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Summary. The analysis of covariance is a technique used to improve the power of
a k-sample test by adjusting for concomitant variables. If the endpoint is survival
time, and some observations are right censored, the score statistic from the Cox pro-
portional hazards model is the most commonly used method to test the equality of
conditional hazard functions. In many situations, however, the proportional hazards
model assumptions are not satisfied. Specifically, the relative risk function is not
time invariant or represented as a loglinear function of the covariates. We propose an
asymptotically valid k-sample test statistic to compare conditional hazard functions,
which does not require the assumption of proportional hazards, a parametric specifi-
cation of the relative risk function, or randomization of group assignment. Simulation
results indicate that the performance of this statistic is satisfactory. The methodology

is demonstrated on a data set in prostate cancer.
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1. Introduction

The analysis of covariance is a technique used to improve the power of a k-sample
test by adjusting for concomitant variables. In the classic normal linear model, this
technique is used for increasing the precision of the k-sample test statistic derived
from a randomized study or to adjust for sources of bias in observational studies. The
power of the adjusted test statistic is a function of the strength of the association
between the covariates and the response. However, the increase in power comes at the
cost of model specification. The assumption of a specific linear regression function
and a normal error distribution are imposed on the model structure. If either of
these assumptions are incorrect, the resulting inference drawn from the adjusted test
is questionable. As with any model based methodology, its appropriate use requires
that the assumptions used to develop the model are satisfied.

If the endpoint is survival time, and some observations are right censored, the Cox
proportional hazards model (Cox, 1972) is the most commonly used method to adjust
for covariates. The conventional proportional hazards specification of the conditional

hazard function is

A(t]z, ) = Ao(t)exp{fz + v'w}

where Z represents the group classification variable of interest, X is the vector of
concomitant variables, hg(¢) is the baseline hazard function, and (3,4) are the re-
gression parameters associated with (Z, X). The parameter of interest (3, represents
the group effect on survival time.

For the proportional hazards model, the primary assumptions are that the relative

risk function A(t|z,&)/Ao(t) is 1) time invariant and 2) represented by a loglinear



function of the covariates. Since its introduction, there has been considerable interest
in the development of diagnostic techniques, including test statistics and graphical
summaries, to determine the adequacy of these assumptions to the data at hand. For
the analysis of covariance survival problem, incorrect model specification can lead to
erroneous inference on the group effect. A good overview of diagnostic techniques for
the proportional hazards model is found in Therneau and Grambsch (2000).

In order to accommodate data that does not satisfy the proportional hazards
model assumptions, models with increasing levels of generality have been developed.
The earliest extension is the stratified proportional hazards model, which allows for
non-proportional hazards between a finite set of strata (Kalbfleisch and Prentice,
1980). Sun and Yang (2000) extend this model, enabling the relative risk function to
vary between strata. Application of these approaches may require ad-hoc partitioning
of a continuous covariate and may become infeasible with more than one continuous
covariate.

Sasieni (1992) proposed a continuously stratified Cox model
AMt|z, ) = AV (t|x)exp(2).

Here the baseline hazard changes for each value of the vector @, while maintaining
the same proportional hazards relationship for each point stratum. Although no
inferential procedure has been developed for the adjusted group effect parameter
in this model, an adjusted test has been developed in the special case of the partly

linear Cox model

Altlz, @) = do(t)exp{zf + g(z)}

where ¢ is an unknown smooth function. Inference on 3 in the presence of an infinite



dimensional nuisance parameter g was developed through a reparameterization of g
orthogonal to § (Heller, 2001). Although the partly linear model relaxes the loglinear
specification of the relative risk function, it still requires the relative risk function to
remain time invariant.

Lin and Wei (1989), Kong and Slud (1997), and DiRienzo and Lagakos (2001a,b)
have proposed covariate adjusted k-sample tests, using robust variance estimates for
the proportional hazards score statistic to account for possible misspecification of the
conditional hazard function. The formulation of their tests is based on a working

proportional hazards model

A(t]z, ) = Ao(t)exp{zB + h(~'z)}

where h is specified. Lin and Wei (1989) choose h as the identity function, whereas
Kong and Slud (1997) and DiRienzo and Lagakos (2001a,b) allow a wider range of
working model specifications. If Z is independent of X, as is the case in a randomized
clinical trial design, Lin and Wei (1989) demonstrate that the covariate adjusted score
statistic, using a robust variance estimate, is asymptotically valid. Kong and Slud
(1997) propose an alternative score test that is asymptotically valid under the more
general condition that at any point in the study, the distribution of X among subjects
still at risk is independent of Z. DiRienzo and Lagakos (2001b) introduce a bias
corrected score test that may be appropriate when X and Z are dependent, however
they have yet to determine the conditions under which this statistic is asymptotically
valid. Du et al. (2003) developed a totally nonparametric approach for an analysis
of covariance using a single continuous covariate. The approach is an extension of

a method for testing main effects and interaction effects within a factorial design



(Akritas and Brunner, 1997).

