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ABSTRACT

Small molecule kinase inhibitors have become a major focus of drug develop-

ment for treating cancer, which accounted for 610,000 deaths and 1.7 million di-

agnoses in the United States in 2018 alone. Currently, there are 44 FDA approved

small-molecule kinase inhibitors. The dominant paradigm for designing such in-

hibitors has been to optimize maximally selective ligands for a single target. Un-

fortunately, many such inhibitors fail in clinical trials due to a lack of efficacy and

clinical safety. Tumors can evade inhibitors through multiple routes of resistance,

including upregulation of a second kinase, mutations in the target kinase, or ampli-

fication of the target kinase. On the other hand, toxicity arises from on-target inhi-

bition of the wild type kinase or off-target effects of promiscuous small molecules

or their metabolites. ATP-competitive kinase inhibitors have great potential for

promiscuity, as there more than 520 kinases in the human kinome that each bind a

common substrate, ATP. Further, advances in sequencing technology have enabled

the generation of datasets of disease associated alterations rich in missense muta-

tions in kinases. While this technology has been particularly transformative in the

field of oncology, where many patients are treated with kinase targeted therapies,

most kinase missense mutations are rare, making it difficult to assess their func-

tional impact. Physical modeling can provide a route for predicting small molecule

kinase inhibitor selectivity, and the impact that missense mutations have on kinase

structure and inhibitor binding. To assess the utility of free energy calculations

for predicting selectivity, we performed relative free energy calculations on pub-

licly available congeneric series of ligands on multiple kinase targets. We built a

Bayesian graphical model to quantitate the correlation of errors for a given ligand

on both target, to interrogate whether any fortuitous cancellation of errors makes
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selectivity predictions more accurate than expected. To rigorously test our predic-

tions, we have developed a panel of kinase expression constructs (now available

through AddGene) appropriate for automated, high-throughput expression proto-

col in E. coli. We have demonstrated the utility of these constructs for engineering

and expressing clinically observed missense mutations, testing a panel of 96 mu-

tations in Src and Abl kinases gathered from publicly available cancer genomics

datasets as well as the MSK-IMPACT clinical sequencing panel, and further ex-

pressed a separate panel of 95 clinically relevant Abl mutations. We measured

the binding free energies for these clinically relevant Abl mutations for a panel of

FDA-approved small molecule kinase inhibitors. Using this dataset as a bench-

mark, we tested the sensitivity and accuracy of absolute free energy calculations to

predict the impact of mutations on inhibitor binding. Taken together, this works

provides an assessment of physical modeling for predicting selectivity and resis-

tance in drug design of small molecule kinase inhibitors.
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CHAPTER 1

INTRODUCTION

1.1 Perspective

In 2018, cancer accounted for 610,000 deaths and 1.7 million diagnoses in the

United States alone [1]. Since the FDA approval of imatinib in 2001, therapeu-

tics targeting kinases now account for over 50% of current cancer drug discovery

and close to 30% of total drug discovery efforts [2], with 44 FDA approved small

molecule kinase inhibitors (SMKIs) on the market [3]. However, there has been a

decrease in productivity using current design strategies, with many drugs failing

in late stage clinical trials. By the time a drug fails in Phase III, a typical phar-

maceutical company has spent 12 years and almost $1 billion on development [4].

SMKIs can fail late in the development pipeline for two main reasons: safety issues

or lack of efficacy. Tumors have multiple routes to resistance, including target am-

plification [5, 6], effectively increasing the amount of drug required to get the same

level of inhibition. Inhibitor resistance occurs through the presence or upregula-

tion of a redundant pathway [7, 8], mutation of the target kinase [9, 10], activation

of downstream kinases [11], or relief of feedback inhibition [12]. On- target toxicity,

from inhibition of wild type kinase, can cause efficacy issues by limiting the maxi-

mally tolerated dose (MTD). Safety issues arise from adverse events due off-target

toxicity, such as gefitinib inhibiting CYP2D68 and causing hepatotoxicity in lung

cancer patients, or from the on-target toxicity of inhibiting the wild type kinase,

such as EGFR inhibitors causing skin rash and ocular toxicities [13, 14].

Each kinase inhibitor has a certain selectivity profile, or group of biological tar-

gets a molecule binds to and inhibits strongly enough to produce a phenotype.
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Kinase inhibitors have potential for a great diversity of selectivity—the number of

targets a molecule binds to below a certain Kd threshold. There are more than 520

members of the human kinome [15], each with a highly similar, druggable ATP-

binding site [16–20], giving inhibitors targeted to them huge potential for promis-

cuity, like staurosporine, which inhibits a large percentage of the kinome with high

affinity. Even FDA approved drugs have a wide range of selectivities. In a 2011 pa-

per, Davis et al., characterized the interaction of 72 known kinase inhibitors against

a panel of 442 kinases [21] using a competitive binding assay. Of the 72 compounds

screened, 70% had a Kd less than 3 µM for more than 10% of the 442 distinct kinases

screened. While this study confirmed that type II inhibitors, SMKIs that bind an

active site adjacent pocket exposed in the ‘DFG-out’ conformation, are more likely

to be selective than Type I inhibitors, those that can bind to either the ‘DFG-out’ or

‘DFG-in’ conformation, it also found that there are several type II inhibitors that

have low selectivity. Conversely, several Type I inhibitors exhibited a high level of

selectivity. This suggests that either binding mode is a viable option when seek-

ing to design a selective inhibitor. Additionally, 17 of the 72 compounds bound to

fewer than 5 off-target kinases with affinity comparable to their primary target and

also had a Kd less than 3 µM for less than 10% of the assayed kinases. This sug-

gests that it is possible to design compounds that are selective for multiple targets,

a strategy that has been suggested as a possible design paradigm termed targeted

polypharmacology [11, 22–24].

Current design efforts focus on achieving maximal selectivity for a single tar-

get by improving a weak inhibitor through analogue synthesis [25], which is not

always rational, or through structure-informed design [25, 26], which is difficult

because kinases exist as nodes in complex signaling networks [27, 28], with feed-

back inhibition and pathway cross-talk muddling the relationship between bind-

ing and signaling. This complicates the notion of inhibiting a single kinase to shut-
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down a pathway, as alleviating negative feedback can lead to re-activation of the

target pathway [27, 29], or lead to activation of a secondary pathway previously

regulated by inhibitory cross- talk [27, 30]. Further, tumors can easily evade inhibi-

tion [11] by mutating the target to ablate inhibitor binding; mutating downstream

effectors to bypass the inhibited node in the pathway; up-regulating a redundant

signaling pathway or branch; or up-regulating the target kinase to increase the

amount of drug needed for efficacious inhibition to occur. Rationally designing

SMKIs for a given selectivity profile, or to overcome resistance will be essential

to continue making advances in the treatment of cancer. Selectivity can be im-

proved by antitargeting kinases closely related to the desired therapeutic target,

such as positively designing an inhibitor for EGFR while antitargeting HER2. Mul-

titarget design could also reduce on-target toxicity, thereby improving the thera-

peutic window, by targeting the oncogenic mutated kinase and antitargeting the

wild type kinase. This could improve upon the success of certain EGFR inhibitors

such as gefitinib and erlotinib [31–33] or aid the development of second genera-

tion inhibitors for use in treating patients with clinically-acquired resistance muta-

tions [10, 34, 35], such as the ALK inhibitor alectinib [36]

A further factor complicating the design of small molecule kinase inhibitors is

the proliferation of mutations observed in the clinic. Next-generation sequencing

has enabled generation of massive datasets rich with missense alterations in ki-

nases observed directly in the clinic [37–39], and has been particularly transforma-

tive in the field of oncology. While this technology has drastically advanced our

understanding of disease, it presents a problem for rational drug design. While

some missense mutations are highly recurrent and have been characterized clin-

ically or biochemically, a long tail of rare mutations accounts for the majority of

clinically observed mutations, leaving clinicians, researchers, and chemists with-

out an understanding of whether these mutations might be activating and drive
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cancer, or cause resistance to a previously-developed compound [40]. Understand-

ing the impact of these mutations will enable the development of next-generation

inhibitors that overcome resistance and have lower-levels of on-target toxicity by

sparing the wild-type form of the kinase in favor of the oncogenic mutant kinase.

Physical modeling can be used to characterize the impact of these rare muta-

tions, as well as enable the design of inhibitor selectivity. Molecular dynamics have

been successfully applied to a number of drug discovery projects [41], such as for

identifying allosteric binding sites [42] or enabling more accurate virtual docking

screens [43] through the relaxed complex scheme (RCS) [42, 44]. While these meth-

ods have lead to successful development of inhibitors for HIV integrase [45] and

FKBP [42] as well as some kinase [46], docking scoring algorithms focus on enrich-

ment [47] and do not correlate well with ligand binding affinity [48]. Alchemical

free energy calculations allow for prediction of ligand binding free energies, in-

cluding all enthalpic and entropic contributions [49–51]. Advances in atomistic

molecular mechanics forcefields and free energy methodologies [52–55] have al-

lowed free energy methods to reach high levels of accuracy for predicting ligand

potencies [56]. Free energy methods have been applied prospectively to develop

inhibitors for Tyk2 [57], Syk [58], BACE1 [59], GPCRs [60], and HIV protease [61].

While predicting affinity with free energy calculations has been well-studied, the

utility of these methods for predicting selectivity is understudied. Early work on

using free energy calculations to understand the selectivity of imatinib for Abl over

Src [62, 63] and predicting the selectivity of three inhibitors within the bromod-

omain family [64] promises that these methods may be useful for designing the

selectivity of inhibitors.

Physical models can also be used to understand the impact of clinical muta-

tions on the structure and function of proteins, enabling the design and selection
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of inhibitors for the era of personalized medicine. Molecular Dynamics simula-

tions have been applied to understanding the mechanism of mutations on the ac-

tivity [65, 66] and ligand binding [67] of EGFR. They have also been applied to

understanding missense mutations in p53 [68], CLIC2 [69], and opsin [70]. Al-

chemical free energy calculations have been applied to several widescale studies

of protein thermostability [71–73] as well as understanding how gatekeeper muta-

tions impact inhibitor binding [74].

As will be discussed at length in this work, physical modeling can enable the

predicting of selectivity and understanding the impact mutations have on protein

structure, function, and inhibitor binding. These methods can greatly aid the de-

sign of small molecule kinase inhibtors that will address the complex biology of

kinases and overcome resistance, both of which limit the benefit patients receive

from current compounds.

1.2 Synopsis

This thesis is organized as follows. Chapter 2 contains a manuscript presenting

a study of the utility of free energy methods to predict selectivity, using small

molecule kinase inhibitors as a clinically-relevant and particularly challenging test

system. It will present a numerical model for the speedup that can be expected

when optimizing the selectivity of an inhibitor using free energy methods. Chap-

ter 3 presents work from a manuscript published in Communications Biology that

uses alchemical free energy methods to calculate the impact of clinical mutations

on inhibitor binding affinities for Abl kinase. This work highlights the benefit

of using physical models to compute physically-meaningful and testable quan-

tities, as well as highlights some of the challenges and limitations in using publicly

5



available data to benchmark free energy calculations. Finally, Chapter 4 contains

a manuscript published in Biochemistry that presents work done to enable the gen-

eration of high-quality binding affinity data, that is critical for testing the accuracy

and utility of free energy methods in drug discovery.
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CHAPTER 2

PREDICTING THE SELECTIVITY OF SMALL MOLECULE KINASE

INHIBITORS

2.1 Gloss

The work in this chapter is in preparation, and will be submitted as follows.

Is structure based drug design ready for selectivity optimization?

