
A measure of explained risk in the proportional hazards

model

Glenn Heller

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer

Center, 307 East 63 St, New York, NY 10065, U.S.A.

hellerg@mskcc.org



Summary

A measure of explained risk is developed for application with the proportional hazards

model. The statistic, which is called the estimated explained relative risk, has a simple

analytical form and is unaffected by censoring that is independent of survival time

conditional on the covariates. An asymptotic confidence interval for the limiting

value of the estimated explained relative risk is derived and the role of individual

factors in the computation of its estimate is established. Simulations are performed to

compare the results of the estimated explained relative risk to other known explained

risk measures with censored data. Prostate cancer data are used to demonstrate an

analysis incorporating the proposed approach.

Keywords: Censored data; Entropy; Explained risk; Proportional hazards; Relative
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1. Introduction

The proportional hazards model is used with survival data to determine important

prognostic factors and to assess subject-specific relative risk. The model with time

independent covariates is specified as

λ(t|x) = λ0(t) exp[βT0 x]

where t represents survival time, λ(t|x) is the hazard function conditional on a set of

covariates denoted by the vector x, and β0 is the vector of regression coefficients that

determines the relationship between the covariates and the risk of death. The factor

λ0(t) represents the hazard when each component of the covariate vector x equals

zero and exp[βT0 x] is the relative risk for a subject with covariate profile x.

The ability to separate patients by risk is important for understanding therapeu-

tic options. Explained risk, within the context of the proportional hazards model,

gauges the ability to delineate patient risk by their covariate profile. If, however,

after accounting for known risk factors, there remains significant unexplained het-

erogeneity, then the model determination of patient risk will be sub-optimal. Thus,

the assessment of explained risk is an important but underutilized component in the

development of risk models in survival analysis. One explanation for the infrequent

application of explained risk in the proportional hazards model is the lack of a con-

sensus measure.

2. Previous Approaches to Explained Risk

The coefficient of determination R2 is the standard measure of explained risk in the

normal linear model with uncensored data. Although the proportional hazards model
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can be specified through the semiparametric linear transformation family

log Λ0(t) = βT0 x+ ν (1)

where Λ0(t) is the baseline cumulative hazard function and ν is a standard extreme

value random variable, there are two barriers to attaining an R2 type measure with

this model and censored data. First, the transformed scale of the survival time Λ0(t)

is unknown, and second, some survival times are unobserved due to censoring.

Korn and Simon (1990, 1991) used loss and risk functions to develop a frame-

work for the construction of explained risk measures. The loss function L(T, γ) mea-

sures the closeness of the survival time T to a parameter γ, and the risk function

RL[f ] = minγ Ef [L(T, γ)] is the expected loss minimized over the parameter of inter-

est. Through these concepts, explained risk is defined as

RL[f0]− n−1
∑

iRL[f(·|xi)]
RL[f0]−RL[fI ]

,

where the null density f0 represents the survival time density when the covariates

are ignored, and fI is the minimum risk density. Thus, explained risk measures

the reduction in risk due to the incorporation of covariates. Note that due to the

expectation, the estimation of explained risk is based soley on model estimates.

If the survival distribution is unknown, the expectation may be replaced by the

sample average. Korn and Simon (1991) call this statistic explained residual variation.

In comparison to explained risk, explained residual variation is a function of survival

time and the model estimates. It provides direct evidence of predictive accuracy

(Henderson, 1995) and is more robust to model mispecification (Rosthoj and Keiding,

2004). However, applying explained residual variation to survival data is problematic
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since not all survival times are observable due to censoring, and the estimate is a

function of the maximum follow up time of the study, making it difficult to compare

measures across studies.

To adapt explained residual variation measures to censored survival times, propos-

als have been developed that incorporate inverse probability censoring weights (Graf

et al., 1999, O’Quigley and Xu, 2001). Measures that incorporate these censoring

weights remain dependent on the maximum follow up time, and if the censoring time

is not independent of the covariates, the inverse probability censoring weight requires

a separate model for the censoring distribution as a function of the covariates. These

issues have limited the application of inverse probability weights to explained residual

variation measures for censored data.

In this work, an explained risk measure is developed using an expected loss func-

tion derived under the proportional hazards specification indicated in equation (1).

Prior to presenting the proposed approach, three previous measures of explained risk

in the proportional hazards model are reported.

