene pair had correlation zero. There were G(G − 1)/2 ≈
250 million tests to determine correlated gene pairs, resulting in a further

multiple comparison problem. Using the Benjamini and Hochberg (1995) pro-

cedure of controlling the false discovery rate at the 0.05 level, gene pairs were

considered correlated if the test statistic produced a p-value less than 0.003.

Seven percent of the gene pairs demonstrated a nonzero correlation for the

expression data using this FDR criterion and were included in the summand

for the estimate Vn(β̂).

Maximization of the quasi-likelihood was accomplished through the Nelder-

Mead simplex algorithm, under the constrained parameter space (0 < λ <

1, 0 < τ). The parameter estimates from the prostate cancer data were, λ̂ =



0.75, τ̂ = 1.89. To assess the adequacy of the mixture model (1), the observed

p-values were compared to the model derived p-values. As shown in Figure

1, the mixture model along with the maximum quasi-likelihood parameter

estimates provide an adequate fit to the data.

Histogram of p

p
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0.
0
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3.
0

Figure 1. Histogram for the observed 22,283 gene p-values and the p-value

mixture density estimate. The horizontal dotted line represents the quasi-

likelihood estimate of λ.

The mixture parameter estimate indicates that 25% of the 22,283 genes

analyzed are associated with recurrence. It is generally recognized that the

level of confidence regarding membership into this alternative class is not equal

for all genes. Gene membership into the alternative class becomes increasingly

likely as the p-value decreases. Our strategy is to report those genes where

there is a high level of confidence of this association.



3 Gene Selection based on the FDR and P-Value Threshold Pa-

rameters

The false discovery rate (FDR) is a popular measure of this confidence level.

Assuming a common marginal distribution for each p-value, the limiting FDR

is defined at a fixed rejection region γ0 by

π(γ0) = Pr(D = 0|P ≤ γ0);

the probability a gene belongs to the null class given its associated p-value is

less than γ0 (Storey 2004, Genovese and Wasserman 2004). Using the p-value

mixture model framework, the limiting false discovery rate parameter at γ0 is

defined as

π(γ0; β) =
λγ0

λγ0 + (1− λ)(1− Φ[Φ−1(1− γ0/2)− τ ])
. (3)

The consistency of π(γ0; β̂) results from the consistency of the quasilikelihood

estimates. Alternatively, since the FDR defined in (3) is a monotone function

of γ, it can be set to a sufficiently small value π0, and a consistent estimate

of the threshold p-value γ is found through the equation π(γ; β̂) = π0. Func-

tionally, this is accomplished by solving the equation

γ(π0; β̂) =
(1− λ̂)F1(γ; τ̂)π0

λ̂(1− π0)
(4)

where F1(γ; τ) = 1 − Φ[Φ−1(1 − γ/2) − τ ] is the distribution function of the

p-values under the alternative hypothesis and evaluated at γ.

Although the FDR and p-value threshold estimates are consistent, their

precision is a function of the level of dependence in the gene expression data.

As this dependence increases, the confidence that the FDR and threshold es-

timates lie in a small neighborhood around their parameter values diminishes.

To obtain a better understanding of these parameters, an asymptotic normal

pivotal statistic is constructed to produce an asymptotic confidence interval for

the FDR parameter π(γ0; β0) and its inverse function, the p-value threshold

parameter γ(π0; β0).

The asymptotic normality of π(γ0; β̂) stems from the asymptotic normality

of the quasi-likelihood estimate β̂, derived in the theorem, and the continuity



of π with respect to β. The asymptotic variance of π(γ; β̂) follows directly

from the asymptotic variance of the quasi-likelihood estimates and the delta

method

var[π(γ0; β̂)] = θT Σθ where θT =

[
∂π

∂λ
,
∂π

∂τ

]
.

The resulting symmetric (1 − α) asymptotic confidence interval for the FDR

at the p-value threshold level γ0 is[
π(γ0; β̂)− z1−α/2

√
var{π(γ0; β̂)} , π(γ0; β̂) + z1−α/2

√
var{π(γ0; β̂)}

]
,

where z1−α/2 is the 1 − α/2 standard normal quantile. A confidence interval

for the p-value threshold parameter at a given FDR level π0 is constructed by

applying the inverse transformation to the lower and upper confidence limits

of π(γ; β). Specifically, a (1−α) FDR confidence interval for any given γ may

be written as

Pr[aγ < π(γ; β) < bγ] = 1− α.