Steven K. Albanese1,2, John D. Chodera2, Andrea Volkamer3, Simon Peng4,
Robert Abel4, Lingle Wang4,∗

1 Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan
Kettering Cancer Center, New York, NY 10065
2 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial
Sloan Kettering Cancer Center, New York, NY 10065
3 Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin
4 Schrödinger, New York, NY 10036
∗ Corresponding Author

This chapter contains work that I started while doing a summer internship at

Schrödinger under the direction of Lingle Wang and finished Gerstner Sloan

Kettering under the direction of John Chodera. We were interested in whether

selectivity could be predicted using alchemical free energy methods. Selectivity is

an important property to consider in drug development, when designing either

an inhibitor that is maximally selective [25, 26] or

polypharmacological [11, 22–24, 75] agent engineered to bind to multiple targets.

Controlling selectivity can help avoid off-target toxicity [14, 76], such as in the

case of staurosporine, a toxin that binds to most of the human kinome [21].

Designing with selectivity in mind can be useful in avoiding on-target toxicity by

selectively targeting disease mutations [13] in the tumor and sparing the wild

type form of the target in normal tissue.
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Despite the importance of considering selectivity in drug design, most of the prior

work in the field has focused on the utility of physical modeling for predicting

potency. Previous work had estimated the per target forcefield error for OPLS3,

the forcefield used in this study, at roughly 1.0 kcal/mol [54] when predicting

potency. However, it was unknown how much this error might be correlated, and

therefore cancel, when making predictions for two targets that have the same

small molecule ligands and varying degrees of similarity in the binding site.

Should this error be uncorrelated and behave randomly, the selectivity

predictions would be worse than potency predictions. Even a small degree of

correlation in the forcefield error could make selectivity predictions more accurate

than expected. Molecular dynamics and free energy calculations have been used

to extensively explore the mechanism underlying the selectivity of imatinib for

Abl kinase over Src [62, 63] and within a family of non-receptor tyrosine

kinases [77], termed reorganization energy. This work evaluate neither the

accuracy of these methods, nor their application to drug discovery on congeneric

series of ligands. The most extensive prior work in this field evaluated the use of

absolute free energy methods for predicting the selectivity of three inhibitors

accross the bromodomain family [64]. These methods achieved promising

accuracy for single target potencies of roughly 1 kcal/mol for well behaved

systems, but did not explicitly evaluate any selectivity metrics or consider

correlation in the forcefield errors made for each bromodomain.

In this work, we present an analysis of the correlation for two sets of kinase

selectivity calculations using a Bayesian graphical model to separate the forcefield

error from statistical error. One pair of kinases is closely related; one pair is more

distantly related. We present models to demonstrate the impact of free energy

calculations on selectivity optimization when considering differing levels of

forcefield error, forcefield correlation, and statistical error. This work was
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designed by Lingle Wang, Robert Abel, John Chodera and me. Simon Peng

helped me identify key datasets. Andrea Volkamer performed the multiple

sequence alignments to quantify how closely related the kinase binding sites are.

Lingle Wang and I set up and ran the free energy calculations. John Chodera and I

designed and tested the Bayesian graphical model. I wrote the original draft, and

edited it with John Chodera, Lingle Wang and Robert Abel.

The results in this chapter suggest that physical modeling can enhance the design

of selective inhibitors, and point to a number of promising future avenues of

study. The data sets in this chapter are very limited, with only a handful of small

molecules and a limited dynamic range of selectivity each. A future study would

benefit greatly from access to the type of prospective data sets commonly

generated in the pharmaceutical industry, which can contain up to thousands of

compounds. A larger data set would allow for a more accurate quantification of

the typical forcefield error correlation for the systems involved, especially if larger

small molecule modifications are included. Additional future work could explore

the role the relatedness of both targets plays in driving forcefield error correlation,

to develop a heuristic to estimate correlation coefficient before running

calculations. CDK2, CDK9 and ERK2 share a roughly 50-60% sequence identity in

the binding site. A larger scale study looking are more kinase pairs, or pairing

protein targets from different families with different binding modes, would

provide insight into what level of correlation could be expected a priori. Future

work could also focus on how forcefield error correlation changes for different

forcefields. Beyond understanding the correlation in forcefields, there is much

work to be done in exploring how best to combine physical modeling and other

types of data, including the wealth of structural and high-throughput biophysical

data available for kinases, with machine learning to predict selectivity and

polypharmacology.
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2.2 Abstract

Alchemical free energy calculations are now widely used to drive or maintain

potency in small molecule lead optimization, where the binding affinity to a

protein target can be computed—in well-behaved cases—to roughly 1 kcal/mol

inaccuracy, which is believed to primarily stem from force field errors. Despite

this, the potential to use free energy calculations to drive optimization of

compound selectivity among two similar targets has been relatively unexplored.

In the most optimistic scenario, the similarity of binding sites might lead to a

fortuitous cancellation of force field errors and allow selectivity to be predicted

more accurately than affinity. Here, we assess the accuracy with which selectivity

can be predicted in the context of small molecule kinase inhibitors, considering

the very similar binding sites of human kinases CDK2 and CDK9, as well as

another series of ligands attempting to achieve selectivity between the more

distantly related kinases CDK2 and ERK2. Using a Bayesian analysis approach,

we separate force field error from statistical error and quantify the correlation in

force field errors between selectivity targets. We find that, in the closely related

CDK2/CDK9 case, a high correlation in force field errors suggests free energy

calculations can have significant impact in aiding chemists in achieving

selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation

in force field errors suggests fortuitous cancellation may even occur between

systems that are not closely related. In both cases, the correlation in force field

error suggests that longer simulations are beneficial to properly balance statistical

error with systematic error to take full advantage of the increase in accuracy in

selectivity prediction possible due to fortuitous cancellation of error.
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2.3 Introduction

2.3.1 Free energy methods can aid structure-based drug design

Free energy methods have proven useful in aiding structure-based drug design

by driving the optimization or maintenance of potency in lead optimization.

Alchemical free energy calculations allow for the prediction of ligand binding free

energies, including all enthalpic and entropic contributions [49]. Advances in

atomistic molecular mechanics force fields and free energy methodologies [52–55]

have allowed free energy methods to reach a level of accuracy sufficient for

predicting ligand potencies [56]. These methods have been applied prospectively

to develop inhibitors for Tyk2 [57], Syk [58], BACE1 [59], GPCRs [60], and HIV

protease [61]. A recent large-scale review of the use of FEP+ [78] to predict

potency for 92 different projects and 3 021 compounds determined that predicted

binding free energies had a median root mean squared error (RMSE) of

1.0 kcal/mol [79].

2.3.2 Selectivity is an important consideration in drug design

In addition to potency, selectivity is an important property to consider in drug

development, either in the pursuit of an inhibitor that is maximally

selective [25, 26] or possesses a desired polypharmacology [11, 22–24, 75].

Controlling selectivity can be useful not only in avoiding off-target toxicity

(arising from inhibition of unintended targets) [14, 76], but also in avoiding

on-target toxicity (arising from inhibition of the intended target) by selectively

targeting disease mutations [13]. In either paradigm, considering the selectivity of

11



a compound is complicated by the biology of the target. For example, kinases

exist as nodes in complex signaling networks [27, 28] with feedback inhibition

and cross-talk between pathways. Careful consideration of which off-targets are

being inhibited can avoid off-target toxicity due to alleviating feedback inhibition

and inadvertently reactivating the targeted pathway [27, 28] or the upregulation

of a secondary pathway by alleviation of cross-talk inhibition [12, 30]. Off-target

toxicity can also be caused by inhibiting unrelated targets, such as gefitinib, an

EGFR inhibitor, inhibiting CYP2D6 [76] and causing hepatotoxicity in lung cancer

patients. In a cancer setting, on-target toxicity can be avoided by considering the

selectivity for the oncogenic mutant form of the kinase over the wild type form of

the kinase [80–82], exemplified by a number of first generation EGFR inhibitors.

Selective binding to multiple kinases can also lead to beneficial effects: Imatinib,

initially developed to target BCR-Abl fusion proteins, is also approved for

treating gastrointestinal stromal tumors (GIST) [83] due to its activity against

receptor tyrosine kinase KIT.

2.3.3 The use of physical modeling to predict selectivity is

relatively unexplored

While engineering compound selectivity is important for drug discovery, the

utility of free energy methods for predicting this selectivity with the aim of

reducing the number of compounds that must be synthesized to achieve a desired

selectivity profile has been relatively unexplored. If there is fortuitous

cancellation of systematic (force field) errors for closely related systems, free

energy methods may be much more accurate than expected given the errors made

in predicting the potency for each individual target. Molecular dynamics and free
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energy calculations have been used extensively to investigate the biophysical

origins of the selectivity of imatinib for Abl kinase over Src [62, 63] and within a

family of non-receptor tyrosine kinases [77]. This work focused on understanding

the role reorganization energy plays in the exquisite selectivity of imatinib for Abl

over the highly related Src despite high similarity between the cocrystallized

binding mode and kinase conformations, and touches on neither the evaluation of

the accuracy of these methods nor their application to drug discovery on

congeneric series of ligands. Previous work predicting the selectivity of three

bromodomain inhibitors across the bromodomain family achieved promising

accuracy for single target potency of roughly 1 kcal/mol, but does not explicitly

evaluate any selectivity metrics [64] or quantify the correlation in the errors made

in predicting affinities for each bromodomain.

2.3.4 Kinases are an important and particularly challenging

model system for selectivity predictions

Kinases are a useful model system to work with for assessing the utility of free

energy calculations to predict inhibitor selectivity in a drug discovery context.

With the approval of imatinib for the treatment of chronic myelogenous leukemia

in 2001, targeted small molecule kinase inhibitors (SMKIs) have become a major

class of therapeutics in treating cancer and other diseases. Currently, there are 43

FDA-approved SMKIs [3], and it is estimated that kinase targeted therapies

account for as much as 50% of current drug development [84], with many more

compounds currently in clinical trials. While there have been a number of

successes, the current stable of FDA-approved kinase inhibitors targets only a
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small number of kinases implicated in disease, and the design of new selective

kinase inhibitors remains a significant challenge.

Achieving selective inhibition of kinases is quite challenging, as there are more

than 518 protein kinases [15, 85] sharing a highly conserved ATP binding site that

is targeted by the majority of SMKIs [86]. While kinase inhibitors have been

designed to target kinase-specific sub-pockets and binding modes to achieve

selectivity [16–19, 87, 88], previous work has shown that both Type I (binding to

the active, DFG-in conformation) and Type II (binding to the inactive, DFG-out

conformation) inhibitors are capable of achieving a range of selectivities [21, 89],

often exhibiting significant binding to a number of other targets in addition to

their primary target. Even FDA-approved inhibitors—often the result of extensive

drug development programs—bind to a large number of off-target kinases [90].