An estimated explained risk measure for the proportional hazards model was de-

rived by Kent and O’Quigley (1988). Their measure was based on the entropy loss

function and the Kullback-Leibler information gain. Entropy is a measure of uncer-

tainty of the conditional survival time distribution

E(f, h) = −
∫
x

∫
s

log{f(s|x;β0)}f(s|x;β0)h(x)dsdx,

where using (1), the transformed survival time s = log Λ0(t) represents the log baseline

cumulative hazard function, and f(s|x;β) is the conditional density of an extreme

value random variable with location parameter βTx and scale parameter 1. The term
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h(x) denotes the marginal covariate density.

The Kullback-Leibler information gain

I(β0; 0) =

∫
x

∫
s

log

{
f(s|x;β0)

f(s|x; 0)

}
f(s|x;β0)h(x)dsdx

is a comparison of entropy measures for the proportional hazards model with and

without covariates. Information gain that contrasts entropy when β = β0 to β = 0

is also referred to as explained randomness (Kent and O’Quigley, 1988). Entropy for

the covariate model is approximately 1.5772 provided the extreme value specification

is correct. The proportional hazards assumption, however, cannot simultaneously

hold for model (1) and any model containing a subset of covariates. Due to this non-

nesting property, entropy for the null model requires simultaneous estimation of the

intercept, slope, and the scale parameters from the extreme value regression model

(Heinzl, 2000). The estimates of these parameters are derived as implicit solutions

to score equations. Due to its lack of simplicity, Kent and O’Quigley (1988) propose

an approximation to the estimate of explained risk based on the product moment

correlation coefficient with a standard normal error variance

R2
KO =

β̂
T

Σ̂xβ̂

β̂
T

Σ̂xβ̂ + 1
.

In this statistic, β̂ is the maximum partial likelihood estimate and Σ̂x is the estimated

variance-covariance matrix of the covariate vector. The estimated explained risk

measure R2
KO is simple to compute using any proportional hazards software.

A second explained risk statistic is a censored data version of the likelihood ratio

statistic,

R2
LR = 1−

(
l(0)

l(β̂)

)2/d

,
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where l is the partial likelihood, and d is the number of failures. Kent (1983) proposed

this measure for parametric models in the uncensored data case. O’Quigley et al.

(2005) noted that this statistic was sensitive to the rate of censoring and proposed

R2
LR, replacing the number of subjects with the number of failures in the exponent

of the likelihood ratio statistic. There is, however, no formal justification for this

substitution. The measure R2
LR is also easy to compute using standard proportional

hazards software.

A third measure of explained risk was developed by Xu and O’Quigley (1999). To

provide this estimate, additional notation is needed. Let C represent the underlying

censoring times, independent of the survival time T and covariate X, with survival

function G(t). For each subject, the time Yi = min(Ti, Ci) is observed along with

the censoring indicator δi = I[Ti ≤ Ci]. The at risk indicator for subject i at time

t is denoted by ψi(t) = I[Yi ≥ t]. The Xu and O’Quigley estimate is defined as

1− exp(−2Γ̂(β̂)), where

Γ̂(β̂) =
∑
i

δi

Ĝ(yi)

{
β̂
T∑

i ψi(yi)xi exp(β̂
T
xi)∑

i ψi(yi) exp(β̂
T
xi)

− log

∑
i ψi(yi) exp(β̂

T
xi)∑

i ψi(yi)

}
.

This measure is a function of inverse probability censoring weights and may be sensi-

tive to values in the right tail of the survival distribution. In addition, if the censoring

times are dependent on some of the covariates, then an additional model is needed

to estimate the inverse probability censoring weights.

For these statistics, either a modification or approximation to the metric is needed

to patch the problems due to censoring or the non-nesting property of the propor-

tional hazards model. In this work, a measure of explained risk for the proportional

hazards model will be developed that incorporates the non-nesting property of the
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proportional hazards model and is unaffected by censoring times that are independent

of survival times conditional on the covariates.

3. Explained Risk in the Proportional Hazards Model

In this proposal, the explained risk is composed of entropy loss functions derived

from the full model, null model, and degenerate model. Applied to the proportional

hazards model, this requires special consideration, since the proportional hazards

assumption will hold for only a single model, which is taken here as the full model.

To derive the null model, the Korn and Simon (1990, 1991) paradigm is employed.

