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Summary. The concordance probability estimate (CPE) is used to determine

the discriminatory power of the proportional hazards model. Previously, the CPE

was developed for continuous relative risk scores in the proportional hazards model.

In the current paper, the CPE is modified to account for ties in the risk scores.

The development of clinical staging systems is an important application of model

development with a discrete number of risk scores. The asymptotic distribution of

the CPE with ties is derived. Simulations are generated and the CPE is compared

to the c-index. An example exploring the strength of a risk classification system for

metastatic prostate cancer strength is used to illustrate the methodology.
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1. Introduction

In clinical research, statistical models to assess patient risk are often utilized to assist

in treatment decisions and prognosis. The quality of these decisions is tied to the

adequacy and the strength of the model. In this paper, we consider the utilization

of the Cox proportional hazards risk model with baseline covariates to determine the

patient risk of death (Cox, 1972). It is assumed that the adequacy of the proportional

hazards assumptions has been empirically tested and that the model assumptions

cannot be rejected. Two common methods used to test the proportional hazards

assumption are developed in Lin et al. (1993) and Grambsch and Therneau (1994).

A commonly employed measure of strength for the proportional hazards model is

its discriminatory power, a metric used to delineate high risk and low risk patients.

For the proportional hazards model with independent right censored data, a consistent

estimate for discrimination is the concordance probability estimate (Gönen and Heller,

2005). The proportional hazards model is denoted by

h(t|x) = h0(t) exp[βTx],

where t represents survival time and βTx is the patient-specific relative risk score

based on the covariate vector x. Under the proportional hazards specification, the

concordance probability Pr(T2 > T1|βTx1 > β
Tx2) is equal to

∫∫
βTx1>βTx2

[
1 + exp

{
βT (x2 − x1)

}]−1
dF (βTx1)dF (βTx2)∫∫

βTx1>βTx2

dF (βTx1)dF (βTx2)

where F is the distribution function of the relative risk score. The concordance prob-

ability is estimated by substituting the partial likelihood estimate of β (Cox, 1975)
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and using the empirical distribution function for F . The result is the concordance

probability estimate (CPE)

2

n(n− 1)

∑∑
i<j

{
I(β̂

T
xji < 0)

1 + exp(β̂
T
xji)

+
I(β̂

T
xij < 0)

1 + exp(β̂
T
xij)

}

where xij represents the pairwise difference xi−xj. In addition to its consistency, it

was previously shown through simulation that with moderate sample size the CPE is

relatively unaffected by independent censoring and is therefore a robust measure of

discrimination with survival data.

The CPE was developed for continuous relative risk scores. The indicator func-

tions used for its computation are determined with strict inequalities. There are,

however, many clinical scenarios, like the development of clinical staging systems,

where there are ties in the risk scores. In oncology, staging systems are widespread

and the American Joint Committee on Cancer have developed and revised staging

systems for solid tumors, lymphomas and leukemias (Edge et al., 2010). The creation

of clinical stages induces a large number of ties in the risk scores. In this paper, the

CPE is modified to incorporate ties in the risk scores.

An earlier version of the concordance probability estimate, instituted in the R

package CPE, included ties in the risk scores using the calculation

2

n(n− 1)

∑∑
i<j

{
I(β̂

T
xji ≤ 0)

1 + exp(β̂
T
xji)

+
I(β̂

T
xij < 0)

1 + exp(β̂
T
xij)

}
.

This had the effect of adding 1/2 for patient pairs with tied risk scores and when

applied to data with a large number of ties, resulted in a considerable attenuation of

the CPE. In the next section, we revert to the original definition of the concordance

probability Pr(T2 > T1|βTx1 > β
Tx2), and compute the CPE by explicitly removing
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patient pairs with tied risk scores. The updated calculation creates a statistic with

a random numerator and denominator. The asymptotic distribution of the CPE is

derived through the ratio of U statistics.

2. CPE by removing ties in the risk scores

The CPE excluding ties in the risk scores is

Kn(β̂) =

∑∑
i<j

{
I(β̂

Txji<0)

1+exp(β̂
Txji)

+
I(β̂

Txij<0)

1+exp(β̂
Txij)

}
∑∑
i<j

{I(β̂
T
xji < 0) + I(β̂

T
xij < 0)}

,

where β̂ is the partial likelihood estimate of β from the proportional hazards model.

Under the proportional hazards specification, Kn(β̂) converges weakly to the concor-

dance probability K(β) = Pr(T2 > T1|βTx1 > β
Tx2). The asymptotic distribution

of Kn(β̂) is given in the theorem below.