Kinases are also targets of interest for developing polypharmacological

compounds, or inhibitors that are specifically designed to inhibit multiple kinase

targets. Resistance to MEK inhibitors in KRAS-mutant lung and colon cancer has

been shown to be driven by HER3 upregulation [91], providing a rationale for

dual MEK/ERBB family inhibitors. Similarly, combined MEK and VEGFR1

inhibition has been proposed as a combinatorial approach to treat KRAS-mutant

lung cancer [92]. Developing inhibitors with a desired polypharmacology means

navigating more complex selectivity profiles, presenting a problem where

physical modeling has the potential to dramatically speed up drug discovery.
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2.3.5 The correlation coefficient measures how useful

predictions are in achieving selectivity

Since the prediction of selectivity depends on predicting affinities to two or more

targets (or relative affinities between pairs of related molecules), a spectrum of

possibilities exists for how accurately selectivity can be predicted even when the

error in predicting individual target affinities is fixed. In well-behaved kinase

systems, for example, free energy calculation potency predictions have achieved

mean unsigned errors of less than 1.0 kcal/mol [57, 78], believed to arise

predominantly from systematic force field errors [54]. In the best-case scenario,

correlation in the force field errors for predicting the interactions of a given ligand

with two related protein targets might exactly cancel out, allowing selectivity to

be predicted much more accurately than potency. On the other hand, if the force

field error acts like an uncorrelated random error between two protein targets

because the details of the interactions are different, predictions of selectivity will

be less accurate than potency predictions. Real-world systems are likely to fall

somewhere between these two extremes, and quantifying the degree to which

error in multiple protein targets is correlated, its implications for the use of free

energy calculations for prioritizing synthesis in the pursuit of selectivity, the

ramifications for optimal calculation protocols, and rough guidelines governing

which systems we might expect good selectivity prediction is the primary focus

of this work.

In particular, in this work, we investigate the magnitude of the correlation (ρ) in

predicted binding free energy differences between compounds to two different

targets (∆∆G), assessing the utility of alchemical free energy calculations for the

prediction of selectivity. We employ state of the art relative free energy
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calculations [78, 79] to predict the selectivities of two different congeneric ligand

series [93, 94], and construct simple numerical models that allow us to quantify

the potential speed up in selectivity optimization expected for different

combinations of per target force field errors and correlation coefficients. To make

a realistic assessment of our confidence in this correlation coefficient derived from

a limited number of experimental measurements, we develop a new Bayesian

approach to quantify the uncertainty in the correlation coefficient in the predicted

change in selectivity on ligand modification, incorporating all sources of

uncertainty and correlation in the computation to separate statistical from force

field error. We find that in the closely related systems of CDK2 and CDK9, a high

correlation of force field errors suggests that free energy methods can have a

significant impact on speeding up selectivity optimization. Even in the more

distantly related case (CDK2/ERK2), correlation in the force field errors allows

free energy calculations to speed up selectivity optimization, suggesting that

these methodologies can impact drug discovery even when comparing systems

that are not closely related. We also present a model of the impact of per target

statistical error at different levels of force field error correlation, suggesting that it

is worthwhile to expend more effort sampling in systems with high correlation.
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2.4 Results

2.4.1 Alchemical free energy methods can be used to predict

compound selectivity

While the potency of a ligand i for a single target is often quantified as a free

energy of binding (∆Gi,target), there are a number of different metrics for

quantifying compound selectivity [95, 96]. Here, we consider the selectivity S i

between one target and another (an antitarget) as the difference in free energy of

binding for a given ligand i between the two,

S i ≡ ∆Gi,target 2 − ∆Gi,target 1 (2.1)

While in the optimization of potency we are concerned with ∆∆Gi j ≡ ∆G j − ∆Gi,

the relative free energy of binding of ligands i and j to a single target, in the

optimization of selectivity, we are concerned with ∆S i j ≡ S j − S i, which reflects

the change in selectivity between ligand i and a related ligand j,

∆S i j ≡ S j − S i (2.2)

= (∆Gj, target 2 − ∆Gj, target 1) − (∆Gi, target 2 − ∆Gi, target 1)

= ∆∆Gij, target 2 − ∆∆Gij, target 1

To predict the change in selectivity, ∆S i j, between two related compounds, we

developed a protocol that uses a relative free energy calculation (FEP+) [78] to

construct a map of alchemical perturbations between ligands in a congeneric

series, as described in detail in the Methods. The calculation is repeated for each

target of interest, with identical perturbations (edges) between each ligand

(nodes). Each edge represents a relative alchemical free energy calculation that
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quantifies the ∆∆G between the ligands (nodes) for a single target. From these

calculations, we can calculate a ∆S for each pair of ligands between two targets of

interest.

Previous work shows that FEP+ can achieve an accuracy (σtarget) of roughly

1 kcal/mol in potency prediction, which reflects a combination of systematic force

field error and random statistical error [78]. However, it is possible that the force

field component of that error (σff) may fortuitously cancel when computing ∆S i j,

resulting in the force field contribution to the selectivity error (σselectivity) being

significantly lower than its contribution to potency error.

If we presume that the force field errors for both targets are distributed according

to a bivariate normal distribution with correlation coefficient ρ quantifying the

degree of correlation (with ρ = 0 denoting no correlation and ρ = 1 denoting

perfect correlation), we can model the error in predicting the S i as σselectivity as,

σselectivity =

√
σ2

ff,1 + σ2
ff,2 − 2ρσff,1 σff,2 (2.3)

As we shall see below, the quantitative value of the correlation coefficient ρ has

important ramifications for the accuracy with which selectivity can be predicted.

2.4.2 Correlation in force field errors can significantly enhance

accuracy of selectivity predictions

To demonstrate the potential impact the correlation coefficient ρ in potency

prediction error between two targets has on the force field error of selectivity

predictions (σselectivity) using alchemical free energy techniques, we created a

simple numerical model following Equation 2.3 which takes into account each of

18



the per-target force field errors (σ2
ff,1, σ

2
ff,2) expected from the methodology as well

as the correlation in those errors. As seen in Figure 2.1A, if the per target force

field errors are the same (σff,1 = σff,2), σselectivity approaches 0 as the correlation

coefficient ρ approaches 1. If the error for the free energy method is not the same

(σff,1 , σff,2), σselectivity gets smaller but approaches a non-zero value as ρ

approaches 1.

To quantify the expected reduction in number of compounds that must be

synthesized to achieve a desired selectivity threshold (hereafter referred to as the

speedup in selectivity optimization), we modeled the change in selectivity with

respect to a reference compound for a number of compounds a medicinal chemist

might suggest as a normal distribution centered around 0 with a standard

deviation of 1 kcal/mol (Figure 2.1B, black curve), reflecting the notion that most

proposed modifications would not drive large changes in selectivity. We assume a

synthetic chemist’s proposals function as a unit normal distribution based on

data-driven estimates from an Abbott Laboratories data set [97]

Further suppose that each compound is evaluated computationally with a free

energy methodology that has a per-target force field error (σff) of 1 kcal/mol,

where we presume sufficient computational effort has been expended to make

statistical error negligible. All compounds predicted to have a 1.4 kcal/mol

improvement in selectivity (10× in ratio of affinities, or 1 log10 unit) are

synthesized and experimentally tested (Figure 2.1B, colored curves), using an

experimental technique with perfect measurement accuracy. The fold-change in

the proportion of compounds that are made that have a true 1.4 kcal/mol

improvement in selectivity compared to the original distribution can be

calculated as a surrogate for the expected speedup. For this 1.4 kcal/mol

selectivity improvement threshold, a correlation coefficient ρ of 0.5 gives an

19



expected speed up of 4.1×, which can be interpreted as needing to make 4.1x

fewer compounds to achieve a tenfold improvement in selectivity. This process

can be extended for the even more difficult proposition of achieving a

hundredfold improvement in selectivity (Figure 2.1C), where 200–300× speedups

can be expected, depending on σff for the free energy methodology.

While the speedup values illustrate the potential utility of free energy methods

for a drug discovery team optimizing the selectivity of a compound series, it is

important to acknowledge that observed speedups for a real drug discovery

project will be dependent on the details of how the free energy methods are used

by the project team. All of the scoring accuracies under consideration here should

allow for immediate identification of 1-log-unit-improved selective compounds in

a single round of chemistry, provided a sufficient number of molecules are scored

and a sufficiently stringent synthesis rule is used [98, 99].
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Figure 2.1: Free energy calculations can accelerate selectivity optimization. (A) The effect of correlation on expected errors for pre-
dicting selectivity (σselectivity) in kcal/mol. Each curve represents a different combination of per target force field errors (σff,1 and σff,2).
(B) The change in selectivity for molecules proposed by medicinal chemists optimizing a lead candidate can be modeled by a normal
distribution centered on zero with a standard deviation of 1 kcal/mol (black curve), which is consistent with the standard deviation
of selectivities observed in the experimental data presented later in this work. Each green curve corresponds to the distribution of
compounds made after screening for a 1 log10 unit (1.4 kcal/mol) improvement in selectivity with a free energy methodology with a
1 kcal/mol per target force field error and a particular correlation, in the regime of infinite error where statistical error is zero. The
shaded region of each curve corresponds to the compounds with a real 1 log10 unit improvement in selectivity. The speedup is cal-
culated as the ratio of the percentage of compounds made with a real 1 log10 unit improvement to the percentage of compounds that
would be expected in the original distribution. (C) The speedup (y-axis, log scale) expected for 100× (2 log10 units, or 2.8 kcal/mol)
selectivity optimization as a function of correlation coefficient ρ. Each curve corresponds to a different value of σff.
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2.4.3 Poor selectivity is achieved for the closely related kinases

CDK2/CDK9

To assess the correlation of errors in free energy predictions for selectivity, we set

out to gather data sets that met a number of criteria. We searched for data sets that

contained binding affinity data for a number of kinase targets and ligands, as well

as having crystal structures for each target with the same co-crystallized ligand.

The first data set we used contained data for a congeneric series of ligands with

experimental data for CDK2 and CDK9, with the goal of potently inhibiting CDK9

and sparing CDK2. Based on a multiple sequence alignment of the 85 binding site

residues identified in the kinase–ligand interaction fingerprints and structure

(KLIFS) database [100, 101], CDK2 and CDK9 share 57% sequence identity (Supp.

Table A.1). For this CDK2/CDK9 data set [93], ligand 12c was cocrystallized with

CDK2/cylin A (Figure 2.2A, left) and CDK9/cyclin T (Figure 2.2B, left), work that

was published in a companion paper [102]. In both CDK2 and CDK9, ligand 12c

forms relatively few hydrogen bond interactions with the kinase. Each kinase

forms a set of hydrogen bonds between the ligand scaffold and a hinge residue

(C106 in CDK9 and L83 in CDK2) that is conserved across all of the ligands in this

series. CDK9, which has slightly lower affinity for ligand 12c (Figure 2.2C, right),

forms a lone interaction between the sulfonamide of ligand 12c and residue E107.

On the other hand, CDK2 forms interactions between the sulfonamide of ligand

12c and residues K89 and H84. The congeneric series of ligands contains a

number of challenging perturbations, particularly at substituent point R3

(Figure 2.2C, left). Ligand 12i also presented a challenging perturbation, moving

the 1-(piperazine-1-yl)ethanone from the meta to para location.
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This congeneric series of ligands also highlights two of the challenges of working

from publicly available data: First, the dynamic range of selectivity is incredibly

narrow, with a mean S (CDK9 - CDK2) of only -0.65 kcal/mol, and a standard

deviation of 0.88 kcal/mol; the total dynamic range of this data set is 2.8

kcal/mol. Second, experimental uncertainties are not reported for the

experimental measurements. This data set reported Ki values calculated from

measured IC50, using the Km (ATP) for CDK2 and CDK9 and [ATP] from the assay.

