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SUMMARY. The concordance probability is used to evaluate the discriminatory power and
the predictive accuracy of nonlinear statistical models. We derive an analytic expression
for the concordance probability in the Cox proportional hazards model. The proposed
estimator is a function of the regression parameters and the covariate distribution only
and does not use the observed event and censoring times. For this reason it is asymp-
totically unbiased, unlike Harrell’s c-index based on informative pairs. The asymptotic
distribution of the concordance probability estimate is derived using U-statistic theory

and the methodology is applied to a predictive model in lung cancer.
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1 Introduction

In general, for a pair of bivariate observations (X;,7)) and (X, T3), the concordance

probability is defined as
KX,T =K = P(T2 > T1|X2 > Xl)

If X is binary and 7' is ordinal then the concordance probability is equal to the Mann-
Whitney statistic (Pratt and Gibbons, 1981) and the area under the receiver operating
characteristic (ROC) curve (Hanley and McNeil, 1982). When both X and T are ordinal
it is related to the well-known Somers’ d statistic (Somers, 1962) by d = 2K — 1.

The concordance probability is used for assessing the discriminatory power of a sta-
tistical model. A concordance probability of 1.0 represents a model that has perfect
discrimination, whereas a value of 0.5 indicates that a coin flip would provide informa-
tion as accurate as the model. A value below 0.5, however, does not necessarily indicate

a poor model since
1-— KX,T = P(T1 > T2|X2 > Xl) = K—X,T-

as long as T is a continuous random variable. Therefore one may consider using —X as

the predictor of T, instead of X, to obtain a concordance probability greater than 0.5.
In survival analysis, when the response variable 7" is possibly right censored, the

Cox proportional hazards model is the predominant regression model (Cox 1972). The

proportional hazards model is written as

Altlz) = Ao(t)explfy 2]
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where A(t|z) is the hazard function conditional on a p-dimensional covariate vector z,
Ao(t) represents the baseline hazard function independent of the covariate, and 3 is the
true regression parameter. Due to right censoring, the observed data for this model are
(y,d,z) where y is the minimum of the failure time and the censoring time, and § is
the censoring indicator, with § = 1 signifying the failure time is smaller. It is assumed
that the individual copies of the random vector (Y, d, X') are independent and identically
distributed.

Harrell et. al. (1982, 1984) proposed the c-index as a way to estimate the con-
cordance probability for survival data. The c-index is computed by forming all pairs
{(yi, i, ), (yj, x;,0;)} of the observed data, where the smaller follow up time is a failure
time. Recently Pencina and D’Agostino (2004) provided further insight into this measure

by investigating its relationship to Kendall’s 7. The c-index is defined as

S0 Ty <y 18" > 718 = 1) + I(y; <y I(3"x; > 572)1(8; = 1)}

Yo (i <yp)I(6i =1) + I(y; <yi)l(d; =1)}

i<j

and is arguably the most widely used measure of predictive accuracy for censored data
regression models. The c-index is available in S-Plus, R, and SAS.

We focus on the concordance probability as a measure of discriminatory power within
the framework of the Cox model. The appeal of this formulation is that it provides a
stable estimate of predictive accuracy that is easy to compute. It will be demonstrated
that the proposed concordance probability estimate is a simple function of the Cox model,

is not sensitive to the degree of censoring, and does not require imputation of survival



times.

2 Method

The relationship between the covariate vector z and the survival time ¢ is determined

through the proportional hazards conditional survival function

S(t;z, ) = exp {— exp {77} /ho(t) dt} .

For a subject specific covariate vector z, denote by 7'(3% ) the survival time correspond-
ing to the linear combination 37x. Under proportional hazards, the ordering between
the survival time of two subjects with log relative risks 872, and 3%y, can be measured

by

P(1(8"a2) > T(5700) = [ Sltiza ) aS(tia1, )
1
[+ exp (77(ra — )}

It follows that the concordance probability is

B ffﬁT‘ [1+ exp {67 (2 — 21)}] ™ dF (87 a1)dF (5 x,)
K(p) = [[ dF(BTa1)dF (B"x)

BTx1>8T 1o

where [ is the distribution function of the covariate linear combination 57 X.
The concordance probability is estimated by substituting estimates of § and F' in
K. The partial likelihood estimate B presents itself naturally for 8 and the empirical

distribution function is used for F. The result is the concordance probability estimate



(CPE)

= exp{ﬂ%ﬁ} U+ exp{7ay}

where x;; represents the pairwise difference z; — x;.