By choosing γ to be the p-value threshold parameter for a FDR level π0, i.e.

π(γ; β) = π0, and applying the inverse transform, the (1−α) p-value threshold

confidence interval is

Pr

[
(1− λ)F1(γ; τ)aγ

λ(1− aγ)
< γ(π0; β) <

(1− λ)F1(γ; τ)bγ

λ(1− bγ)

]
= 1− α.

Evaluation of this asymptotic confidence interval for the p-value threshold

parameter at the FDR level π0 is obtained by substituting consistent estimates

for (β, γ) in the upper and lower confidence bounds. These estimates are

obtained from equations (2) and (4).

Although either estimate, π(γ0; β̂) or γ(π0; β̂), may be used in differential

gene expression analysis, for the purpose of gene selection, a direct approach

is to fix the FDR and estimate the p-value threshold region; the genes that fall

into the rejection region are chosen for further analysis. This is the approach

carried out for the prostate cancer data set.

The proposed confidence interval can be employed in multiple ways for

gene selection depending upon the objective of the analysis. If differential



gene expression analysis is used to choose a small set of genes for validation by

the laboratory scientist at the bench, then a (1−α) lower confidence bound for

the p-value threshold parameter could be used for gene selection. Typically,

RT-PCR, northern blots, or immunohistochemistry are used to validate the

differentially expressed genes. Alternatively, if the goal is to use the error rate

analysis as a screening tool to weed out uninteresting genes for subsequent

classification or prediction analysis, then a liberal approach using a (1 − α)

upper confidence bound for γ(π0; β) would be suitable.

The original localized prostate cancer data analysis applied differential gene

expression analysis as a filter to select candidate genes for model building

and prediction (Stephenson et al. 2005). Using the p-value mixture model,

the estimated p-value threshold is 2.1 × 10−3 for a FDR level equal to 0.05.

Accounting for the variability and dependency in the gene expression data,

the interval width from the 95% confidence interval for the p-value threshold

parameter is 2.9×10−3, which is substantial relative to the threshold estimate.

The 95% upper confidence bound for the p-value threshold parameter is 3.8×
10−3. For the prostate cancer p-value gene list, if the threshold estimate was

used as the filter, 367 genes would be selected for further analysis. In contrast,

the 95% upper confidence bound filter would incorporate 575 genes for the

model building component of the analysis. Thus, when using the FDR as a

filter, accounting for the variability provides a more liberal, but rational, gene

selection mechanism.

It is interesting to note the effect of the dependence assumption on the

selection mechanism. Under the assumption that the gene expression values

were independent, the interval width from the 95% confidence interval for

the p-value threshold parameter is 4.6 × 10−4, approximately one-eighth the

interval width of the threshold parameter estimate under weak dependence.

Not surprisingly, the independence assumption used in conjunction with 22,283

genes, provides a justification for the use of the threshold estimate as the filter,

with little penalty for substituting the estimate for the parameter value. For

this data set, however, the dependence between genes is an important aspect

of the analysis. Thus, the uncertainty of the location of the FDR and p-value

threshold parameters should be accounted for in the gene selection analysis.



Finally, an alternative approach is to infer the asymptotic FDR parameter

for a given p-value threshold parameter. Gene selection based on the p-value

threshold equal to 0.05, would produce an asymptotic FDR estimate equal to

0.240 with an estimated standard error equal to 0.030. Thus, the probability

a selected gene is not differentially expressed may be as high as 0.300.

4 Simulations

A series of simulations were performed to assess the adequacy of the point and

interval estimates of the limiting FDR and the p-value threshold parameters.

A two-sample t-test was used to compute the p-value for each of 10000 ‘genes’.

The two-group comparison was based on either 20 or 40 subjects per group.

Within each group, the expression data for each gene were generated indepen-

dently and identically distributed from either a normal or log-Weibull family.