Thus, for this and subsequent sets of ligands, the experimental uncertainty is

assumed to be 0.3 kcal/mol based on previous work done to summarize

uncertainty in experimental data. While Ki values are reported, these values are

derived from IC50 measurements. A number of studies report on the

reproducibility of intra-lab IC50 measurements. These values range from as low

as 0.22 kcal/mol [40], from public data, to as high as 0.4 kcal/mol [56], which was

estimated from internal data at Abbott Laboratories. The assumed value of 0.3

kcal/mol falls within this range, and agrees well with the uncertainty reported

from Novartis for two different ligand series [103].
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Figure 2.2: A CDK2/CDK9 selectivity dataset. Experimental IC50 data for a congeneric series of compounds binding to CDK2 and
CDK9 was extracted from Shao et al. [93]. (A) (left) Crystal Structure (4BCK) [102] of CDK2 (gray ribbon) bound to ligand 12c (yellow
spheres). Cyclin A is shown in blue ribbon. (right) 2D ligand interaction map of ligand 12c in the CDK2 binding site. (B) (left) Crystal
structure of CDK9 (4BCI)[102] (gray ribbon) bound to ligand 12c (yellow spheres). Cyclin T is shown in blue ribbon. (right) 2D ligand
interaction map of ligand 12c in the CDK9 binding site. (C) (left) 2D structure of the common scaffold for all ligands in congeneric
ligand series 12 from the publication. (right) A table summarizing all R group substitutions as well as the published experimental
binding affinities and selectivities [93], derived from the reported Ki as described in the methods section.
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2.4.4 Greater selectivity is achieved for more distantly related

kinases CDK2/ERK2

The CDK2/ERK2 data set from Blake et al. [94] also met the criteria described

above, with the goal of developing a potent ERK2 inhibitor. Based on a multiple

sequence alignment of the KLIFs binding site residues [100, 101], CDK2 and ERK2

share 52% sequence identity (Table A.1), making them slightly less closely related

than CDK2 and CDK9. Crystal structures for both CDK2 (Figure 2.3A, top) and

ERK2 (Figure 2.3B, top) were available with ligand 22 (according to the

manuscript numbering scheme) co-crystallized. Of note, CDK2 was not

crystallized with cyclin A, despite cyclin A being included in the affinity assay

reported in the paper [94].

CDK2 adopts a DFG-in conformation with the αC helix rotated out, away from

the ATP binding site and breaking the conserved salt bridge between K33 and E51

(Supplementary Figure A.1A), indicative of an inactive kinase [18, 104]. By

comparison, the CDK2 structure from the CDK2/CDK9 data set adopts a DFG-in

conformation with the αC helix rotated in, forming the ionic bond between K33

and E51 indicative of an active kinase, due to allosteric activation by cyclin A.

While missing cyclins have caused problems for free energy calculations in prior

work, it is possible that the fully active conformation contributes equally to

binding affinity for all of the ligands in the series, and the high accuracy of the

potency predictions (Figure 2.4, top left) is the result of fortuitous cancellation of

errors.

The binding mode for this series is similar between both kinases. There is a set of

conserved hydrogen bonds between the scaffold of the ligand and the backbone

of one of the hinge residues (L83 for CDK2 and M108 for ERK2). The conserved
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lysine (K33 for CDK2 and K54 for ERK2), normally involved in the formation of a

ionic bond with the αC helix, forms a hydrogen bond with the scaffold

(Figure 2.4A and 2.4B, bottom) in both CDK2 and ERK2. However, in the ERK2

structure, the hydroxyl engages a crystallographic water as well as N154 in a

hydrogen bond network that is not present in the CDK2 structure. The congeneric

ligand series features a single solvent-exposed substituent. This helps explain the

extremely narrow distribution of selectivities, with a mean selectivity of

-1.74 kcal/mol (ERK2 - CDK2) and standard deviation of 0.56 kcal/mol; the total

dynamic range of this data set is 2.2 kcal/mol. While the small standard deviation

suggests that selectivity is difficult to drive with R-group substitution, the total

dynamic range demonstrates that R-group substitutions can provide significant

selectivity optimization.
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Figure 2.3: A CDK2/ERK2 selectivity set
(A) (top) Crystal structure of CDK2 (5K4J) shown in gray cartoon and ligand 22 shown in yellow spheres. (bottom) 2D interaction map
of ligand 22 in the binding pocket of CDK2 (B) (top) Crystal structure of ERK2 (5K4I) shown in gray cartoon with ligand 22 shown
in yellow spheres. (bottom) 2D interaction map of ligand 22 in the binding pocket of ERK2. (C) (top) Common scaffold for all of the
ligands in the Blake data set, with R denoting attachment side for substitutions. (bottom) Table showing R group substitutions and
experimentally measured binding affinities and selectivities, derived from the IC50 values as described in the methods section. Ligand
numbers correspond to those used in publication.
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2.4.5 FEP+ calculations show smaller than expected errors for ∆S

predictions

The FEP+ predictions of the relative free energy of binding between ligands i and

j for each target (∆∆Gi j,target) showed good accuracy for the CDK2 and ERK2 data

set (Figure 2.4, top). For each ligand i, ∆∆Gi j,target is defined where j is a reference

compound, such that ∆∆Gi j,target for the reference compound is 0 kcal/mol.

∆∆Gi j,target = ∆Gi,target − ∆Greference, target (2.4)

The reference compounds (Compound 6 for CDK2/ERK2 and Compound 1a for

CDK2/CDK9) were selected because they were the compounds from which the

synthetic studies were started. Replicate 1 of the CDK2/ERK2 calculations is

shown on the bottom of Figure 2.4, with an RMSE of 0.951.25
0.62 and 0.971.23

0.71 kcal/mol,

respectively. All of the CDK2 and ERK2 ∆∆Gi j,targets were predicted within 1 log

unit of the experimental value. The change in selectivity (∆S ) predictions show an

RMSE of 1.411.75
1.07 kcal/mol, with all the confidence intervals of the predictions

falling within 1 log unit of the experimental values (Figure 2.4, top right panel).

This was consistent across all three replicates of the calculations (Supp. Figure

A.6). This consistency across replicates holds true at the individual ligand level as

well (Supp. Figure A.8). Despite the low RMSE for the selectivity predictions, the

narrow dynamic range and high uncertainty from experiment and calculation

makes it difficult to determine which compounds are more selective than others.

Replicate 1 of the CDK2/CDK9 calculations are shown in the top panel of

Figure 2.4. The CDK2 and CDK9 data sets show higher errors in ∆∆Gi j,target

predictions, with an RMSE of 1.151.58
0.67 and 2.102.63

1.47 kcal/mol respectively. There are
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a number of outliers that fall outside of 1 log unit from the experimental value for

CDK9. While the higher per target errors make predicting potency more difficult,

the selectivity predictions show a lower than expected RMSE of 1.371.66
1.03 kcal/mol.

This suggests that some correlation in the error is leading to fortuitous

cancellation of the force field error, leading to more accurate than expected

predictions of ∆S . These results were consistent across all three replicates of the

calculation (Supp. Figure A.4) as well as each individual ligand (Supp.

Figure A.8).
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Figure 2.4: Selectivity predictions suggest correlation in forcefield error
∆∆Gi j,target and ∆S predictions for CDK2/ERK2 from the Blake data sets (top), and CDK2/CDK9 (bottom) from the Shao data sets. The
experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds to a transformation
between a ligand i to a set reference ligand j for a given target. All values are shown in units of kcal/mol. The horizontal error bars
show a 95% CI for the δ∆∆Gexp

i j based on the assumed uncertainty of 0.3 kcal/mol[56, 103] for each ∆Gexp
i . We show the 95% CI based

on the estimated statistical error (σstat) as vertical blue error bars. For selectivity, the errors were propagated under the assumption that
they were completely uncorrelated. The black line indicates agreement between calculation and experiment, while the gray shaded
region represent 1.36 kcal/mol (or 1 log unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95% confidence
intervals.
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2.4.6 Correlation of forcefield errors accelerates selectivity

optimization

To quantify the correlation coefficient (ρ) of the force field error between targets,

we built a Bayesian graphical model to estimate the true model error and quantify

our confidence in estimates of ρ (described in depth in Methods). Briefly, we

modeled the absolute free energy (G) of each ligand in each thermodynamic

phase (ligand-in-complex and ligand-in-solvent, with G determined to an

arbitrary additive constant for each phase) as in Equation 2.14. The model was

chained to the FEP+ calculations by providing the ∆Gcalc
phase,i j,target for each edge

from the FEP+ maps (where j is now not necessarily the reference compound) as

observed data, as in Equation 2.16. As in Equation 2.18, the experimental data

was modeled as a normal distribution centered around the true free energy of

binding (∆Gtrue
i,target) corrupted by experimental error, which is assumed to be

0.3 kcal/mol from previous work done to quantify the uncertainty in publicly

available data [56]. ∆G values derived from reported IC50s or Kis, as described in

the methods section, were treated as data observations (Equation 2.18) and the

∆Gtrue
i,target was assigned a weak normal prior (Equation 2.19).

The correlation coefficient was calculated for each sample according to

equation 2.20. The correlation coefficient ρ for replicate 1 of the CDK2/ERK2

calculations was quantified to be 0.490.68
0.27, indicating that the errors are correlated

between ERK2 and CDK2 (Figure 2.5A, right), which was consistent with the

distributions for ρ in replicates 2 and 3 (Supp. Figure A.7). The joint marginal

distribution of the error (ε) for each target is more diagonal than symmetric,

which is expected for cases in which ρ is 0.5 (Supp. Figure A.2). In addition to

correlation in the force field errors, the high per target accuracy of these
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calculations allow for a predicted 2–3x speed up for 1 log10 unit selectivity

optimization, and a 20–50x speed up for 2 log10 unit selectivity optimization

(Figure 2.5A, right), in the regime of infinite sampling effort where there is no

statistical error.

The CDK2/CDK9 calculations show strong evidence of correlation, with a

correlation coefficient of 0.720.83
0.58 (Figure 2.5B, right) for replicate 1. The rest of the

replicates showed strong agreement (Supp. Figure A.5). The joint marginal

distribution of errors is strongly diagonal, which is expected based on the value

for ρ (Figure 2.5B, left). The high correlation in errors leads to a speed up of 2–3

for 1 log10 unit selectivity optimization and 30–40x for 2 log10 unit selectivity

optimization (Figure 2.5B, right), despite the much higher per target RMSE than

the CDK2/ERK2 case.

Quantifying ρ for these calculations enables estimation of the force field error in

the selectivity predictions, σselectivity. This is useful for estimating expected error

for prospective studies, where the experimental values for S are not yet known.

Based on the distribution quantified for ρ, the expected σselectivity for the

CDK2/CDK9 calculations is 1.181.38
0.95 kcal/mol (Supp. Figure A.3), which is in

good agreement with the bootstrapped RMSE (Figure 2.4, bottom). For the

CDK2/ERK2 calculations, σselectivity is 0.961.14
0.75 (Supp. Figure A.3), which is also in

good agreement with the bootstrapped RMSE (Figure 2.4, top).
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Figure 2.5: Correlation in force field errors between targets can significantly accelerate selectivity optimization. (A, left) The joint
posterior distribution of the prediction errors for the more distantly related CDK2 (x-axis) and ERK2 (y-axis) from the Bayesian graphical
model. (A, right) Speedup in selectivity optimization (x-axis) as a function of correlation coefficient (x-axis). The posterior marginal
distribution of the correlation coefficient (ρ) is shown in gray, while the expected speed up is shown for 100× (green curve) and 10×
(yellow curve) selectivity optimization. The inserted box shows the mean and 95% confidence interval for the correlation coefficient. The
marginal distribution of speedup is shown on the right side of the plot for both 100× (green) and 10× (yellow) selectivity optimization
speedups. (B) As above, but for the more closely related CDK2/CDK9 selectivity data set.
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2.4.7 Expending more effort to reduce statistical error can be

beneficial in selectivity optimization

Up to this point, we have considered only force field error in quantifying the

speedup free energy calculations can enable for selectivity optimization, by

assuming the statistical error for each target is zero – that we are in the regime of

infinite sampling. To begin understanding how statistical error impacts this

speedup, we modified the model of speedup by additionally considering the per

target statistical error (σstat), which we define in Equation 2.7 such that at the

baseline effort, N, σstat is 0.2 kcal/mol. In this definition, it takes 4× the sampling,

or effort, to reduce statistical error by a factor of 2×. We assume that statistical

error is uncorrelated when propagating to two targets, and that σ f f is ≈

1.0 kcal/mol for both targets [40, 54]. As shown in Figure 2.6, expending effort to

reduce σstat when ρ is less than 0.5 does not change the expected speedup for the

100× selectivity threshold in meaningful way, suggesting that it is not worth

running calculations longer than the default protocol in this case. However, when

ρ > 0.5, the curves do start to separate, particularly the 1/4×, 1×, and 4× effort

curves. This suggests that when the correlation is high, running longer

calculations can net improvements in selectivity optimization speed. Interestingly,

the 16×, 48×, and∞ effort curves do not differ greatly from the 4× effort curve,

indicating that there are diminishing returns to running longer calculations.