In this paper, we propose a test statistic to compare k£ groups, which adjusts for
concomitant covariates, does not require the assumption of proportional hazards or
a parametric specification of the relative risk function, and is asymptotically valid
under conditions found in observational studies. The test statistic is developed for
survival time data where right censoring is present. In Section 2, the test statistic
and its asymptotic distribution is developed. Section 3 presents simulation results
demonstrating the small sample operating characteristics of the statistic and Section
4 provides an application of the methodology to a prostate cancer dataset. The paper

concludes with some remarks in Section 5.

2. Test Statistic
We develop a nonparametric test for the equality of the conditional hazard func-

tions between groups
AMtle) = Ma(t|le) = ... = A(t|e)  for all (¢, x).

At the outset, it is assumed that the group variable of interest z is binary, taking
on the values 0 and 1. The generalization to the adjusted k-sample test will be pre-
sented after the development of the two-sample test. It is assumed that conditional
on Z and the covariate vector X, the latent failure and censoring variables are in-
dependent. Although the most prominent application of the proposed methodology
is an adjusted randomized treatment comparison, the methodology is applicable for
nonrandomized comparisons as well. Examples of adjusted tests in survival analy-

ses include: the uncontrolled comparison of an experimental treatment to a prior



conventional treatment; accounting for concomitant information in an epidemiologic
case-control survival study; and examination of the importance of newly determined
factors on survival time.

For each subject, define N;(t) = I(T; < t,§; = 1) as the counting process and
Yi(t) = I(T; > t) as the at risk process, where the observed survival time 7; is
the minimum of the latent failure time (7)) and censoring time (C;), and §; is the
censoring indicator (§; = 1 signifying the failure time is smaller). It is assumed
that the individual copies of the random vector (T° C,Z, X) are independent and
identically distributed.

Under the assumption that the failure time and censoring time are independent

conditional on the covariates (X, Z), we can without loss of generality define the

relationship between the counting process, the at risk process, and the covariates by
E{dN)|Y(t), X, Z} =Y () Z (| X)dt + Y (t)(1 — Z)No(t| X )dt (1)

where \;(t|x) represents the conditional hazard for a subject with group variable

Z = j. Building upon equation (1), it follows that
E{ZdN(t)|Y (t),X,Z} = Y (t)Z X (t| X)dt. (2)

To develop the nonparametric test statistic for testing A\ (¢t|x) = Ao(t|x) for all (¢, z),
the expectation with respect to Z is computed on both sides of (2), and this rela-
tionship is considered under the hypothesis of equal conditional hazards. Performing

these operations yields

E{ZdN(®)|Y (t), X} = V()N X)E{Z|Y (1), X }dt (3)



where the subscript from the conditional hazard has been omitted to denote a single
population under the null hypothesis. Equation (3) is a restatement of the null
hypothesis that conditional on the subject remaining at risk and the covariate value,
the failure process is independent of group assignment. Thus a test statistic, which
has asymptotic mean zero under the null hypothesis A;(¢|z) = A¢(t|x), can be created
using empirical estimates of the left and right hand sides of equation (3).
Estimation of the conditional expectation E{Z|Y(t) = 1, X = x;} is obtained

through kernel smoothing.

_ 2 Yi(t)z Ko(w), i)
>, Yi(t) Ky(xj, i)

If the dimension of the covariate X is greater than one, the multivariate kernel used

E{ZlY(t)=1,X =z;}

for this estimate is the product kernel function, composed of p one dimensional sym-
metric kernel functions, K (u) = []/_; k(w). The rescaled version of K is denoted by
Ky(u) = [T_, b, k(b "), where b = (b, ba, ... ,b,)T and the bandwidth b; controls
the degree of smoothing over the [ covariate. It now follows from equation (3),
that a nonparametric test statistic that incorporates right censored survival times

and adjusts for the concomitant variates X is

Y Z'Kb Lj, L;
= 3 [ it - X0 [ St 0 W

Note that when Ky(xj, ;) = 1 forall 4,4, i.e. the covariate is ignored, the test

%

statistic reduces to the logrank statistic. As a result, we call the statistic in (4)
the conditional logrank statistic. An algebraically equivalent representation of this

statistic is

3 /w(mi’t) { dNy(t)  dNu(t) } )