For each gene in group 1, a vector of n1 independent identically distributed

mean zero and variance 1 random variables were generated. For each gene in

group 2, a vector of n2 independent identically distributed random variables

were generated with either mean zero and variance 1 or mean 2 and variance

1. The probability that the n2 vector components had mean 2 was set equal to

1− λ. The parameter λ represents the proportion of true null hypotheses and

was chosen to equal {0.3, 0.6, 0.9} for the simulations. Within each subject,

a block dependence structure between genes was generated. The block size

was 500, with equal correlation ρ between genes within a block. The values

of ρ used in the simulations were {0, 0.3, 0.6}. This correlation represents a

m-dependence structure and satisfies the weak dependence conditions. Five

hundred replications were run for each simulation.

The results of the simulations are presented in Tables 1 and 2. In general,

the level of correlation between genes did not influence the bias or coverage

estimates. For both the FDR and p-value threshold estimates, the bias in-

creased as the parameter moved away from zero. The log-Weibull simulations

were less accurate than the normal simulations.
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In Table 1, with forty subjects per group, the bias remained small and the

95% empirical coverage was uniformly good for all the simulations examined.

In Table 2, however, with twenty subjects per group, the bias sometimes be-

came large and had a negative impact on the coverage estimate, particularly

in the log-Weibull simulations.

Additional simulations were run to explore the impact of violating the weak

dependence assumption. Within each subject, all 10000 genes were equally cor-

related. The correlations examined were ρ = {0.2, 0.4, 0.6}. For the normal

simulations with 40 subjects per group, the simulations resulted in a signif-

icant percentage of negative variance estimates for the FDR estimates. The

percentage of replicates within a simulation that resulted in a negative vari-

ance estimate ranged from 15% to 50%. Thus, the proposed methodology is

not robust to a strong dependence structure.

5 General Comments

A mixture model is proposed to determine a subset of genes associated with

an outcome variable. Since the observed p-values used in the mixture model

are derived from the asymptotic normality of the test statistic, this method

is not confined to a specific test statistic or outcome variable type. The pro-

posed methodology can be applied to a test statistic based on a comparison

between groups (Student’s t-statistic, Wilcoxon rank sum statistic, the log

rank statistic, or their k-sample analogs), a test of association between vari-

ables (Pearson’s correlation coefficient or Kendall’s Tau), regression analyses

or a multilevel factorial analysis.

The accuracy of the proposed methodology is a function of the accuracy

of the asymptotic normality of the test statistic and the weak dependence

assumption. We believe, however, there is a growing recognition that the

inability to validate many gene expression analyses is a function of the limited

number of samples in these analyses. Thus, it is our expectation that future

gene expression studies will be based on larger sample sizes, enabling the

asymptotic normality assumption to be justified on a greater proportion of



studies.

The effect of within subject gene expression dependence on FDR measures

is a current subject of research. Qui et al. (2005) demonstrated that depen-

dence can impact the variability of an FDR measure. Efron (2005), using a test

statistic mixture density, demonstrated that strong dependence can produce

a significant deviation between the empirical and theoretical null component

of the mixture density. The resulting bias in the FDR estimate may be re-

duced by adapting the null density to the observed data. For the p-value

mixture density, this could entail replacing the standard Uniform null density

with a Beta (ξ, θ) null density in the quasi-likelihood. Note that the standard

Uniform null density is the special case ξ = θ = 1. Whether this generaliza-

tion produces a less biased FDR and p-value threshold estimate under strong

dependence will be the subject of future research.

Strong dependence relationships such as exchangeability (Qui et al. 2005)

and positive regression dependence (Benjamini and Yekutieli 2001) appear to

have an adverse effect on the FDR measure and do not hold for the methodol-

ogy presented in this paper. In contrast, under weak dependence, our simula-

tions demonstrate that the FDR and p-value threshold estimates are accurate.

What remains unclear is whether weak dependence is congruent to the concept

of genetic pathways and hence whether it is sufficient to approximate the gene

expression correlation structure. If weak dependence is not sufficient it may

be possible to transform the expression data in the preprocessing algorithm

prior to performing the proposed FDR analysis.

Our measure of the FDR differs from the conventional measure proposed

in Benjamini and Hochberg (1995). Their FDR measure is based on a fixed

number of tests performed; we have modified the FDR to present its limit-

ing value. When the marginal p-values are generated from a single mixture

distribution, the asymptotic FDR for a given threshold γ, is defined as the

probability a gene is not differentially expressed given its p-value is less than

γ. A benefit of the asymptotic FDR is the creation of an asymptotic pivotal

statistic that is used to create a confidence interval for either the asymptotic

FDR parameter, or its inverse function, the p-value threshold parameter. The

confidence intervals are used to provide control of the error rate with a high



level of confidence or as a liberal gene filter for subsequent statistical analyses

of the gene expression data.