Theorem 1. Under the standard conditions for the proportional hazards model,

n1/2[Kn(β̂) −K(β)] is asymptotically normal with mean 0 and variance V (β). The

asymptotic variance and its estimate are derived in the appendix.

3. Simulations

Simulation experiments were conducted to examine the accuracy of the CPE for a

four group staging system. The data were generated from a Weibull regression model

Ti = exp[0.5x1i + 0.25x2i + 0.10x3i]× εi

where x = (x1, x2, x3)T are dummy variables. The errors {εi} were independent
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identically distributed Weibull random variables with scale parameter 1 and shape

parameters {1.85, 4.1, 7.3, 13.5}, which were chosen to produce concordance probabil-

ities equal to {0.6, 0.7, 0.8, 0.9}. The Weibull regression model enables the data to

satisfy the proportional hazards assumption. For each group, independent uniform

censoring times (0, τk), (k = 1, 2, 3, 4), were generated to determine the proportion

censored. The sample size for each simulation was 200 and the proportion of pa-

tients in the four groups was {0.1, 0.2, 0.3, 0.4}. One thousand simulations were run

to produce the results in Table 1.

In addition to the CPE, the c-index with inverse probability censoring weights was

included in the simulations for comparison (Harrell et al. 1982, Uno et al. 2011). The

inverse probability censoring weights are incorporated to produce an asymptotically

unbiased statistic when the support of the survival distribution is less than the support

of the censoring distribution. The c-index with inverse probability censoring weights

is defined as

c =

∑
i

∑
j I(yi < yj)I(β̂

T
xi > β̂

T
xj)I(δi = 1)/Ĝ2(yi|xi)∑

i

∑
j I(yi < yj)I(β̂

T
xi 6= β̂

T
xj)I(δi = 1)/Ĝ2(yi|xi)

where y is the minimum of the survival time and censoring time , δ = 1 indicates

that the survival time is smaller, and Ĝ(yi|xi) is the within group Kaplan-Meier

estimated conditional survivor function for the censoring time random variable. When

the weighted c-index is asymptotically unbiased, its limiting value is Pr[βTx1 >

βTx2|T2 > T1,β
Tx1 6= βTx2]. It is shown in the appendix that if proportional

hazards holds then this conditional probability is equal to the concordance probability.

The results shown in Table 1 demonstrate the accuracy and stability of the CPE.

The bias in the CPE is small and is unaffected by the percent censoring, except when
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the concordance probability is small. The small bias that occurs when the regression

model is weak and censoring is high is a result of the bias in the Cox regression

coefficients in these simulations. In contrast, the weighted c-index has a systemic

bias that is an increasing function of the percent censoring. The standard error of

the CPE increases as the percent censoring increases, and the strength of the model

decreases. The estimated standard error of the CPE is close to its simulation standard

error.

4. Prostate cancer example

Staging or risk classification for metastatic cancer is complicated due to the diffi-

culty in measuring disseminated disease. For the metastatic prostate cancer popula-

tion, an exploration of a risk classification system was undertaken based on a recently

completed clinical trial of 1195 patients randomized 2:1 to either Abiraterone acetate

or placebo (de Bono et al., 2011). In addition to the randomization, patients were

stratified by: 1) the Eastern Cooperative Oncology Group performance status score,

2) the level of worst pain over the previous 24 hours on the Brief Pain Inventory -

Short Form, 3) the number of previous chemotherapy regimens, and 4) the type of

disease progression. For this analysis, only the 314 placebo patients with evaluable

baseline markers were used to create a prognostic risk classification system.

Risk classification was based on baseline values of circulating tumor cells (CTC)

and lactate dehydrogenase (LDH). These have been shown to be strong prognostic

factors in this patient population (Scher et al., 2009). CTC is a blood-based assay

that provides information on the accumulation of tumor cells in the peripheral blood
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and LDH is a marker of disease burden. CTC was dichotomized, using the FDA

approved classification, 4 or fewer cells/7.5 ml of blood and 5 or more cells/7.5 ml of

blood. The dichotomization of LDH was based on its defined upper limit of normal,

250 U/L. The risk classification derived from these two factors was:

Low risk CTC ≤ 5

Intermediate risk CTC > 5 LDH ≤ 250

High risk CTC > 5 LDH > 250

The Kaplan-Meier estimates of survival for the three risk groups are depicted in

Figure 1. A proportional hazards model was generated using this risk classification

and a test of the proportional hazards assumption developed by Grambsch and Th-

erneau (1994) provided insufficient evidence that the proportional hazards assumption

was violated (p= 0.11). From the results of the proportional hazards model, the esti-

mated log relative risk of death was 0.759 (se=0.195) and 1.455 (se = 0.176) for the

intermediate and high risk groups respectively, compared to the low risk group. This

risk classification is clearly prognostic, but p-values alone, which were both <0.001,

are insufficient to assess the strength of this classification. In general, p-values are

sensitive to the sample size of the data, with a large number of failures producing a

downward influence on the p-value. In order to ascertain the strength of this classi-

fication system in discriminating patient risk, the concordance probability estimate

was computed.