- ain(zi,t) a0z, )



where dN,; = Ijz,—,jdN; represents the group specific (2 = 0, 1) counting process,

a1 (x,t) ZY )2iKp(z,z;);  ao(z, 1) ZY 2))Kp(x, ;)  (6)

J

and
w(z,t) = {an(x, 1) + ao(z, 1)} an (x, t)ae(z, t)

is a predictable weight function. Thus, the statistic can be interpreted as a function
of the difference in the estimated conditional hazards between groups. The following
theorem provides the asymptotic mean of n~!S, and the limiting distribution of
n~1/2S, under the null hypothesis \;(t|z) = Ao(t|z) for all (¢,x). Proof of this

theorem is provided in the appendix.

Theorem 1: Suppose k is a bounded kernel function symmetric about zero, and the
vector bandwidth b is chosen such that nh_)nolo lrr<1la<)§) nb} = 0. In addition, the dimension
of the covariate vector p < 3. Then using the conditions stated in the appendix,
(i) n1S, converges in probability to
n_lz/ 5 Yi(s)E(Zi|Yi(s) = 1, Xo){1 — E(Z|Yi(s) = 1, X,)}
i U<t x{dA;(s|X;) — dAo(s|X;)}
(i) n~'/28, converges in distribution under the null hypothesis to a normal random

variable with mean zero and asymptotic variance V. The asymptotic variance is

consistently estimated by

D on+ > i {205 + 2055 + iy + 053} + Y (Dygda + Dby + Db + 0305)  (7)

{ 1#£] i#£j#l
where
iti)  I(t; > ;) Kp(zj, o ir b
b, [ (@) 10> Eem) [ at) ©
ao(i, ;) ao(x;, 1) ao(xi, ;)
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and aj(z,t) = aji(x, t) + ajo(xz,t) j7=0,1.

It follows from part (i) of the theorem that the equality of the conditional hazard
functions, is a sufficient but not a necessary condition for the test statistic 5,, to have
zero mean. When the conditional hazard functions cross, the asymptotic mean may
be zero depending on the conditional survival and censoring distributions in the two
groups. The test is consistent when there is a uniform non-negative difference in the
conditional hazard functions, with strict positivity for a subset of the time axis that
is observed with non-zero probability. Similar to the unconditional case, the ordered
survival alternative S (t|x) > Sp(t|x) is not sufficient to produce a consistent test.

The proposed conditional logrank test statistic requires the choice of a kernel
and bandwidth. Any value of the bandwidth chosen such that max nb}f — 0 will
provide an asymptotically valid test for the null hypothesis of no difference between
the groups. However for sample sizes that one encounters in practice there are two
opposing forces. If the bandwidth chosen is too small then the asymptotic variance
formula may provide an estimate that is biased. In addition the small effective sample
size will result in an approximation to the reference distribution that is not accurate.
A large bandwidth on the other hand will dampen the ability of the test to identify
the effect of the concomitant variable, resulting in a less powerful test especially
when the covariate is attributable to a large part of the variation in the failure time.
In simulations presented in the next section, we found the choice of a truncated

026 with the covariates standardized to have

Gaussian kernel with bandwidth b = n~
unit variance, provided good size and power properties for our test statistic. An

alternative approach, proposed in the uncensored data case by Akritas et al. (2000),



is to permute the group indicator a large number of times, and select the constant in
the bandwidth b = (constant)n~2® that on average provides the most accurate test
size under the null hypothesis.

To extend the test statistic to the k-sample case, we define the random vector Z
of length k& — 1, where the lth component is the indicator function Z; = Ijz—y (I =
1,...,k —1). The vector valued test statistic Sy, is derived directly from equation
(4), replacing the scalar Z with the vector Z. The statistic S, is a multivariate
U-statistic and has an asymptotic multivariate normal distribution. Its variance-
covariance matrix is consistently estimated using a generalization of equation (7),

Vi = D wabi+ ) (Badly + 05,0 + 04y + b0y + 0507 + 04;97;)
i 1#]
+ ) (yby + Biiy; + By + D30 |
i#£j#l
where v is obtained by substituting the vector z in equations (8) and (6). The
resulting quadratic form S;Vn_lsn has an asymptotic chi-square distribution with

k — 1 degrees of freedom and can be used to test the equality of the k£ groups.

3. Simulation Study

3.1 Simulation Structure

A series of monte carlo simulations were conducted to compare the operating
characteristics of the conditional logrank statistic against those of the univariate (un-
conditional) logrank statistic, the score test from the Cox model, and the robust score
tests proposed by Lin and Wei (1989) and Kong and Slud (1997). In contrast to the

Cox model, the robust score tests do not require correct covariate specification, but
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do postulate a form of independence between the group indicator Z and the covariates
X . Under independence, the DiRienzo and Lagakos (2001a) robust score test is the
same as the Kong and Slud (1997) robust score test.