The density under the null model is the average of conditional densities from the full

proportional hazards model

f0(s) = n−1
∑
i

f(s|xi;β).

Since the full model is assumed correct, the null density is constructed to indicate

the effect of ignoring the covariates in the computation of the risk function. The

entropy loss function is developed under the extreme value distribution with location

parameter θ and scale parameter 1

− log f(s|θ) = −[(s− θ)− exp(s− θ)],

which is chosen for its connection to the proportional hazards model, as portrayed in

(1).

The proposed measure of explained risk is a function of the minimum expected

entropy under the full model

Hx = n−1
∑
i

{
min
θ

[
−
∫
s

log f(s|θ)dF (s|xi;β)

]}
,
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the null model

H0 = min
θ

{
−
∫
s

log f(s|θ)[n−1
∑
i

dF (s|xi;β)]

}
,

and the degenerate (minimum entropy) model

HI = min
θ

[
−
∫
s

log f(s|θ)I(s = s0)

]
.

Collecting terms, the explained risk is

R2 =
H0 −Hx
H0 −HI

.

Under the assumption that f(s|x;β) is the conditional density of an extreme

value random variable with location βTx and scale parameter equal to 1, i.e. the

proportional hazards specification is satisfied, and the covariate vector is centered

around zero, then Hx = 1.5772, HI = 1, and

H0 = 1.5772 + log[n−1
∑
i

exp(βTxi)].

The resulting measure is

R2(β) =
log[n−1

∑
i exp(βTxi)]

0.5772 + log[n−1
∑

i exp(βTxi)]
.

Substitution of the maximum partial likelihood estimate β̂ provides the estimate

of R2(β). Details for the entropy calculations are provided in the supplementary

material available at Biostatistics online.

The degenerate model is used to construct the lower bound for the entropy under

the extreme value loss function. The entropy for the full model is constant and is

equal to one plus Euler’s constant, which is rounded to 1.5772. Its constancy is

derived from the monotone transformation in (1) that sets the error to an extreme
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value random variable with mean zero and scale parameter equal to one. The null

model entropy is the explained risk lost due to ignoring the covariates.

Four properties of R2(β) are highlighted below.

1. The driver of this statistic is the subject-specific relative risk. Thus, an interpre-

tation within the proportional hazards framework is as a measure of explained

relative risk.

2. When censoring is independent of survival conditional on the covariates, the

estimate R2(β̂) is unaffected by the underlying censoring distribution and the

length of the study. The estimate is obtained through the maximum partial

likelihood estimator β̂ and the empirical distribution for the covariate vector.

Since conditionally independent censoring has little effect on β̂, the censoring

distribution has virtually no effect on the estimated explained risk measure.

3. R2(β) is bounded between 0 and 1. This result follows from an application of

Young’s inequality (Arnold, 1989)

ab ≤ f(a) + g(b)

where f is the convex function f(a) = exp(a)−1 and g is its Legendre transform

g(b) = 1− b+ b log b. Substituting a = βTx and b = 1, it follows that for each

subject,

1 + βTxi ≤ exp(βTxi)

and since the {xi} are centered around zero,

0 ≤ log[n−1
∑
i

exp(βTxi)].
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4. A device that is often cited to assess the adequacy of a newly developed R2

measure is its comparability to the coefficient of determination in the normal

linear model. When R2 is applied to the normal linear scale transformation

model

m(T ) = βTxi + εi,

where m is an unknown monotone function and {εi} are independent, identically

distributed, normal random variables with mean 0 and variance σ2, then

Hx = 1
2

log(2πσ2e), HI = 1
2

log(2πσ2), and

H0 =
1

2
log(2πσ2e) +

1

2n

∑
i

[
βTxi − n−1

∑
j(β

Txj)

σ

]2
.

This produces the measure

R2(β) =
n−1

∑
i

[
βTxi − n−1

∑
j(β

Txj)
]2

σ2 + n−1
∑

i

[
βTxi − n−1

∑
j(β

Txj)
]2 ,

which for large n approximates the population value of the coefficient of deter-

mination for the normal linear scale transformation model

varx[E(m(T )|x)]

Ex[var(m(T )|x)] + varx[E(m(T )|x)]
.