The CPE accounting for the ties in the covariates developed by the three risk

groups is equal to 0.741 (se=0.024). This result indicates that the simple three group

staging system provides moderate discriminatory power, where a CPE above 0.80
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demonstrates strong discrimination. If, however, the ties are included by substituting

1/2 for each pairwise tie in the calculation, then the CPE is equal 0.654 (se=0.015),

a substantial decrease in the CPE value. This is due to the sizeable number of ties

between patients classified to one of only three risk groups.

In addition to an overall effect, the proportional hazards specification can be used

to estimate the model’s discriminatory power between individual risk groups

Pr[T2 > T1|βTx1 = r1,β
Tx2 = r2] = [1 + exp(r2 − r1)]−1.

Using the log relative risk estimates, a patient in the low risk group has approximately

4:1 odds of surviving longer than a patient in the high risk group. The odds are

approximately 2:1 that a patient in the low risk group survives longer than a patient

in the intermediate risk group, and approximately the same odds for a patient in the

intermediate risk group relative to a patient in the high risk group. This illustrates

that although the overall measure of model strength is 0.741 (approximate 3:1 odds),

the discriminatory strength between individual groups varies. The overall CPE is a

weighted average of these individual measures.

5. Discussion

The interpretation of the CPE differs depending on whether ties in the risk groups

are included or excluded. The CPE including ties provides a discrimination index

for all patients, including subjects in the same clinical stage. The inclusion of ties

penalizes model strength for subjects in the same risk group and therefore is affected

by the distribution of the subjects across stages. The CPE excluding ties measures the

model discriminatory power for patients in different clinical states, and is unaffected
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by the distribution of patients across stage.

The most commonly applied measure of discrimination is the c-index. An advan-

tage of the c-index is that it is not dependent on the proportional hazards model,

and may be useful if alternative models (such as proportional odds or accelerated

failure time models) are used to determine patient risk. We previously showed that

the unweighted c-index had a bias that was an increasing function of the percent

censored (Gönen and Heller, 2005). The inverse probability weighted c-index also

has a positive bias, although not as large as the unweighted version. In application,

the c-index employed on low risk cohorts where the number of events are small, will

make a model appear stronger than it actually is. Uno et al. (2011) suggest that a

partial weighted c-index c(t), calculated to follow up time t, be computed to reduce

the bias. It is unclear, however, how to choose t to balance the reduction in bias with

the decrease in efficiency.

The CPE is useful if applied in conjunction with the proportional hazards model,

and is virtually unaffected by independent censoring. If the proportional hazards

model is applied to assess patient risk, and diagnostics are used to confirm the pro-

portional assumptions, then the CPE is an accurate and robust measure of discrimi-

nation. R code to compute the CPE and its standard error, with ties included or ties

excluded, is available in the R package CPE.
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Appendix

The asymptotic distribution of the CPE.

To attain the asymptotic distribution of the CPE, it is approximated with the

smooth statistic

K̃n(β̂) =

2
n(n−1)

∑∑
i<j

Jij

{
Φ(−β̂Txji/h)

1+exp(β̂
Txji)

+
Φ(−β̂Txij/h)

1+exp(β̂
Txij)

}
2

n(n−1)

∑∑
i<j

Jij{Φ(−β̂
T
xji/h) + Φ(−β̂

T
xij/h)}

where Φ represents the standard normal cumulative distribution function and Jij =

I(xji 6= 0). The local Gaussian distribution function is introduced to create a statistic

continuous in β for the Taylor expansion that follows. The bandwidth in the smoothed

CPE was chosen as h = 0.5σ̂n−1/3, where σ̂ is the estimated standard deviation of

the linear combination β̂xi, computed for each subject. The rate n−1/3 creates an

asymptotic equivalence between the smooth and unsmooth CPE (Gönen and Heller,

2005).

The Taylor expansion of the smooth CPE produces

K̃n(β̂) = K̃n(β) +

(
∂K̃n

∂β

)T

(β̂ − β) + op(1)

The ∂K̃n/∂β is asymptotically constant. The component β̂ − β has asymptotic

mean zero, conditional on x, and so is asymptotically independent of K̃n(β). There-

fore the asymptotic variance of K̃n(β̂) is

Var[K̃n(β̂)] = Var[K̃n(β)] +

(
∂K̃n

∂β

)T

Var[β̂]

(
∂K̃n

∂β

)
+ op(1)
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The individual components can be estimated as follows. The Var(β̂) is estimated

from the second derivative of the partial likelihood.