The relationship between the log failure time 7°, the concomitant variables X

and the group indicator Z is given by
log(T%) = BZ+g(X)+e

The working model used for the Cox score test and the robust score tests of the
hypothesis 8 = 0 was A(t|z,2) = \o(t) exp(Bz + 4'x). The stochastic error €, was
generated from either a standard normal or a standard extreme value distribution.
The extreme value error distribution provides a proportional hazards model and the
normal error distribution results in a non-proportional hazards model. The parameter
[ determines the difference in the survival distributions for the two groups (both
conditionally and unconditionally). The level of association between the covariate X
and the failure time is given by R?, the proportion of variance of log(7°) explained
by X, i.e. R? =var{g(X)}/[var{g(X)} + var{e}|. The function g was chosen to give
R? values of 0, 0.25, 0.50, and 0.75 in the simulations. A uniform (0, c) censoring
random variable was used to generate censoring times. The upper limit ¢ of the
censoring distribution was chosen to produce censoring proportions 0, 0.25, 0.50, or
0.75 when 8 = 0. The sample size used for all simulations was 50 per group. The size
and power estimates were based on 10,000 replications. In the following we report
the results of nominal 5% tests for a two sample comparison with a single covariate
in Sections 3.2 and 3.3, the two covariate case in Section 3.4 and the three sample

case in Section 3.5. A tabulation of all the simulation results may be found on the
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Royal Statistical Society website hittp://www.rss.org. uk.

3.2 Group Variable Independent Of Covariate

In this section a single variable X was generated from a uniform distribution
on the interval (0,1) and the group indicator Z was generated independently of X.
Three specifications for the concomitant covariate function g were used: ¢;(z) = ¥z,
g2(x) = Ylog(70x + 1), and g3(z) = ¥(x — .5)%2. The constant ¢ determined RZ.
Note that g; and g, are monotonic in x whereas g3 is non-monotonic. The choice
of the extreme value error distribution and ¢, results in a correctly specified work-
ing proportional hazards model; all other error distribution/concomitant covariate
specifications result in a misspecified Cox model when R? is non-zero. Five pairs
of censoring proportions were used: (0,0), (0.25,0.25), (0.50,0.50), (0.75,0.75) and
(0.25,0.75). These combinations produce 120 sets of results each for the size and the
power of the tests being compared.

We first consider the size of the tests. The results are displayed as boxplots
in Figure 1. The boxplots are divided into 4 sets, corresponding to four levels of
association. The unconditional logrank test, which ignores the association between
the concomitant variable X and failure time, attains a nominal size across all levels
of association. The score test based on the Cox model performs well when there
is no association between the covariate and failure time, but becomes progressively
anti-conservative as the level of association increases. Although the results are not
separated out, the bias is more pronounced when the proportional hazards model
is incorrect. Both the Lin and Wei (1989) and Kong and Slud (1997) tests were

anti-conservative, with the bias in the Lin and Wei (1989) test increasing as the
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level of association increases. The results from Kong and Slud (1997) are based
on a single working model, as opposed to their recommendation of choosing from
a family of models, the choice based on maximizing the efficiency of the test. It is
possible that implementation of their selection criterion may attenuate the bias. The
conditional logrank test is unbiased across all levels of association, but is in general
more variable than the other tests. The additional variability stems from the kernel
smoothing procedure, where the effective sample size due to smoothing is smaller
than the unconditional test statistics.

Figure 2 presents the results of the power simulations as scatterplots. In Figure
2a, the power of the unconditional logrank test is plotted against the power of the
conditional logrank test. A line that corresponds to equality of the powers is also
drawn in each of the plot. The scatterplot shows that there can be a substantial
gain in the power (points above the line of equality) of the conditional test over the
unconditional test and that the loss (points below the line) in power due to adjusting
for an unassociated variable is minimal. In Figures 2b-2d, the power of the Cox
model score test, the Lin and Wei robust score test (1989), and the Kong and Slud
robust score test (1997) are plotted against the power of the conditional logrank
test. In general, there is a power gain using the conditional logrank test, though
the advantage is not uniform over all simulations. When the proportional hazards
model was satisfied, and therefore the working model in the robust score tests was
properly specified, the score tests were more powerful than the conditional logrank
test. When the working proportional hazards model was incorrect, due to either non-
proportionality or a covariate misspecification, the power of the conditional logrank

test was superior to that of the score tests, especially in view of the earlier observation
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that the score tests were anti-conservative. The advantage of the conditional logrank
test was more pronounced for high R? entries. Also, as the censoring proportion was
increased, the relative power advantage for the conditional logrank test was reduced.
We conjecture that the flexibility gained using local neighborhoods of = to accurately

estimate g, was offset by the smaller effective sample size.