Thus, the proposed statistic is based on a primary component of the proportional

hazards model, the relative risk function. It ranges between zero and one, permit-

ting a standard metric for interpretability, and since it is stable in the presence of

conditionally independent censoring, allows for comparability between studies. In

addition, the simplicity of the estimate R2(β̂) enables a straightforward derivation of

its asymptotic normal distribution, and ultimately, an asymptotic confidence interval

for its population value ρ2(β) = limn→∞E[R2(β)].
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Theorem: Assume the {xi} are generated independent and identically distributed

with E(xT1 x1) <∞ and µx(β) = E[exp(βTx1)] > 0. Then

n1/2[R2(β̂)− ρ2(β0)] converges in distribution to N [0, D−1(β0)V (β0)D
−T (β0)],

where ρ2(β0) =
log[µx(β0)]

0.5772 + log[µx(β0)]
V (β0) = var(β̂), D(β0) =

{
∂R2(β)

∂β

} ∣∣∣∣
β=β0

.

The estimate of the asymptotic variance of R2(β̂) follows by substituting the max-

imum partial likelihood estimate β̂ for β0 in each component. The derivation of

this asymptotic distribution is provided in the supplementary material available at

Biostatistics online.

4. Contribution of a Subset of Factors to the Explained Risk

In addition to the overall assessment of explained risk, the relative importance of

a subset of factors from the full model may be ascertained. The full proportional

hazards model is denoted by

λ(t|x, z) = λ0(t) exp[βTx+ γTz]

and the density of a subset model, obtained by ignoring the heterogeneity due to the

covariate vector z, is denoted by

fx(z)(t|x) = n−1
∑
j

f(t|x, zj).

The extreme value entropy loss function is now written as

− log f(s|θx, θz) = −[(s− θx − θz)− exp{(s− θx − θz)}],

where θx = βTx and θz = γTz. The entropy for the full model is Hx,z = 1.5772 and

the entropy for the subset model, ignoring the heterogeneity due to z, is

Hx(z) = n−1
∑
i

{
min

θ=θx+θz

(
−
∫
s

log f(s|θ)[n−1
∑
j

dF (s|xi, zj;β,γ)]

)}
.
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= 1.5772 + log[n−1
∑
j

exp(γTzj)].

Therefore, the contribution of the covariate vector z to the explained relative risk

R2
x(z) =

Hx(z) −Hx,z
H0 −HI

is equal to

R2
x(z) =

log[n−1
∑

j exp(γTzj)]

0.5772 + log[n−1
∑

j exp(βTxj + γTzj)]
.

Its estimate is obtained through substitution of the partial likelihood estimates (β̂, γ̂)

from the full model.

5. Simulations

A simulation study was performed to assess the properties of the explained relative

risk measure and compare the results to the likelihood ratio, Kent and O’Quigley,

and Xu and O’Quigley measures of explained risk described in Section 2.

The survival times were generated from the regression model

Ti = exp[1 + 2Xi + εi]

where the scalar covariate Xi was a standard normal random variable, and the εi were

independent identically distributed Weibull random variables with scale parameter 1

and shape parameter taking on the values {1.20, 0.80, 0.50, 0.30}. These parameters

were chosen to create a wide range for the explained risk measures. The regression

model produces a proportional hazards relationship between the covariate and sur-

vival time. Censoring times were generated independently of the covariate or survival

time, from a uniform distribution with support (0, τ), where τ was varied to produce

average censoring proportions approximately equal to {0, 0.25, 0.50, 0.75}. For each

simulation the sample size was 100 and the average of 5000 replications was reported.
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To determine the accuracy of these measures, the survival times were log trans-

formed to produce a loglinear model, and the coefficient of determination

R2
LLM = 1−

∑
i[log ti − β̃

T
xi]

2∑
i[log ti − n−1

∑
i(log ti)]2

was computed in the uncensored data case, where β̃ represents the least squares

estimate. Under the Korn and Simon (1991) classification, R2
LLM is a measure of

explained residual variation, and is expected to be smaller, more pessimistic, than

the explained risk statistics under study (Henderson, 1995). This statistic, which is

common in the uncensored data case, does not account for censoring and hence the

need for alternative measures.