In order to understand what the current statistical error is for our calculations, we

performed three replicates of our calculations, and calculated the standard

deviation of the cycle closure ∆∆G for each edge of the map, and compared that

value to the cycle closure errors reported for each edge (Supp. Figure A.9). In

general, the standard deviation suggests that the statistical error for our
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calculations is between 0.1 and 0.3 kcal/mol. While this does not agree well with

the cycle closure error (Supp. Figure A.9), the high variation of the cycle closure

errors between replicates of each edge suggest that the standard deviation is a

more reliable estimate of the statistical error for these calculations.
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Figure 2.6: Reducing statistical uncertainty when force field error correlation is high improves optimization speedups
(left) The speedup in selectivity (Y-axis) as a function of correlation coefficient (X-axis). Each curve represents a different per target sta-
tistical error (σstat) for 10× (1 log10 unit) (A) and 100× (2 log10 unit) (B) thresholds (right) Table with the (σstat), kcal/mol) corresponding
to each curve on the left and a rough estimate of the generic amount of computational effort it would take to achieve that statistical
uncertainty.
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2.5 Discussion and Conclusions

S is a useful metric for selectivity in lead optimization

There are a number of different metrics for quantifying the selectivity of a

compound [95], which look at selectivity from different views depending on the

information trying to be conveyed. One of the earliest metrics was the standard

selectivity score, which conveyed the number of inhibited kinase targets in a

broad scale assay divided by the total number of kinases in the assay [105]. The

Gini coefficient is a method that does not rely on any threshold, but is highly

sensitive to experimental conditions because it is dependent on percent

inhibition [106]. Other metrics take a thermodynamic approach to kinase

selectivity and are suitable for smaller panel screens [107, 108]. Here, we propose

a more granular, thermodynamic view of selectivity that is easy to use free energy

methods to calculate: the change in free energy of binding for a given ligand

between two different targets (S ). S is a useful metric of selectivity in lead

optimization once a single, or small panel, of off-targets have been identified and

the goal is to use physical modeling to either improve or maintain selectivity

within a lead series.

Forcefield error correlation can accelerate selectivity optimization

We have demonstrated, using a simple numerical model, the impact that free

energy calculations with even weakly correlated force field errors can have on

speeding up the optimization of selectivity in small molecule kinase inhibitors.

While the expected speed up is dependent on the per target force field error of the

method (σ f f ), the speedup is also highly dependent on the correlation of errors

made for both targets. Unsurprisingly, free energy methods have greater impact

as the threshold for selectivity optimization goes from 10× to 100×. While 100×
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selectivity optimization is difficult to achieve, the expected benefit from free

energy calculations is also quite high, with speedups of one or two orders of

magnitude possible.

Two pairs of kinase test systems suggest forcefield errors can be correlated

To quantify the correlation of errors in two example systems, we gathered

experimental data for two congeneric ligand series with experimental data for

CDK2 and ERK2, as well as CDK2 and CDK9. These data sets, which had crystal

structures for both targets with the same ligand co-crystallized, exemplify the

difficulty in predicting selectivity. The dynamic range of selectivity for both

systems is incredibly narrow, with most of the perturbations not having a major

impact on the overall selectivity achieved. Further, the data was reported with

unreliable experimental uncertainties, which makes quantifying the errors made

by the free energy calculations difficult. This issue is common when considering

selectivity, as many kinase-oriented high throughput screens are carried out at a

single concentration and not highly quantitative.

The CDK9 calculations contained a significant outlier, compound 12h, that drove

much of the prediction error for that set. Compound 12e (R1 = F) is the most

potent against CDK9 of the compounds in with a sulfonamide at R3 (Figure 2.2).

The addition of a single methyl group decreases the potency against CDK9

(compound 12g) and while only slightly changing the affinity for CDK2.

However, adding on another methyl group (compound 12h) results in an order of

magnitude decrease in Ki for both CDK9 and CDK2. Crystal structures for both

kinases show that R1 points into a pocket formed by the backbone, and the

sidechains of a Valine and Phenylalanine. While ethyl at R1 in compound 12h is

bulkier, the magnitude of the decrease in affinity for both kinases is larger than
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might be expected, given that the pocket suggests an ethyl group would be well

accommodated in terms of fit and the hydrophobicity of the sidechains. For both

kinases, the free energy calculations predict that this addition should improve the

potency, suggesting that it is possible that the model is missing a chemical detail

that might explain the trend seen in the experimental data. We expect that these

types of errors, which would be troubling when predicting potency alone, will

drive the correlation of forcefield errors and fortuitously cancel.

Despite CDK2 and ERK2 being more distantly related than CDK2 and CDK9, the

calculated correlation in the force field error suggests that fortuitous cancellation

of errors may be applicable in a wider range of scenarios than closely related

kinases within the same family.

Reducing statistical error is beneficial when forcefield errors are correlated

We built a numerical model of the impact of statistical error in the context of

different levels of force field error correlation, in order to better understand if

there are situations where it is beneficial to expend more effort running longer

calculations to minimize statistical error and get improved speedup in selectivity

optimization. Our results suggest that unless the correlation ρ > 0.5 for the two

targets of interest, there is not much benefit in running longer calculations.

However, when the force field error is reduced by correlation, longer calculations

can help realize large increases in speedup. Keeping a running quantification of ρ

for free energy calculations as compounds are made and the predictions can be

tested will allow for decisions to be made about whether running longer

calculations is worthwhile. It will also allow for an estimate of σselectivity, which is

useful for estimating expected force field error for prospective predictions.

Importantly, we expect that correlation will be protocol dependent and changes to
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the way the system is modeled are expected to change the observed correlation in

the force field error.

Larger data sets with a wide range of protein targets will enable future work

The data sets gathered here were limited by the total number of compounds, the

small dynamic range for selectivity (S ), and the lack of reliable experimental

uncertainties. The small size of the data set makes it difficult to draw broad

conclusions about the correlation in forcefield errors. Understanding the degree

of correlation a priori based on structural similarity requires study on a larger

range of targets than the two pairs presented in this study. A larger data set that

contained many protein targets, crystal structures and quantitative binding

affinity data would be ideal to draw conclusions about the broader prevalence of

forcefield error correlation.

This work demonstrates that correlation in the force field errors can allow free

energy calculations to facilitate significant speedups in selectivity optimization

for drug discovery projects. This is particularly important in kinase systems,

where considering multiple targets is an important part of the development

process. The results suggest that free energy calculations can be particularly

helpful in the design of kinase polypharmacological agents, especially in cases

where there is high correlation in the force field errors between multiple targets.
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2.6 Methods

2.6.1 Numerical model of selectivity optimization speedup

To model the impact correlation of force field error would have on the expected

uncertainty for selectivity predictions in the regime of infinite sampling and zero

statistical error, σselectivity was calculated using Equation 2.5 for 1000 evenly spaced

values of the correlation coefficient (ρ) from 0 to 1, for a number of combinations

of per target force field errors (σff,1 and σff,2)

σselectivity =

√
σ2

ff,1 + σ2
ff,2 − 2ρσff,1 σff,2 (2.5)

The speed up in selectivity optimization that could be expected from using free

energy calculations of a particular per target error (σselectivity) was quantified as

follows using NumPy (v 1.14.2). An original, true distribution for the change in

selectivity of 200 000 000 new compounds proposed with respect to a reference

compound was modeled as a normal distribution centered around 0 with a

standard deviation of 1 kcal/mol. This assumption was made on the basis that

the majority of selectivity is driven by the scaffold, and R group modifications

will do little to drive changes in selectivity. The 1 kcal/mol distribution is

supported by the standard deviations of the selectivity in the experimental data

sets referenced in this work, which are all less than, but close, to 1 kcal/mol.

In this model, we suppose that each of proposed compound is triaged by a free

energy calculation and only proposed compounds predicted to increase

selectivity by ∆S ≥1.4 kcal/mol (1 log10 unit) would be synthesized. Based on

reported estimates in the literature, we presume that relative free energy

calculations have a per-target force field error σff ≈1 kcal/mol [54], and explore

the impact of the correlation coefficient ρ governing the correlation of these

41



predictions between targets. The standard error in predicted selectivity, σselectivity,

is then given by Equation 2.5, resulting in the error in predicted change in

selectivity ∆S modeled as a normal distribution centered around 0 with a

standard deviation of σselectivity and added to the ”true” ∆S ,

∆S compound = Ntrue(µ = 0, σ2 = 1) +Nforce field(µ = 0, σ2
selectivity(ρ)) (2.6)

We ignore the potential complication of finite experimental error in this thought

experiment, presuming the experimental uncertainty is sufficiently small as to be

negligible.

The speedup in synthesizing molecules that reach this 10× selectivity gain is

calculated, as a function of ρ, is then the ratio of the number of compounds that

exceed the selectivity threshold in the case that molecules predicted to fall below

this threshold by free energy calculations were triaged and not synthesized,

divided by the number of compounds that exceeded the selectivity threshold

without the benefit of free energy triage. This process was repeated for a 100×

(2.8 kcal/mol, 2 log10 unit) selectivity optimization and 50 linearly spaced values

of the correlation coefficient (ρ) between 0 and 1, for four values of σselectivity, using

a sample size of 4×107 compounds.

2.6.2 Numerical model of impact of statistical error on selectivity

optimization

To model the impact of finite statistical error in the alchemical free energy

calculations, a similar scheme was used with the following modifications: Each

proposed compound was triaged by a free energy calculation with a per target

force field error (σff) of 1.0 kcal/mol [54] and a specified correlation coefficient ρ.
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A σselectivity was calculated according to Equation 2.5. Additionally, a per target

statistical error (σstat) was considered,

σstat =

√
2σ2

N
(2.7)

Where N is the relative effort put into running sampling the calculation and σ is

such that when N = 1, σstat = 0.2 kcal/mol. The statistical error was propagated

assuming it was uncorrelated, as independent sets of calculations are used for

each target. This gives an updated model for the error in predicted change in

selectivity ∆S . The force field and statistical errors were modeled as Gaussian

noise added to the true distribution,

∆S compound = Ntrue(µ = 0, σ2 = 1) +Nforce field(µ = 0, σ2
selectivity(ρ)) +Nstat(µ = 0, σ2

stat)

(2.8)

Any compound predicted to have an improvement in selectivity of above the

threshold (either 1.4 /kcal/mol (1 log10 units) or 2.8 kcal/mol (2 log10 units))

would then be made and have its selectivity experimental measured, using an

experimental method with perfect accuracy. The speedup value for each value of

ρ is calculated as previously described.