3.8 Dependence Case

In this section simulations are conducted where the covariate distribution can de-
pend on the group assignment and the censoring distribution can depend on both the
group assignment and the covariate. The simulation is representative of an uncon-
trolled treatment comparison, where patient risk is a function of treatment assignment
and the poor risk patients are offered early access to experimental treatments. Pro-
vided the censoring time does not depend on the failure time, the conditional logrank
test is appropriate for this case, whereas the Lin and Wei (1989) and Kong and Slud
(1997) robust versions of the Cox model are not valid in this observational study
setting. DiRienzo and Lagakos (2001b), using the working Cox model formulation,
have proposed a bias corrected score test to compare groups in observational studies,
but have yet to provide asymptotic justification for this test.

The covariate X was generated using a conditional density function f(z|z) =
1+260(z — 0.5)sin(27z), 0 <z < 1, where the constant 6 is chosen between —1 and
1. The censoring distribution is uniform on the interval (0, h(z,z)), where h(z,x) =
C,0 + C.1T + ;922 The survival times were generated as log(T°) = X + ¢ where 7y
is chosen to corresponding to R? of 0, 0.25, 0.5 and 0.75 and e is either a standard

normal or an extreme value random variable. We set 8 = 0.75 and chose 5 sets of
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values for (c,q, ¢,1,¢,2) corresponding to different levels of censoring. The achieved
significance levels for these 40 simulations provide empirical evidence that the Cox
score test (median: 0.058, range: 0.050 - 0.101) and the robust score tests of Lin and
Wei (median: 0.023, range: 0.004 - 0.068) and Kong and Slud (median: 0.024, range:
0.004 - 0.076) are not valid in this dependence scenario. Although the results are not
separated out, the level of degradation increases with R2. The conditional logrank
test (median: 0.051, range: 0.034 - 0.067) retains its nominal level over all values of

R?.

3.4 Multiple Covariates - Group Variable Independent Of Multiple Covariates

In order to demonstrate that the proposed method possesses desirable properties
for multiple covariates, a set of monte carlo simulations for the conditional and un-
conditional logrank tests were conducted. As before, T° and Z denote the failure time
and group indicator. There are now two concomitant covariates X; and X, which
were generated from uniform distributions independent of Z. The failure time data

were generated by
log(T°) = BZ+¢(X1+Xo— 20X, Xo) + ¢

where € is the error random variable. The constant ¢ was chosen to achieve different
levels of association. The parameter values n = 0 or 1, control the interaction between
X, and X,. The error distributions, censoring proportions, sample size, and number
of replications were the same as the single covariate simulation.

Similar to the single covariate case, the unconditional logrank test attained nom-
inal size (median: 0.052, range: 0.046 - 0.058), as did the conditional logrank test

(median: 0.049, range: 0.037 - 0.062) but was more variable. In addition, the condi-
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tional logrank test showed increasing power gain relative to the unconditional logrank
test as R? increased. In summary, when group assignment is independent of the co-
variates, the simulation results demonstrate that the conditional logrank test is a
robust method to account for concomitant covariates when comparing survival dis-

tributions across groups.

3.5 Three sample comparison

A summary of results for the three-sample test, with a sample size of 50 in each
group, is presented. The failure and censoring times are generated as described
in section 3.2, and the censoring proportions used for the three groups are (0,0,0),
(0.25,0.25,0.25), (0.50,0.50,0.50), (0.75,0.75,0.75) and (0.25,0.50,0.75). As previously
stated, these combinations produce 120 sets of achieved significance levels for a nom-
inal 5% test. The simulations show that the size of the three-sample conditional lo-
grank test is nominal (median: 0.047; range: 0.032 - 0.074) though more variable than
the unconditional three-sample logrank test (median: 0.054; range: 0.046 - 0.060),
due to the smaller effective sample size. The conditional test, however, showed sub-
stantial gain in power over the unconditional test as the level of association between

covariate and failure time increased.