The results in Table 1 indicate that the proposed explained relative risk R2 and the

Kent and O’Quigley measure R2
KO are unaffected by the percent censored, whereas

the likelihood ratio R2
LR and Xu and O’Quigley measure R2

XO fluctuate as the cen-

soring proportion (maximum follow-up time) varies. In the uncensored data case,

the explained relative risk, the likelihood ratio statistic, and the Xu and O’Quigley

measures were comparable to R2
LLM over the range of Weibull shape parameters ex-

plored. The likelihood ratio statistic and the Xu and O’Quigley measures, however,

increased as the percent censoring increases. The Kent and O’Quigley statistic R2
KO

had a greater bias than the explained relative risk R2, when compared to R2
LLM and

R2
LR in the uncensored case. Since it is unaffected by censoring, the bias in R2

KO

remained across censoring rates. These results indicate that the explained relative

risk R2 statistic is both stable and accurate relative to the other commonly cited

measures of explained risk.

The estimated standard error of the proposed R2 is comparable to the simula-
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tion standard error of the estimate. Its estimated variability (ASE) increased as the

censoring proportion increased and as the Weibull shape parameter decreased. The

latter result stems from the property that under the generated Weibull regression

model, a decrease in the shape parameter indicates an increase in the variability of

the underlying survival times.

Additional simulations (not shown) were generated for survival times from a

proportional hazards model with a baseline cumulative hazard function equal to

Λ0(T ) = log(1 + T ). Thus, the survival times were not generated from a Weibull

distribution, but the data still maintain the proportional hazards structure. The

results were similar to the Weibull simulations in Table 1.

6. Prostate Cancer Data Example

A model was developed on 1006 castrate resistant metastatic prostate cancer patients,

using 10 prognostic factors within a proportional hazards model (Armstrong et al.,

2007). The model produced a concordance index (Harrell et al. 1984), a measure

of model discrimination for the survival time, equal to 0.38 when transformed to a

[0, 1] scale. This result indicates that there remains important unknown or unrecorded

factors that explain the heterogeneity in relative risk. In 2009, a study was undertaken

to explore the role of a new biomarker, circulating tumor cells (CTC), as a prognostic

factor for survival time in this prostate cancer population (Scher et al., 2009). CTC

is a blood-based assay that provides information on the accumulation of tumor cells

in the peripheral blood.

In the 2009 study, a proportional hazards model was generated from a cohort of

one hundred and thirty six patients with castrate resistant metastatic prostate can-
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cer. In addition to CTC, the factors considered for this model were: hemoglobin,

prostate-specific antigen (PSA), lactate dehydrogenase (LDH), alkaline phosphatase,

and albumin. A logarithmic transformation of some of the factors was used to account

for their positively skewed distribution. The results from this analysis are presented

in Table 2a. The test of the proportional hazards assumption developed by Grambsch

and Therneau (1994) provided no evidence that the proportional hazards assumptions

were violated for the full model (p = 0.681). The factors LDH (p < 0.001) and CTC

(p = 0.004) were the strongest prognostic factors, indicating that CTC adds to un-

derstanding patient risk in the metastatic prostate cancer population. However, the

magnitude of the p-value is sensitive to sample size and it alone is not sufficient to

evaluate a model’s predictive power of risk assessment. To assess the model’s ade-

quacy in explaining relative risk, the evaluation provided in Table 2a is complemented

with the calculation of the proposed R2 statistic in Table 2b.

For the six factors under study, the explained relative risk is R2 = 0.581 (se =

0.086). The R-square value for the other approaches examined in the simulations

were: R2
LR = 0.579, R2

KO = 0.540, and R2
XO = 0.607. Table 2b indicates the influence

of the covariate subsets in the determination of R2. As expected, the two factors

that individually provide the greatest contribution to explained relative risk are LDH

and CTC. The combination of LDH and CTC generated an R2 = 0.411, indicating

that over two-thirds of the model’s explained relative risk was generated by these two

factors. Adding hemoglobin to these two factors produced anR2 = 0.547, representing

94% of the explained relative risk. The incremental value of the other factors (PSA,

alkaline phosphatase, and albumin) to the explained relative risk was small.
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7. Discussion

The measure of explained relative risk for the Cox model is appealing due to its

computational simplicity and it is unaffected by censoring that is independent of

survival conditional on the covariates. This stability stems from the proportional

hazards specification and the fact that the relative risk is independent of follow-

up time. The robustness of this measure may also be seen as a drawback, since

the assumption of a constant relative risk with respect to time may be deemed too

restrictive. From the analyst’s standpoint, a prerequisite to its application is that

goodness of fit methods such as Grambsch and Therneau (1994) or Lin et al. (1993)

have been applied and no violations of the model assumptions are found.