To compute the partial derivative ∂K̃n(β)
∂β

, let

uji2(β) = JijΦ(−βTxji/h), uji1(β) =
JijΦ(−βTxji/h)

1 + exp(βTxji)

and denote the derivative of each of these elements with respect to β as

u′ji2(β) = −Jij(xji/h)φ(−βTxji/h); u′ji1(β) =
(1 + exp(βTxji))u

′
ji2 − uji2xji exp(βTxji)

[1 + exp(βTxji)]2

where φ is the standard normal density function.

Then

∂K̃n(β)

∂β
=

∑∑
i<j

[u′ji1(β) + u′ij1(β)]∑∑
i<j

[uji2(β) + uij2(β)]

where we have used the identity u′ji2(β) + u′ij2(β) = 0.

To estimate the asymptotic variance of K̃n(β0), we note that

K̃n(β0) =
κ1(β0)

κ2(β0)
and κj are U-statistics of degree 2.

From U-statistic theory

√
n(κj(β0)− µj(β0)) ∼ N(0, vj)

and

κ1(β0)

κ2(β0)
∼ N

(
µ1(β0)

µ2(β0)
, n−1dT(β0)V (β0)d(β0)

)
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where

dT(β0) = (µ−1
2 (β0), µ1(β0)/µ2

2(β0)) and V (β0) = var(κ1(β0), κT
2 (β0)).

Estimating µj(β0) by κj(β̂), the estimated variance covariance matrix V is

vab(β̂) =
4

n(n− 1)2

∑
i

∑
j

∑
k 6=j

{
[uija(β̂) + ujia(β̂)]− κa(β̂)

}{
[uikb(β̂) + ukib(β̂)]− κb(β̂)

}
with a, b = 1, 2.

Combining these results provides the estimated asymptotic variance of the CPE.

Equality between the concordance probability and the limiting value of the c-index.

The concordance probability is

CP = Pr[T2 > T1|βTx1 > β
Tx2]

and the limiting value of the c-index is

C = Pr[βTx1 > β
Tx2|T2 > T1,β

Tx1 6= βTx2].

First note that

C = CP× Pr[βTx1 > β
Tx2]

Pr[T2 > T1,β
Tx1 6= βTx2]

(A.1)
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Assuming there are g risk group scores, the denominator in (A.1) is equal to

Pr[T2 > T1,β
Tx1 6= βTx2]

=

lg∑
βTx1=l1

lg∑
βTx2=l2

l2 6=l1

Pr[T2 > T1|βTx1 = l1,β
Tx2 = l2]× Pr[βTx1 = l1,β

Tx2 = l2]

=
∑∑

βTx1>βTx2

Pr[βTx1 = l1,β
Tx2 = l2]

where the last equality follows from the proportional hazards identity

Pr[T2 > T1|βTx1 = l1,β
Tx2 = l2] = 1− Pr[T2 > T1|βTx1 = l2,β

Tx2 = l1].

Substitution into the denominator of (A.1) proves the equality.
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Table 1

Simulation results.

CP and Censored Average IPCW Average Average CPE Simulation CPE

limiting c-index proportion c-index CPE standard error standard deviation

0.600 0.000 0.603 0.605 0.027 0.025

0.600 0.251 0.615 0.606 0.031 0.027

0.600 0.501 0.624 0.609 0.038 0.033

0.600 0.751 0.636 0.620 0.054 0.041

0.701 0.000 0.702 0.703 0.024 0.022

0.701 0.247 0.713 0.703 0.028 0.026

0.701 0.498 0.722 0.703 0.034 0.032

0.701 0.744 0.730 0.702 0.048 0.045

0.799 0.000 0.799 0.800 0.020 0.019

0.799 0.250 0.807 0.800 0.023 0.022

0.799 0.498 0.820 0.801 0.028 0.026

0.799 0.751 0.830 0.796 0.042 0.039

0.900 0.000 0.900 0.900 0.017 0.013

0.900 0.250 0.906 0.901 0.019 0.015

0.900 0.497 0.913 0.901 0.024 0.018

0.900 0.746 0.927 0.900 0.035 0.026

CP = Concordance Probability; CPE = Concordance Probability Estimate;

IPCW = Inverse Probability Censoring Weight
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Figure 1. Kaplan-Meier estimates of survival based on clinical risk stage.
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