4. Analysis of Prostate Cancer Data

A database of 363 metastatic prostate cancer patients treated at Memorial Sloan-
Kettering Cancer Center from 1989 through 2000 was created with the purpose of
determining a set of factors that influenced survival duration in this patient popula-

tion. The analysis was exploratory and intended to generate hypotheses for future
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clinical trial research. One subgoal of the analysis was to explore whether patients
who presented with soft-tissue and bone metastasis were at greater risk of death
relative to patients with bone metastasis alone. An initial analysis of the data was
suggestive that soft-tissue and bone metastasis patients were at greater risk, with the
logrank statistic generating a p-value of 0.138. The Kaplan-Meier estimates of the
probability of survival for the two groups are presented in Figure 3a.

A further exploration of this data indicated that patients with soft-tissue and
bone metastasis had lower levels of alkaline phosphatase. Alkaline phosphatase is an
enzyme found in both the bone and the liver and it is used as a marker in metastatic
prostate cancer; high levels indicate an increased tumor burden located in the bone.
The imbalance in alkaline phosphatase levels between bone metastasis groups, re-
quired an adjustment for alkaline phosphatase levels in the comparative survival
analysis. A Cox proportional hazards model containing bone metastasis and alka-
line phosphatase is typically employed to adjust for the imbalance. However, the
adequacy of the Cox model was questioned when we examined a diagnostic statistic
based on a test of association between the scaled Schoenfeld residuals of log alkaline
phosphatase and survival time (Grambsch and Therneau, 1994). The statistic, when
applied to the data with both variables in the model, indicated that the proportional
hazards assumption was violated (p=0.046). To account for the possibility that high
alkaline phosphatase values, occuring primarily in the bone and soft tissue group,
were responsible for the lack of fit, the Cox model was refit with the high alkaline
phosphatase observations removed. The diagnostic test remained indicative for a
model violation (p = 0.020).

As a result, we performed the adjusted bone metastasis group comparison using

17



the nonparametric analysis of covariance methodology developed in this manuscript.

026 where 6, is the sample

We used a normal kernel with bandwidth equal to 6,n~
standard deviation of the log alkaline phosphatase values. A truncation of the highest
and lowest alkaline phosphatase values avoided potential bias in the smoothing com-
putations at the boundary, although it is noted that the truncation had little effect
on the conclusion of the adjusted analysis.

The adjusted analysis produced a p-value equal to 0.005, indicating that subjects
with soft-tissue and bone metastasis had an increased risk of death over subjects
with bone metastasis alone. Graphical evidence of this increased risk is depicted in
Figure 3b, which presents as solid lines, smoothed Kaplan-Meier estimates of the me-
dian survival time, conditional on log alkaline phosphatase value and bone metastasis
group. For low values of alkaline phosphatase, the median survival times of the bone
metastasis groups are comparable. But for higher alkaline phosphatase values, pa-
tients with soft-tissue bone metatasis are predicted to have a reduced median survival
time relative to patients presenting with bone metastasis alone. Also in Figure 3b,
we plotted as dotted lines the predicted median survival times based on the Cox pro-
portional hazards model. The disparity between the non-model based Kaplan-Meier
median survival estimates and the Cox model estimates, particularly for low alkaline

phosphatase values, confirms the nonproportional relationship when both covariates

are included in the analysis.

5. Discussion

Typically in survival analysis, a model based score test is applied to test a group
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(perhaps treatment) effect, adjusting for other covariates. The conditional logrank
test proposed in this manuscript is not model based, and makes minimal assumptions
on the survival data beyond random censoring, i.e. the survival time and censoring
time are independent conditional on the group variable and concomitant variables.
The test statistic features kernel smoothing, in order to incorporate continuous co-
variates into the adjustment without reliance upon a model.

Lin and Wei (1989) and Kong and Slud (1997), and DiRienzo and Lagakos (2001a)
have all proposed versions of adjusted logrank (score) tests, which also do not rely
on a model to attain their validity. Importantly, each of these proposals require a
form of independence between the group variable of interest and all other covariates
under consideration. Independence occurs, for example, in a randomized clinical trial
design, where the group variable is treatment assignment. However, the need for
an adjusted treatment effect analysis is less pressing in this setting, since the ran-
domization mechanism enables an approximate balance between treatments for each
confounding factor. As a result, an adjusted analysis is often considered supplemental
to the primary randomized comparison.

Historically, adjusted group comparisons have played a critical role in the analysis
of observational studies. For observational data, the likelihood that all confounding
factors are balanced between the levels of the group variable is small, and hence
there is a need to adjust for these confounders in order to assess a group effect. The
proposed conditional log rank test provides a non-model based application of analysis
of covariance in the survival setting, in this general non-independence situation.

The asymptotic normality of the conditional logrank statistic was demonstrated

by establishing its asymptotic equivalence to a U-statistic of degree 2. Interestingly,
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the conditional Gehan statistic

ZZ/< Y;(s)(2i — 2;) Kp(@s, T5)dN;i(s)

is directly a U-statistic of degree 2 and thus there is no need to formalize its asymptotic
equivalence. We are currently examining whether the G” family of test statistics are
asymptotic U-statistics.