Royston (2006) states that the properties of a good explained variation measure

are: 1) approximately independent of the amount of (independent) censoring; 2)

reducing to R2 for the normal linear model; 3) maintaining the nesting property for

a subset of variable, i.e. model1 ⊂ model2 then R2
1 < R2

2; 4) R2 increases with the

strength of the association; 5) construction of a confidence interval for the measure.

With the exception of property 3, due to the non-nesting of proportional hazards

models, the proposed R2 measure satisfies these conditions.

Historically, patients with a given disease were classified into a small number

of clinically defined stages that defined patient risk. In recent years, a greater un-

derstanding of the disease process has led to an increase in the granularity of risk

assessment. It is, however, unclear whether this increase in model complexity has re-

sulted in a greater accuracy in the determination of patient risk. If these models are

accepted uncritically, it is problematic when they are used in clinical decision making,

for example as selection criteria for entry into a clinical trial or as trial stratification
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variables. A highly accurate risk model is necessary for its confident application. The

explained relative risk statistic, which measures the reduction in randomness due to

the introduction of patient risk factors, provides a stable measure of accuracy in the

presence of conditionally independent right censored data and is straightforward to

apply.

Supplementary material

Supplementary material is available at http://www.biostatistics.oxfordjournals.org
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Table 1. Simulation results for measures of explained risk based on the propor-

tional hazards model. The columns in the table represent: Shape, variability of the

underlying event times; PRC, percent right censored; R2, the proposed measure of ex-

plained relative risk; R2
LR, the likelihood ratio measure; R2

KO, the Kent and O’Quigley

measure; R2
XO, the Xu and O’Quigley measure; R2

LLM , the loglinear model coefficient

of determination; ASE, average estimated standard error; SSE, standard deviation of

the simulation estimates.

Shape PRC R2 R2
LR R2

KO R2
XO R2

LLM ASE SSE

1.20 0.747 0.814 0.913 0.849 0.887 0.033 0.053

1.20 0.496 0.813 0.873 0.849 0.842 0.038 0.045

1.20 0.257 0.815 0.838 0.849 0.810 0.027 0.041

1.20 0.000 0.813 0.796 0.849 0.789 0.776 0.031 0.040

0.80 0.743 0.678 0.793 0.717 0.755 0.120 0.082

0.80 0.512 0.675 0.745 0.715 0.710 0.047 0.069

0.80 0.257 0.676 0.699 0.715 0.672 0.048 0.062

0.80 0.000 0.677 0.652 0.716 0.644 0.610 0.059 0.060

0.50 0.758 0.461 0.560 0.500 0.537 0.115 0.119

0.50 0.507 0.461 0.521 0.501 0.490 0.082 0.093

0.50 0.243 0.458 0.482 0.498 0.460 0.097 0.082

0.50 0.000 0.459 0.444 0.499 0.439 0.383 0.082 0.077

0.30 0.744 0.245 0.297 0.273 0.286 0.118 0.121

0.30 0.517 0.240 0.277 0.268 0.267 0.079 0.094

0.30 0.241 0.243 0.263 0.272 0.254 0.092 0.080

0.30 0.000 0.240 0.240 0.269 0.237 0.188 0.092 0.074
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Table 2a. Estimated coefficients, standard errors, and p-values from the partial

likelihood.

Factor Coefficient Std Error P-value

Hemoglobin (HGB) -0.150 0.091 0.098

log Prostate-Specific Antigen (PSA) 0.011 0.089 0.901

log Lactate Dehydrogenase (LDH) 1.225 0.280 < 0.001

log Alkaline Phosphatase 0.052 0.185 0.778

Albumin -0.006 0.030 0.838

log Circulating Tumor Cells (CTC) 0.225 0.078 0.004

Table 2b. Contribution of a subset of factors to R2.

Factor Partial R2

Hemoglobin (HGB) 0.022

log Prostate-Specific Antigen (PSA) < 0.001

log Lactate Dehydrogenase (LDH) 0.201

log Alkaline Phosphatase < 0.001

Albumin < 0.001

log Circulating Tumor Cells (CTC) 0.068

log LDH + log CTC 0.411

log LDH + log CTC + HGB 0.547

All factors 0.581
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