In contrast to Harrell’s c-index, the effect of the observed times on the CPE is medi-
ated through the partial likelihood estimate B, and since the effect of censoring on the
bias of B is negligible, the measure is robust to censoring. In addition, the CPE remains

invariant under monotone transformations of 7.

3 The asymptotic distribution of CPE

The CPE is a nonsmooth function of the Cox partial likelihood estimate. Lack of smooth-
ness stems from the indicator functions in K,(/3). At some point, a small change in j
will result in a zero crossing of 37z, changing the indicator function. The result is a
nondifferentiable statistic, complicating the local linear approximation used for the con-
struction of its asymptotic distribution and the resulting asymptotic variance. To address
this problem, a smooth approximation to the concordance probability is constructed

A > { ~BTeg/h) | @(=F"wi/h) }

2 U exp(0Tag} 1+ exp{ o)

where h is a scale parameter, also termed the bandwidth in the smoothing literature,
that converges to zero as n gets large, and ® is a local distribution function. Note that

as n increases, and therefore h — 0, ®(u/h) — I(u > 0). It follows using the result in



Heller (2004), by choosing the bandwidth h so that as n gets large nh* — 0,
n'2K,(8) = n'2K,(8) + 0,(1)

uniformly for § within a compact neighborhood of the true Gy. As a result, the asymp-
totic distributions of n'/2K, () and the smoothed statistic n'/2K, () are equal, and the
variance of the CPE is computed using a linearization argument for the smoothed CPE.

The smoothed CPE is a function of the Cox maximum partial likelihood estimate £.

To compute its asymptotic variance, a first order Taylor series expansion is calculated

RalB) = Ral) + {aﬁ“ﬁ“) } G-m)ra

Since the partial likelihood estimate B is asymptotically efficient, (ﬂA — Bo) is asymptot-
ically independent of K, (). In addition, since 9K, (3)/df is asymptotically constant,

the asymptotic variance of K, () is

var {Kn(ﬁ)} >~ var{ K, (6o} + {af(anﬂ(ﬁ)} ‘ﬂ:ﬂovar([?) {algnﬁ(ﬂ)} ‘ﬂ:ﬂo'

Estimation of the asymptotic variance is derived from the estimated components
of this expansion. The Var(ﬂA) is computed from the inverse of the partial likelihood

information matrix (Cox 1972, 1975). The variance of K,(f) is obtained from the

observation that it is a U-statistic of degree 2. For
wji = S(= Ty /ML + exp{6Ta;}] !

the asymptotic variance of K, (/) is consistently estimated by

R ()} = gy D0 30 S+ 0y = Kl H o+ e = Ko ()

i J k#j



Finally, the partial derivative vector of f(n(ﬂ) with respect to § estimated at § = B is
given by

0L (P)
08 lo=p

= (=i m)o(—H"w5i/h) |1+ exp(" ) )
DT/ B () exp(ATz) [1 4 exp(B7y)|
b (o= 1) [t + x|
£ (=T /B () exp(ATy) [1 4 exp(A7y)|

where ¢(u) = 0P(u)/0u is the kernel density.

4 Simulations

A simulation experiment was conducted to compare the performance of the concordance
probability estimate to Harrell’s c-index. A proportional hazards relationship was gen-
erated from the Weibull regression model ¢; = exp(fyz;) X €; the regression parameter
By was set equal to 2.0. The ¢; were independent identically distributed Weibull random
variables with scale parameter 1 and shape parameter varied to represent a spectrum of
concordance indices. Censoring times were generated from a uniform (0, 7) distribution.
The choice of 7 determined the percentage of censored observations in each replication.
The upper terminal (7) of the uniform was chosen to produce censoring proportions of
{0.0,0.25,0.50,0.75}. For all simulations, the sample size was n = 100, with x rang-
ing from -1.98 and 1.98 in increments of 0.04. There were 1000 replications for each

simulation.