The conditional logrank test statistic, as it is currently proposed, restricts the
number of covariates to a maximum of three. We are currently exploring the use of a
single index model approach (Carroll et al., 1997), which will allow a greater number
of covariates into the adjusted test by incorporating a projection of the p covariates

onto a one-dimensional space, within the adjusted test statistic calculation.

Acknowledgements
The authors would like to thank the editor and referees for suggestions which led
to improvements in this paper. This research is supported by the National Cancer

Institute, award CA 73848.

Appendix
Proof of the asymptotic normality of the two-sample test statistic and calculation

of its asymptotic variance under the null hypothesis.

We require the following conditions.
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(i) The covariate vector X lies in a p-dimensional bounded rectangle X', with
dimension p less than or equal to 3. It is assumed without loss of generality that the
volume of X is equal to 1.

(ii) The survival time is truncated at time 7, such that

/ A(s|z)ds < o0
s<T

for all . The conditional hazard A(s|x) and its first and second derivative with
respect to @ are bounded and continuous in (s, x).

(iii) The product kernel function K is defined as

p

K(u) = [ ] k(w)

=1

where the univariate kernel k£ is a density function with finite support, symmetric
about zero, and has a Lipschitz continuous second derivative on its support.

(iv) Let a,(z,s) = n~ ' 3_, Yj(s)2; Ko(zj, ®) , then a,(x,s) — a,(z, s) uniformly
in (x,s), for r = 0, 1. The functions o, (x, s) are bounded in (z, s) with bounded and
continuous first and second derivatives with respect to @, and ag(x, s) is bounded
away from zero.

(v) The bandwidth vector b is chosen such that as n — oo, nb? — oo and nb* — 0,

where b = max b, and p < 3.
1<1<p

The asymptotic normality of the test statistic

Y;(s)zi Kp(xj, T
S”(T) - ; /s<7' ZZsz(S) - ; s<T Xz:%j Yé(i)Kb((wj, mz))sz(S)

is demonstrated by showing that it is asymptotically equivalent to a U-statistic of

degree 2.
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We can express

n 28, (r) = 1/22/ {2 — z(wi, )} dM;(s)
2 Y . /< {2 — 2(24, 8)} Yi(s)dA(s|z:)

where Z(xz,s) = ai(x,s)/ao(x, s) and M;(s) — [Yi(s)dA(s|x;) is a subject
specific martingale. This Doob-Meyer type decomposition of n=/25,,(7) is denoted
as A, (1) + By(7).

We first show that B, (7) is asymptotically negligible. Note that

7) :n—lﬂz / * / {zi — z(x*, 5)} Y;(s) Kp(a*, ;) dA(s|x*) da
+ n 1/22/*/ {2 — Z(xi, 5)} {Yi(s)dA(s|:) — Yi(s) Kp(a”, i)dA(s]| ") } d”
+ "_I/QZ/*L {2(z", 5) — Z(xi, 5)} Yi(s) Ky(2", ;) dA(s| ") de

The first term of B,,(7) is zero. Letting
gi(@") = [ {z(a,5) — Z(xi, 5)} Yi(s)dA(s|z"),
s<T
the third term may be written as n='/2 Y, [... Ky(x*, @;)g;(x*)dz*. Using conditions
(i) through (iv), a two-term Taylor expansion produces
Ky(x*, ;) gi(x*)dz* = gi(x;) + O(H?)
a:*
uniformly in . Since g;(2;) = 0 the third term is O(n'/26%). The uniformity follows
from the bounded and Lipschitz conditions (i)-(iii). Using a similar argument, the

second term is also O(n!/?b?). It follows from condition (v) that B, (1) — 0.
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We now examine the process A, (7). A three-term Taylor expansion produces

[ oo
_ —1/22/< [ alng,s; L (@ 9) = on (@, 9)} | dM)

ag(x;, s

+n—1/2§_;/< @i 5) (o (i,5) — ool 5)} dMi(s) — 7o

af(x;, s)

where 7, = 1,1 — Tho 1S

n-1/2 a1 (2, s) P
;/s« ag(mi;S)ao(wi,S){ o(@i, ) — (i, 5)}" dM;(s)