2.6.3 Binding Site Similarity analysis

Binding site similarity analysis was performed using a multiple sequence

alignment of the residues in the binding site. Binding site definitions for each

kinase were taken from the 85 residues defined by the KLIFs database [100]. The
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scores presented in Table A.1 are the pair wise identity scores for each pair of

kinase.

2.6.4 Extracting the binding free energy ∆G from reported

experimental data

Ki values were derived from IC50 measurements reported for the ERK2/CDK2

data set (Figure 2.3), assuming Michaelis-Menten binding kinetics for an

ATP-competitive inhibitor,

IC50 =
Ki

1 + [S 0]
Km

(2.9)

Where the Michaelis-Menten constant for ATP (Km (ATP)) is much larger than the

initial concentration of ATP, S 0, so that IC50 ≈ Ki.

These Ki values were then used to calculate a ∆G (Equation 2.10),

∆G = −kBT ln Ki (2.10)

Here, kB is the Boltzmann constant and T is absolute temperature (taken to be

room temperature, T ∼ 300K).

For the CDK2/CDK9 data set, the authors note that the assumption Km

(ATP)� S 0 does not hold, and report Kis derived from their IC50 measurements

using the Km (ATP) for each kinase, as well as the S 0 from their assay. These

values were then converted to ∆G using Equation 2.10.

For both data sets, these derived ∆G were used to calculate ∆∆G between ligands

for each kinase target.
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As mentioned above, the assumption that Km (ATP)� S 0 may not always hold,

and changes in IC50 may be driven by factors other than changes in ligand

binding affinity. However, these assumptions have been used successfully to

estimate relative free energies previously [40, 109]. Further, data was taken from

the same lab and assay for each target. This should minimize errors arising from

differing assay conditions that typically complicates the conversion of IC50 to free

energy of binding.

2.6.5 Structure Preparation

Structures from the Shao [93] (CDK2/CDK9), Hole [102] (CDK2/CDK9), and

Blake [94] (CDK2/ERK2) papers were downloaded from the PDB [110],selecting

structures with the same co-ligand crystallized.

For the Shao (CDK2/CDK9) data set, PDB IDs 4BCK (CDK2) and 4BCI (CDK9)

were selected, which have ligand 12c cocrystallized. For the Blake data set

(ERK2/CDK2), 5K4J (CDK2) and 5K4I (ERK2) were selected, cocrystallized with

ligand 21. The structures were prepared using Schrodinger’s Protein Preparation

Wizard [111] (Maestro, Release 2017-3). This pipeline modeled in internal loops

and missing atoms, added hydrogens at the reported experimental pH (7.0 for the

Shao data set, 7.3 for the Blake data set) for both the protein and the ligand. All

crystal waters were retained. The ligand was assigned protonation and tautomer

states using Epik at the experimental pH±2, and hydrogen bonding was

optimized using PROPKA at the experimental pH±2. Finally, the entire structure

was minimized using OPLS3 with an RMSD cutoff of 0.3.
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Ligand Pose Generation Ligands were extracted from the publication entries in

the BindingDB as 2D SMILES strings. 3D conformations were generated using

LigPrep with OPLS3 [54]. Ionization state was assigned using Epik at

experimental pH±2. Stereoisomers were computed by retaining any specified

chiralities and varying the rest. The tautomer and ionization state with the lowest

Epik state penalty was selected for use in the calculation. Any ligands predicted

to have a positive or negative charge in its lowest Epik state penalty was

excluded, with the exception of Compound 9 from the Blake data set. T his ligand

was predicted to have a +1 charge for its lowest state penalty state. The neutral

form the ligand was include for the sake of cycle closure in the FEP+ map, but

was ignored for the sake any analysis afterwards. Ligand poses were generated

by first aligning to the co-crystal ligand using the Largest Common

Bemis-Murcko scaffold with fuzzy matching (Maestro, Release 2017-4). Ligands

that were poorly aligned or failed to align were then aligned using Maximum

Common Substructure (MCSS). Finally, large R-groups were allowed to sample

different conformations using MM-GBSA with a common core restrained. VSGB

solvation model was used with the OPLS3 force field. No flexible residues were

defined for the ligand.

2.6.6 Free Energy Calculations

The FEP+ panel (Maestro, Release 2017-4) was used to generate perturbation

maps. FEP+ calculations were run using the FEP+ panel from Maestro release

2018-3, using the parameters from the version of OPLS3e that shipped with the

2018-3 release. Any missing ligand torsions were fit using the automated

FFbuilder protocol [57]. Custom charges were assigned using the OPLS3e force

field using input geometries, according to the automated FEP+ workflow in
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Maestro Release 2018-3. Neutral perturbations were run for 15 ns per replica,

using an NPT ensemble and water buffer size of 5. The SPC water model was

used. A GCMC solvation protocol was used to sample buried water molecules in

the binding pocket prior to the calculation, which discards any retained crystal

waters.

2.6.7 Statistical Analysis of FEP+ calculations

To quantify the overall errors in the FEP+ calculations, we computed the mean

unsigned error (MUE),

MUE =

∑n
0 | ∆∆Gcalc − ∆∆Gexp |

n
(2.11)

and the root mean squared error (RMSE)

RMS E =

√∑n
0(∆∆ Gcalc − ∆∆ Gexp)2

n
(2.12)

MUE and RMSE were computed for the ∆∆Gbinding for each ligand with respect to

a reference compound, which was pinned to ∆∆Gbinding = 0 kcal/mol. For the

CDK2/CDK9 data set, compound 1a was used as the reference compound, as it

was the first compound from which the others in the series were derived. For the

CDK2/ERK2 data set, compound 6 was used as the reference compound, since it

was the compound from which the investigation was launch. A metabolite of

compound 6 (not included in the data set here) was used as the starting

compound from which the rest were derived. To account for the finite ligand

sample size, we used 10 000 replicates of bootstrapping with replacement to

estimate 95% confidence intervals. The code used to bootstrap these values is

available on GitHub [https://github.com/choderalab/selectivity].
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2.6.8 Quantification of the correlation coefficient ρ

To quantify ρ, we built a Bayesian graphical model using pymc3 3.5 [112] and

theano 1.0.3 [113]. All code for this model is available on GitHub

[https://github.com/choderalab/selectivity].

For each phase (complex and solvent), the prior for the absolute free energy (G) of

ligand i (up to an arbitrary additive constant for each thermodynamic phase,

ligand-in-complex or ligand-insolvent), was treated as a normal distribution

(Equation 2.14).

Gphase
i,target = N(µ = 0, σ = 25.0 kcal/mol) (2.13)

To improve sampling efficiency, for each phase, one ligand was chosen as the

reference, and pinned to an absolute free energy of G = 0, with a standard

deviation of 1 kcal/mol.

Gphase
1,target = N(µ = 0, σ = 1.0 kcal/mol) (2.14)

For each edge of the FEP map (ligand i –¿ ligand j), there is a contribution from

dummy atoms, that was modeled as in Equation 2.15. Note that here, unlike was

was done in Figure 2.4, ligand j is not necessarily a reference compound.

ci, j = N(µ = 0, σ = 25.0 kcal/mol) (2.15)

The model was conditioned by including data from the FEP+ calculation.

∆GBAR
phase, i j, target = N(Gphase

j,target −Gphase
i,target, δ

2∆GBAR
phase, i j, target, observed = ∆Gcalc

phase, i j, target)

(2.16)

where δ2∆GBAR
phase, i j, target is the reported BAR uncertainty from the calculation, and

∆Gcalc
phase, i j, target is the BAR estimate of the free energy for the perturbation between

ligands i and j in a given phase.
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From this, we can calculate the ∆GFEP
i, target for each ligand and target,

∆GFEP
i, target = Gcomplex

i,target −Gsolvent
i,target (2.17)

From ∆GFEP
i, target, we calculated ∆∆GFEP

i j, target for each pair of ligands, filtering out

pairs where i and j are the same ligand and where the reciprocal was already

included.

The experimental binding affinity was treated as a true value (∆Gtrue
i,target) corrupted

by experimental uncertainty, which is assumed to be 0.3 kcal/mol [56]. There are

a number of studies that report on the reproducibility and uncertainty of intra-lab

IC50 measurements, ranging from as small as 0.22 kcal/mol [40] to as high as 0.4

kcal/mol [56]. The assumed value falls within this range and is in good

agreement with the uncertainty reported from multiple replicate measurements

in internal data sets at Novartis [103].

The values reported in the papers (∆Gobs
i,target) were treated as observations from

this distribution (Equation 2.18),

∆Gexp
i,target = N(µ = ∆Gtrue

i,target, σ = 0.3 kcal/mol, observed = ∆Gobs
i,target) (2.18)

∆Gtrue
i,target was assigned a weak normal prior, as in Equation 2.19,

∆Gtrue
i,target = N(µ = 0, σ = 50 kcal/mol) (2.19)

∆∆Gtrue
i j, target for each pair of ligands was calculated from ∆Gtrue

i,target, filtering out pairs

where i and j are the same ligand and where the reciprocal was already included

as above.

The error for a given ligand was calculated as

εi j,target = ∆∆GFEP
i j, target − ∆∆Gtrue

i j, target (2.20)
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From these ε values, we calculated the correlation coefficient, ρ, from the sampled

errors for the finite set of molecules for which measurements were available,

ρ =
cov(εtarget1, εtarget2)
σtarget 1 σtarget 2

(2.21)

where σ is the standard deviation of ε.

To quantify ρ from these calculations, the default NUTS sampler with

jitter+adapt diag initialization, 3 000 tuning steps, and the default target

accept probability was used to draw 20 000 samples from the model.

2.6.9 Calculating the marginal distribution of speedup

To quantify the expected speedup from the calculations we ran, we utilized 104

replicates of the scheme detailed above to calculate the speedup given parameters

ρ, σ f f ,1, and σ f f ,2, in the regime of infinite effort and zero statistical error. Using

Numpy 1.14.2, ρ was drawn from a normal distribution with the mean and

standard deviation from the posterior distribution of ρ from the Bayesian

Graphical model. The per-target force field errors, σ f f ,1 and σ f f ,2, were estimated

from the mean of the absolute value of εtarget1 and εtarget2, which are the magnitude

of errors from the Bayesian graphical model. σselectivity was calculated using

Equation 2.3. 106 molecules were proposed from true normal distribution, as

above. The error of the computational method was modeled as in Equation 2.6.
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50

http://orcid.org/0000-0002-9762-4201


0000-0002-6789-952X) for useful discussion about kinase inhibitor protonation

states. SKA is grateful to Haoyu S. Yu, Wei Chen, and Dmitry Lupyan for advice

on running FEP+ calculations.

2.8 Funding

Research reported in this publication was supported by the National Institute for

General Medical Sciences of the National Institutes of Health under award

numbers R01GM121505 and P30CA008748. SKA acknowledges financial support

from Schrödinger and the Sloan Kettering Institute. JDC acknowledges financial

support from Cycle for Survival and the Sloan Kettering Institute.