Table 1

Weibull | Censored | Harrell’s | CPE | Smooth | Standard Error
Shape | Proportion c CPE of CPE
2.565 0.776 0.962 | 0.941 | 0.933 0.0129
2.565 0.520 0.958 | 0.941 | 0.935 0.0082
2.565 0.277 0.951 | 0.941 | 0.937 0.0065
2.565 0.000 0.940 | 0.940 | 0.937 0.0057
1.283 0.748 0.916 | 0.886 | 0.882 0.0190
1.283 0.519 0.909 | 0.885 | 0.882 0.0134
1.283 0.255 0.896 | 0.884 | 0.882 0.0110
1.283 0.000 0.884 | 0.885 | 0.883 0.0101
0.641 0.744 0.821 | 0.796 | 0.794 0.0308
0.641 0.506 0.815 | 0.795 | 0.793 0.0216
0.641 0.253 0.805 | 0.796 | 0.794 0.0182
0.641 0.000 0.795 | 0.795 | 0.794 0.0172
0.321 0.751 0.700 | 0.689 | 0.688 0.0453
0.321 0.494 0.697 | 0.689 | 0.688 0.0314
0.321 0.257 0.694 | 0.689 | 0.688 0.0262
0.321 0.000 0.689 | 0.689 | 0.688 0.0243

The smoothed concordance probability was estimated using a local Gaussian distri-
bution function. The bandwidth was chosen to equal A = 0.56n /3, where & is the
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estimated standard deviation of the linear combination BTxi, computed for each subject.

The term n /3

insures the asymptotic condition nh* — 0 needed for the asymptotic
equivalance of the smoothed and unsmoothed concordance probability.

The simulations indicate that the two estimators produced comparable results when
there was no censoring (Table 1). As censoring increased, Harrell’s c-index increased,
whereas the CPE remained stable. For example, with the Weibull parameter equal to
1.283, Harrell’s c-index ranged from 0.884 to 0.916; in contrast, the CPE only ranged
from 0.884 to 0.886. The maximum range for the CPE over all Weibull shapes examined
was 0.002. The standard error of the CPE increased as the censoring proportion increased
and as the explained variation in the Cox model decreased. Thus, the simulation results

demonstrate that the CPE is robust to the degree of censoring and is an informative

measure of explained variation in the Cox model.

5 Example: A Prognostic Model for Resectable Lung

Cancer

Surgery remains the only curative option for patients with lung cancer, but there is still
considerable heterogeneity in survival following surgical resection. Downey, Akhurst,
Gonen et al. (2004) analyzed data from 100 patients who underwent surgery for lung
cancer. There were 21 deaths (79% censored) and the median follow-up time for survivors

was 28 months. One objective of the analysis was to determine the set of factors that



jointly best predicted survival time. This information could then be used to identify
future high-risk patients who would be offered treatment in addition to surgery.

The Cox model, incorporating tumors size (measured by pathologic tumor diameter)
and glycoltyic activity (as measured by standardized uptake value, SUV) from a positron
emission tomography (PET) scan, produced the highest c-index, with Harrell’s c-index
equal to 0.74 (standard error = 0.06). It was concluded that the model had good dis-
criminatory ability and could be used for risk prediction in future patients. The covariate
SUV ranged between 0.5 ml/g and 32 ml/g, with a mean of 10.1 and a median of 9, while
tumor size ranged from 0.6 cm to 11.5 ¢m, with a mean of 3.4 and a median of 2.8.

The CPE was retrospectively calculated for the same data set and model; the CPE
was equal to 0.65 (standard error = 0.06). This reduction in the discrimination mea-
sure corresponds to the high censoring simulations performed in Section 4. The lower
estimate suggests that the model is less discriminating than previously believed. Conse-
quently, investigator enthusiasm for using this model to determine patient risk has been

dampened.

6 Discussion

An estimate of the concordance probability was developed to assess the discriminatory
power of the proportional hazards model. This measure is useful when the Cox model is
used as a tool for predicting patient risk. The CPE has other uses as well. For example,

in a two-arm randomized clinical trial, the CPE measures the probability of observing a
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longer survival for a patient in the experimental group compared to a patient treated in
the control group. Thus, the CPE may be viewed as a simple measure of efficacy for the
randomized trial.

Discriminatory power is one indicator of the predictive accuracy of a model. An alter-
native assessment of predictive accuracy is explained variation, which is unambiguously
defined for Gaussian outcomes. The resulting R? statistic is ubiquitous. A correspond-
ing measure with censored data can be defined in several ways (Schemper and Stare,
1996). These measures are either sensitive to the rate of censoring, require an imputa-
tion method for censored survival times, are not invariant to monotone transformations
of the survival time, or are difficult to implement in the multiple covariate case. The
CPE is unaffected in these areas.

SAS and R code are available from the authors to compute the CPE, the smoothed

CPE, and the standard error of these estimates.
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