_n*1/2 1 ai(x;,8) — ai(x;, s aol(x;, 8) — (s, 8 (s).
Z/s<T ao(ﬁi,s)ao(mi,s){ ( v ) ( v )}{ ( ) ) ( ) )}dM()

i

It is demonstrated below that r, = 0,(1). First, a,(z,s) = a (2, s) + O,(nb?) /2
uniformly in (x,s) € Xx [0,7]. The uniform convergence follows from the com-
pactness of the time and covariate space, the Lipschitz continuity condition, and

the bandwidth conditions. Using these conditions and the fact that (J;, M;) are

orthogonal martingales for ¢ # 7,

E (77212) =

n_lz/s {ai(®, s) — cu(@, 8)} {ao(®s, 5) — ao(zi, 5)} M2 (s)

ad(x;, s)ad(x;, s)

is O {(nE”)_Q} Therefore by Markov’s inequality, for p < 3, 0 < € < 4 — p, and
condition (v), it follows that for b = O {n=Y4=9} r,y = O, {nP-4+9/1-9 = o (1).

A similar argument produces 7,1 = 0,(1).

Now A, (7) can be rewritten as

RS R e b e | e )

ap(x;, S)
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and since each term has mean zero (M; are independent martingales), A,(7) is an
asymptotic U-statistic of degree 2. Therefore, from the asymptotic distribution theory
of U-statistics and Slutsky’s theorem, n~'/2S,,(7) is asymptotically normal with mean

Zero.

We now compute the asymptotic variance of S, (7). Denote the kernel of the

U-statistic by

. [ a@es)  Y()K(w, @) { ai@,s) }] D)

(i, 5) ap (T, 5) (i, 8)

and its symmetrized version by vfj = v;; +vj;. The test statistic S, (7) can be written

B S . . .
as >, vii + ), ;v and its variance is

var{S, (1)} = var (Z vii) + 2 X cov (Z Vii, sz‘j) + var (Z vi) .

1<j 1<j

Note that the variances and covariances can be estimated consistently by the
corresponding sample sums of squares and products. Thus the first variance term is
2
> v (1)
i
and the covariance term is twice
D (i + vj)vyg (C2)
1#]
The second variance term is split into variance and covariance components
(Lehmann 1975, pp. 336-7). The variance part is given by
52 2
Do) =D {(wy) +vivsi} (C3)
1<j (E]
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and the covariance is
Z (vijva + vijvii + Vv + vijuys) (C4)
i#j#
Putting these terms together, a consistent estimate of the variance of the test

statistic S, (7) is obtained by replacing v;; with

0~ 5 [z o, yi)  I(y; > yi) Ke(z), @) {z _ai(@s, i) }]
Y 1 ao(xi, i) ao(i, Ys) ! ao(i, Ys)

For computational purposes, we can reduce the n? operations required to compute

the C4 term down to n? operations. Let v.; and v;. denote the row and column sums

of the v matrix. Then

D (W% + 200+ 07) = 4(C1) + 4(C2) + 2(C3) + (C4)

i
and therefore only the row sums, column sums, their inner products, and the terms

C1, C2 and C3, are needed to compute the asymptotic variance.

Calculation of the asymptotic mean of the test statistic n=1S,

From equation (5) in the text,

n 1S, (1) :nIZ/ w(x; s){ dNi(s) - dNoi(s) }
" . Js<r Y ay (i, s)  aw(x;, s)
Substitution of the smoothing result
>, Yi(s)z Ko(z), ;)
> Yi(s) Ko(zj, @)

= B(ZIYi(s) = 1,X =) + 0,(1)
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and the martingale decomposition dN(s) = Y (s)dA(s|x) + dM(s) into this equa-
tion, along with an application of the law of large numbers, produces the result that

n~1S,(7) converges in probability to

- / 5 Yi(s)E(Zi|Yi(s) = 1, X3){1 — E(Zi|Yi(s) =1, X3)}
i s<T X{dAl(S‘Xz) — dA0(8|XZ)}
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Fig. 1. Boxplots of the sizes for the unconditional logrank test (LR), score test
based on proportional hazards model (Cox), the robust score tests (LW,KS), and the
conditional logrank test (CLR). The simulations are based on a single covariate. The

level of association between covariate and time are given above each group.
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Fig. 2. Scatterplots of the power of the conditional logrank test against (a) the
unconditional logrank test and (b-d) the score tests along with the line of equal power.
The points above and below the line correspond to situations where the conditional
test is more and less powerful respectively. The vertical distance to the line is the

magnitude of the difference.
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Fig. 3. (a) Kaplan-Meier curves for overall survival of patients with bone metastasis
only (solid line) and bone and soft-tissue metastases (dashed line) (b) Predicted
median survival times as a function of log alkaline phosphatase. The solid lines are
obtained by non-parametric smoothing of Kaplan-Meier curves and the dashed lines

are from Cox model fit.
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