2.9 Disclosures

JDC was a member of the Scientific Advisory Board for Schrödinger, LLC during

part of this study. JDC is a current member of the Scientific Advisory Board of

OpenEye Scientific Software. The Chodera laboratory receives or has received

funding from multiple sources, including the National Institutes of Health, the

National Science Foundation, the Parker Institute for Cancer Immunotherapy,

Relay Therapeutics, Entasis Therapeutics, Silicon Therapeutics, EMD Serono

(Merck KGaA), AstraZeneca, XtalPi, the Molecular Sciences Software Institute,

the Starr Cancer Consortium, the Open Force Field Consortium, Cycle for

Survival, a Louis V. Gerstner Young Investigator Award, and the Sloan Kettering

Institute. A complete funding history for the Chodera lab can be found at

http://choderalab.org/funding

51

https://orcid.org/0000-0002-6789-952X


2.10 Author Contributions

Conceptualization: SKA, LW, RA, JDC; Methodology: SKA, LW, JDC; Formal

Analysis: SKA, JDC, LW; Data Curation: SKA, SP; Investigation: SKA, SP, AV;

Writing – Original Draft: SKA; Writing – Review & Editing: SKA, JDC, LW, AV;

Visualization: SKA, JDC, LW; Supervision: LW, JDC, RA; Project Administration:

SKA, LW, JDC, RA; Funding Acquisition: RA, JDC; Resources: LW, JDC

52



CHAPTER 3

PREDICTING THE IMPACT OF CLINICALLY-OBSERVED KINASE

MUTATIONS USING PHYSICAL MODELING

3.1 Gloss

The work in this chapter was published in Communications Biology as follows:

Predicting resistance of clinical Abl mutations to targeted kinase inhibitors
using alchemical free-energy calculations

Kevin Hauser1, Christopher Negron1, Steven K. Albanese2,3, Soumya Ray,
Thomas Steinbrecher4, Robert Abel3, John D. Chodera2, Lingle Wang3,∗

1 Schrödinger, New York, NY 10036
2 Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan
Kettering Cancer Center, New York, NY 10065
3 Computational and Systems Biology Program, Sloan Kettering Institute, Memorial
Sloan Kettering Cancer Center, New York, NY 10065
3 Schrödinger, GmbH, Q7 23, 68161 Mannheim, Germany
∗ Corresponding Author

This material is reproduced with permission under the Creative Commons

license: https://creativecommons.org/licenses/by/4.0/. Some supplementary

figures and tables have not been reproduced. They have been replaced in the text

with references to the Communications Biology source.

This work represents a step towards addressing the feasibility of using alchemical

free energy calculations to predict the impact of clinical kinase mutations on small

molecule binding. Next-generation sequencing has revolutionized our

understanding of cancer, and lead to the generation of massive datasets. While

these data sets have provided numerous insights into cancer biology, they present

the challenge of interpreting and understanding vast amounts of data. While

many highly recurrent mutations have been extensively characterized through

structural, biochemical and in vivo methods, the majority of these mutations are
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rare, occurring fewer than 10 times [40]. They often occur in the context of

genetically complex tumors with many rearrangements and mutations [38], which

makes generating good disease models difficult. Thus, it is important to develop

methods that can describe the impact of individual mutations on properties of

interest, such as inhibitor binding, regulatory state, protein stability, and protein

conformation. Here, we focus on the use of physical modeling to predict the

impact of missense mutations on kinase inhibitor binding. Understanding the

impact of these mutations on inhibitor binding is particularly interesting for

kinase systems. There are over 43 FDA-approved inhibitors that are currently

used to treat patients [3]. While initial responses are typically promising,

resistance and disease progression arise in most cases [9, 80, 114]. Developing

effective inhibitors to overcome this resistance has been a the focus of extensive

drug development programs, leading to the generation of numerous second- and

third-generation inhibitors [115–117] for a many different kinase targets.

However, this work has typically relied on data from clinical trials, where patients

how have stopped responding to treatment are investigated for potential

mutations or changes in cell signaling pathways that may give rise to resistance.

While this approach informs a huge number of discoveries, the patients

presenting with resistance are often left without good treatment alternatives. This

paradigm was flipped in recent work on TRK kinase inhibitors targeting TRK

fusion-driven cancers, where the anticipation of missense mutations causing

resistance lead to the parallel development of a second-generation TRK

inhibitor [10]. In doing so, patients that presented with resistance in the early

clinical trials were immediately shuffled on to the next clinical trial for the second

generation of inhibitor. One of the key challenges in this study was identifying

potential missense mutations for targeting with next generation inhibitors.

Physical modeling has the potential aid the design of new inhibitors in this
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paradigm by predicting de novo missense resistance mutations, as well as the

impact of rare but already observed mutations that have yet to be studied.

Further, reliable predictions of the impact on inhibitor binding could eventually

aid in the selection of existing inhibitors to treat a patient with a novel mutation,

especially as the pharmacopeia available grows over time.

The work in this chapter represents a step towards addressing the feasibility of

using alchemical free energy calculations to predict the impact of clinical kinase

mutations on small molecule binding. This field had previously been

understudied and much work remains to be done before these methodologies can

impact the clinic and the way clinicians make decisions directly. Previous work

focused on understanding the mechanism of a small number of kinase gatekeeper

mutations [74], which does not provide a large enough data set to draw rigorous

conclusions about the broad accuracy and applicability of free energy calculations

for predicting the impact of mutations on inhibitor binding. After the publication

of the work in this chapter, Aldeghi et al., published a broad study assessing

non-equilibrium free energy methods across 17 different proteins and 27

ligands [118]. This protocol [119] achieved similar levels of accuracy to the work

presented here, but did not include any kinase systems. While the paper looked

at a large number of compounds, the number of mutants for each target was

relatively limited. In a 2018 publication after this work, Bhati et al. apply

alchemical free energy calculations to a fibroblast growth factor receptor 3

(FGFR3) gatekeeper mutations [120]. These results are similarly promising for

predicting changes in free energy of binding and capturing some conformational

changes, but are found to be sensitive to initial structure selection.

Here we present a large set of clinical mutations and binding affinity data for

many FDA-approved kinase inhibitors, forming a valuable benchmark set for
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future work on new methodologies seeking to improve accuracy or efficiency.

This work was a collaborative effort that I was able to contribute to in a number

of ways. I identified sources of experimental affinity data and helped do

background and quality control searches on the mutations to ensure that they

were sourced from the clinic. I contributed to the preparation of the systems used

in the calculations, and helped analyze the data, particularly looking at outliers

resulting from the free energy calculations. I took part in writing the first draft of

the paper as well as subsequent editing efforts.

There are a number of directions that future work can take. While some papers

have already followed up on this work and looked at other systems [119] beyond

kinases, this data set presents many avenues for future work itself. This paper

used a single default protocol and forcefield for all of the calculations. Future

work could follow up on optimizing the protocol used for more efficient and

accurate results, or study the accuracy of additional publicly available forcefields.

Further, there are a number of choices made when setting up the calculations,

such as: protein conformation, ligand pose, salt concentration, and pH.

Understanding the sensitivity of these calculations to these choices, and the

combination of parameters that will yield the most accurate calculations, will

undoubtedly be required to move physical modeling for predicting the impact of

mutations on ligand binding into the clinic. In particular, the sensitivity to the

starting conformation used, both for the protein and the ligand binding mode, are

particularly important when considering mutations that may cause

conformational changes.
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3.2 Abstract

The therapeutic effect of targeted kinase inhibitors can be significantly reduced by

intrinsic or acquired resistance mutations that modulate the affinity of the drug

for the kinase. In cancer, the majority of missense mutations are rare, making it

difficult to predict their impact on inhibitor affinity. Here, we examine the

potential for alchemical free-energy calculations to predict how kinase mutations

modulate inhibitor affinities to Abl, a major target in chronic myelogenous

leukemia (CML). We find these calculations can achieve useful accuracy in

predicting resistance for a set of eight FDA-approved kinase inhibitors across 144

clinically-identified point mutations, achieving a root mean square error in

binding free energy changes of 1.11.3
0.9 kcal mol−1 (95% confidence interval) and

correctly classifying mutations as resistant or susceptible with 8893
82% accuracy.

This benchmark establishes the potential for physical modeling to collaboratively

support the assessment and anticipation of patient mutations to affect drug

potency in clinical applications.

3.3 Introduction

Targeted kinase inhibitors are a major therapeutic class in the treatment of cancer.

A total of 38 selective small molecule kinase inhibitors have now been approved

by the FDA [3], including 34 approved to treat cancer, and perhaps 50% of all

current drugs in development target kinases [84]. Despite the success of selective

inhibitors, the emergence of drug resistance remains a challenge in the treatment

of cancer [121–128] and has motivated the development of second- and then
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third-generation inhibitors aimed at overcoming recurrent resistance

mutations [82, 129–132].

While a number of drug resistance mechanisms have been identified in cancer

(e.g., induction of splice variants [133], or alleviation of feedback [12]), inherent or

acquired missense mutations in the kinase domain of the target of therapy are a

major form of resistance to tyrosine kinase inhibitors (TKI) [11, 128, 134].

Oncology is entering a new era with major cancer centers now deep sequencing

tumors to reveal genetic alterations that may render subclonal populations

susceptible or resistant to targeted inhibitors [135], but the use of this information

in precision medicine has lagged behind. It would be of enormous value in

clinical practice if an oncologist could reliably ascertain whether these mutations

render the target of therapy resistant or susceptible to available inhibitors; such

tools would facilitate the enrollment of patients in mechanism-based basket

trials [136, 137], help prioritize candidate compounds for clinical trials, and aid

the development of next-generation inhibitors.

3.3.1 The long tail of rare kinase mutations frustrates prediction

of drug resistance

While some cancer missense mutations are highly recurrent and have been

characterized clinically or biochemically, a long tail of rare mutations collectively

accounts for the majority of clinically observed missense mutations (Figure 3.1A),

leaving clinicians and researchers without knowledge of whether these

uncharacterized mutations might lead to resistance. While rules-based and

machine learning schemes are still being assessed in oncology contexts, work in

predicting drug response to microbial resistance has shown that rare mutations
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present a significant challenge to approaches that seek to predict resistance to

therapy [138]. Clinical cancer mutations may impact drug response through a

variety of mechanisms by altering kinase activity, ATP affinity, substrate

specificities, and the ability to participate in regulatory interactions,

compounding the difficulties associated with limited datasets that machine

learning approaches face. In parallel with computational approaches,

high-throughput experimental techniques such as MITE-Seq [139] have been

developed to assess the impact of point mutations on drug response. However,

the complexity of defining selection schemes that reliably correlate with in vivo

drug effectiveness and long turn-around times might limit their ability to rapidly

and reliably impact clinical decision-making.
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Figure 3.1: Relative alchemical free-energy calculations can be used to predict affinity changes of FDA-approved selective kinase
inhibitors arising from clinically-identified mutations in their targets of therapy. (a) Missense mutation statistics derived from 10,336
patient samples subjected to Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)
deep sequencing panel [135] show that 68.5% of missense kinase mutations in cancer patients have never been observed previously,
while 87.4% have been observed no more than ten times; the vast majority of clinically observed missense kinase mutations are unique
to each patient. (b) To compute the impact of a clinical point mutation on inhibitor binding free energy, a thermodynamic cycle can
be used to relate the free energy of the wild-type and mutant kinase in the absence (top) and presence (bottom) of the inhibitor. (c)
Summary of mutations studied in this work. Frequency of the wild-type (dark green) and mutant (green) residues for the 144 clinically-
identified Abl mutations used in this study (see ?? for data sources). Also shown is the frequency of residues within 5 (light blue) and
8 (blue) of the binding pocket. The ordering of residues along the x-axis corresponds to the increasing occurrence of residues within 5
of the binding pocket. The number of wild-type Phe residues (n=45) and mutant Val residues (n=31) exceeded the limits of the y-axis.
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3.3.2 Alchemical free-energy methods can predict inhibitor

binding affinities

Physics-based approaches could be complementary to machine-learning and

experimental techniques in predicting changes in TKI affinity due to mutations

with few or no prior clinical observations. Modern atomistic molecular mechanics

forcefields such as OPLS3 [54], CHARMM [52], and AMBER FF14SB [53] have

reached a sufficient level of maturity to enable the accurate and reliable prediction

of receptor-ligand binding free energy. Alchemical free-energy methods permit

receptor-ligand binding energies to be computed rigorously, including all

relevant entropic and enthalpic contributions [140]. Encouragingly,

kinase:inhibitor binding affinities have been predicted using alchemical

free-energy methods with mean unsigned errors of 1.0 kcal mol−1 for CDK2,

JNK1, p38, and Tyk2 [78, 141]. Beyond kinases, alchemical approaches have

predicted the binding affinity of BRD4 inhibitors with mean absolute errors of 0.6

kcal mol−1 [142]. Alchemical methods have also been observed to have good

accuracy (0.6 kcal mol−1 mean unsigned error for Tyk2 tyrosine kinase) in the

prediction of relative free energies for ligand transformations within a complex

whose receptor geometry was generated using a homology model [143].