An alternative error rate analysis is based on controlling the tail probability

for the proportion of false rejections. The properties of this error rate estimate,

also known as the proportion of false positives (PFP) or the false discovery

proportion (FDP), have been studied for both independent and dependent

gene expression values (Korn et al. 2004, Genovese and Wasserman 2004, van

der Laan et al. 2004). As noted in Genovese and Wasserman (2004), the FDP

can be written as a function of the chosen threshold γ0

S(γ0) =

∑
g I(Pg ≤ γ0)I(Dg = 0)∑

g I(Pg ≤ γ0)
,

where it is assumed that at least one p-value is below the threshold γ0. A

connection between the tail probability for the FDP

Pr[S(γ0) > c]

and a confidence bound for the asymptotic FDR can be obtained using the

central limit theorem assumption, G1/2[S(γ0)−π(γ0)] converges in distribution

to a mean zero normal random variable, with asymptotic variance denoted

by W (γ0) and the asymptotic FDR represented as π(γ0). The relationship

between the two error rate analyses is realized by substituting

π(γ0) +
zqW

1/2(γ0)

G1/2
,

for c in the FDP tail probability, producing a (1− q) upper confidence bound

for the asymptotic FDR

S(γ0)−
zqW

1/2(γ0)

G1/2
.

Finally, in this paper an empirical criterion was used to group genes into

the dependent sets for the asymptotic variance calculation. As our under-

standing of the gene environment continues to improve, dependent gene sets

may be established from biological determinants, such as through linkage of

their gene function, location in the cell, or involvement in the biological pro-

cess. One source currently available to establish these connections is the gene



ontology consortium website (www.geneontology.org). As knowledge of gene

interactions increase, the dependency classification can be carried out using

external databases.

Appendix: Derivations of the asymptotic properties of the quasi-

likelihood estimates

1) β̂
p→ β0

The proof will use the following arguments.

The log quasi-likelihood is defined as the sum of log p-value mixture densities

LG(β) =
G∑

g=1

log

{
λ + (1− λ)

1

2

φτ,1(Φ
−1(1− pg/2))

φ0,1(Φ−1(1− pg/2))
.

}
where β = (λ, τ).

It follows that for β0, the true value of β,

E

[
∂

∂β
G−1LG(β)

]
β=β0

= 0

E

[
∂2

∂β2G−1LG(β)

]
β=β0

is negative definite.

Let N (β0) denote a bounded neighborhood around β0 and assume G−1LG(β)

and its derivative are uniformly bounded in N (β0).

Define ρ(β) = limG→∞G−1LG(β).

Then for δ > 0,

sup
β:‖β−β0‖>δ

ρ(β) < ρ(β0) (A.1)



Proof:

Since β̂ is the maximum quasi-likelihood estimate,

G−1LG(β̂) ≥ G−1LG(β0)

By the assumptions above, G−1LG(β) converges uniformly to ρ(β) for β ∈
N (β0). Thus for ε > 0,

G−1LG(β̂) ≥ ρ(β0)− ε

Adding and subtracting ρ(β̂) to the left side of the inequality and again using

the uniform convergence argument

ρ(β̂) ≥ ρ(β0)− ε

which by (A.1) cannot occur unless β̂ → β0.

2)
√

G(β̂ − β0)
D→ N(0, Σ)

Proof:

Let SG(β) = ∂LG(β)/∂β and AG(β) = ∂2LG(β)/∂β∂βT . Under the as-

sumption of weak dependence, the weak law of large numbers and a Taylor

expansion are applied to produce

G1/2(β̂ − β0) = [G−1AG(β0)]
−1G−1/2SG(β0) + op(1).

It follows that

var[G1/2(β̂ − β0)] = [G−1AG(β0)]
−1[G−1varSG(β0)][G

−1AG(β0)]
−T

and therefore, using the central limit theorem for weakly dependent data,

√
G(β̂ − β0)

D→ N(0, A−1V A−T ).
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