3.3.3 Alchemical approaches can predict the impact of protein

mutations on free energy

Alchemical free-energy calculations have also been used to predict the impact of

mutations on protein-protein binding [144] and protein thermostabilities [145].

Recent work has found that protein mutations can be predicted to be stabilizing
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or destabilizing with a classification accuracy of 71% across ten proteins and 62

mutations [146]. The impact of Gly to D-Ala mutations on protein stability was

predicted using an alchemical approach with a similar level of accuracy [147].

Recently, one study has hinted at the potential utility of alchemical free-energy

calculations in oncology by predicting the impact of a single clinical mutation on

the binding free energies of the TKIs dasatinib and RL45 [148].

3.3.4 Assessing the potential for physical modeling to predict

resistance to FDA-approved TKIs

Here, we ask whether physical modeling techniques may be useful in predicting

whether clinically-identified kinase mutations lead to drug resistance or drug

sensitivity. We perform state-of-the-art relative alchemical free-energy

calculations using FEP+ [78], recently demonstrated to achieve sufficiently good

accuracy to drive the design of small-molecule inhibitors for a broad range of

targets during lead optimization [78, 140, 141, 149], to calculate the effect of point

mutation on the binding free energy between the inhibitor and the kinase receptor

(Figure 2.1b). Figure 3.1B depicts the thermodynamic cycle that illustrates how we

used relative free energy calculations to compute the change in ligand binding

free energy in response to the introduction of a point mutation in the kinase

(Figure 3.1C). We compare this approach against a fast but approximate physical

modeling method implemented in Prime [150] (an MM-GBSA approach) in which

an implicit solvent model is used to assess the change in minimized interaction

energy of the ligand with the mutant and wild-type kinase. We consider whether

these methods can predict a ten-fold reduction in inhibitor affinity (corresponding

to a binding free energy change of 1.36 kcal mol−1) to assess baseline utility. As a
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benchmark, we compile a set of reliable inhibitor ∆pIC50 data for 144

clinically-identified mutants of the human kinase Abl, an important oncology

target dysregulated in cancers like chronic myelogenous leukemia (CML), for

which six [3] FDA-approved TKIs are available. While ∆pIC50 can approximate a

dissociation constant ∆KD, other processes contributing to changes in cell viability

might affect IC50 in ways that are not accounted for by a traditional binding

experiment, motivating a quantitative comparison between ∆pIC50 and ∆KD. The

results of this benchmark demonstrate the potential for FEP+ to predict the

impact that mutations in Abl kinase have on drug binding, and a classification

accuracy of 8893
82% (for all statistical metrics reported in this paper, the 95%

confidence intervals (CI) is shown in the form of (xupper
lower )), an RMSE of 1.071.26

0.89 kcal

mol−1, and an MUE of 0.790.92
0.67 kcal mol−1 was achieved.

3.4 Results

3.4.1 A benchmark of ∆pIC50s for predicting mutational

resistance

To construct a benchmark evaluation dataset, we compiled a total of 144 ∆pIC50

measurements of Abl:TKI affinities, summarized in Table 3.1, taking care to

ensure all measurements for an individual TKI were reported in the same study

from experiments run under identical conditions. 131 ∆pIC50 measurements were

available across the six TKIs with available co-crystal structures with wild-type

Abl—26 for axitinib and 21 for bosutinib, dasatinib, imatinib, nilotinib, and

ponatinib. 13 ∆pIC50 measurements were available for the two TKIs for which
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docking was necessary to generate Abl:TKI structures—7 for erlotinib and 6 for

gefitinib. For added diversity, this set includes TKIs for which Abl is not the

primary target—axitinib, erlotinib, and gefitinib. All mutations in this benchmark

dataset have been clinically-observed (Supplementary Table 3.2). Due to the

change in bond topology required by mutations involving proline, which is not

currently supported by the FEP+ technology for protein residue mutations, the

three mutations H396P (axitinib, gefitinib, erlotinib) were excluded from our

assessment. As single point mutations were highly represented in the Memorial

Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets

(MSK-IMPACT) study analyzed in Figure 3.1A, we excluded double mutations

from this work. However, the impact of mutations from multiple sites can

potentially be modeled by sequentially mutating each site and this will be

addressed in future work.
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Table 3.1: Public ∆pIC50 datasets for 144 Abl kinase mutations and eight tyrosine kinase inhibitors (TKIs) with corresponding
wild-type co-crystal structures used in this study

(kcal mol−1) (kcal mol−1)
TKI Nmut R S PDB |∆Gmax − ∆Gmin| Source ∆GWT

axitinib 26 0 26 4wa9 2.05 [151] −8.35
bosutinib 21 4 17 3ue4 2.79 [152] −9.81
dasatinib 21 5 16 4xey 5.08 [152] −11.94
imatinib 21 5 16 1opj 2.16 [152] −9.19
nilotinib 21 4 17 3cs9 3.88 [152] −10.74
ponatinib 21 0 21 3oxz 1.00 [152] −11.70
subtotal 131 18 113
erlotinib 7 1 6 Dock to

3ue4
1.73 [21] −9.77

gefitinib 6 0 6 Dock to
3ue4

1.79 [21] −8.84

total 144 19 125

Nmut: Total number of mutants for which ∆pIC50 data was available.
Number of Resistant, Susceptical mutants using 10-fold affinity change threshold.

PDB: Source PDB ID, or Dock to 3ue4, which used 3ue4 as the receptor for Glide-SP docking inhibitors without co-crystal structure.
∆GWT: Binding free energy of inhibitor to wild-type Abl, as estimated from IC50 data.
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Experimental ∆pIC50 measurements for wild-type and mutant Abl were

converted to ∆∆G in order to make direct comparisons between physics-based

models and experiment. However, computation of experimental uncertainties

were required to understand the degree to which differences between predictions

and experimental data were significant. Since experimental error estimates for

measured IC50s were not available for the data in Table 3.1, we compared that data

to other sources that have published IC50s for the same mutations in the presence

of the same TKIs (Figure 3.2A,B,C). Cross-comparison of 97 experimentally

measured ∆∆Gs derived from cell viability assay IC50 data led to an estimate of

experimental variability of 0.320.36
0.28 kcal mol−1 root-mean square error (RMSE) that

described the expected repeatability of the measurements. Because multiple

factors influence the IC50 aside from direct effects on the binding affinity—the

focus of this study—we also compared ∆∆Gs derived from ∆pIC50s with those

derived from binding affinity measurements (∆Kd) for which data for a limited set

of 27 mutations was available (Figure 3.2D); the larger computed RMSE of 0.811.04
0.59

kcal mol−1 represents an estimate of the lower bound of the RMSE to the

IC50-derived ∆∆Gs that we might hope to achieve with FEP+ or Prime, which

were performed using non-phosphorylated models, when comparing sample

statistics directly. In comparing 31 mutations for which phosphorylated and

non-phosphorylated ∆Kds were available, we found a strong correlation between

the ∆∆Gs derived from those data (r=0.94, Figure 3.3); the statistics of that

comparison are similar to those of the inter-lab variability comparison.
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Figure 3.2: Cross-comparison of the experimentally measured effects that mutations in Abl kinase have on ligand binding, per-
formed by different labs. ∆∆G was computed from publicly available ∆pIC50 or ∆pKd measurements and these values of ∆∆G were
then plotted and the RMSE between them reported. (a) ∆pIC50 measurements (X-axis) from [152] compared with ∆pIC50 measurements
(Y-axis) from [153]. (b) ∆pIC50 measurements (X-axis) from [152] compared with ∆pIC50 measurements (Y-axis) from [154]. (c) ∆pIC50
measurements (X-axis) from [153] compared with ∆pIC50 measurements (Y-axis) from [154]. (d) ∆pIC50 measurements (X-axis) from
[152] compared with ∆pKd measurements (Y-axis) from [21] using non-phosphorylated Abl kinase. Scatter plot error bars in a,b,and c
are ±standard error (SE) taken from the combined 97 inter-lab ∆∆Gs derived from the ∆pIC50 measurements, which was 0.320.36

0.28; the
RMSE was 0.450.51

0.39 kcal mol−1. Scatter plot error bars in d are the ±standard error (SE) of ∆∆Gs derived from ∆pIC50 and ∆pKd from a
set of 27 mutations, which is 0.580.74

0.42 kcal mol−1; the RMSE was 0.811.04
0.59 kcal mol−1.
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Figure 3.3: Comparison of 31 mutations for which phosphorylated and non-phosphorylated ∆Kds were available. Scatter plot com-
pares ∆∆Gs (derived from the ∆Kds) and contains the best-fit line with slope 0.77 and intercept 0.14. Summary statistics for this compar-
ison are also shown. The raw ∆∆Gs used for this comparison were adapted from [21]; kino-bead data for ponatinib was not available.
ND: No data. TKI: Targeted kinase inhibitor.
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3.4.2 Most mutations do not significantly reduce TKI potency

The majority of mutations do not lead to resistance by our 10-fold affinity loss

threshold: 86.3% of the co-crystal set (n=113) and 86.8% of the total set (n=125).

Resistance mutations, which are likely to result in a failure of therapy, constitute

13.7% of the co-crystal set (n=18) and 13.2% of the total set of mutations (n=19).

The ∆pIC50s for all 144 mutations are summarized in Table 3.2. Two mutations

exceeded the dynamic range of the assays (IC50 >10,000 nM); as these two

mutations clearly raise resistance, we excluded them from quantitative analysis

(RMSE and MUE) but included them in truth table analyses and classification

metrics (accuracy, specificity, sensitivity).
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Table 3.2: ∆∆G data derived from publicly available ∆pIC50 measurements and sources of mutation clinical-observation

Mutation axitinib bosutinib dasatinib imatinib nilotinib ponatinib gefitinib erlotinib Source of
∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G Clinical
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) Observation

M244V -0.11 0.43 0.00 0.21 -0.13 0.00 nd nd A
L248R 0.31 1.50 0.65 2.33 2.15 0.58 nd nd B
L248V 0.32 0.56 0.55 0.64 0.33 0.17 nd nd A,C
G250E 0.27 0.11 0.41 1.01 0.60 0.30 nd nd A,C,D
Q252H 0.20 nd nd nd nd nd -0.44 -0.13 A
Y253F 0.26 -0.34 0.24 1.90 1.48 0.30 -0.17 0.00 C
Y253H 0.03 nd nd nd nd nd nd nd A,C,D
E255K 0.26 0.56 0.90 1.50 1.27 0.41 -0.11 -0.11 A,C,D
E255V 0.30 0.66 1.02 2.22 2.36 1.00 nd nd A,C
D276G 0.18 nd nd nd nd nd nd nd C
E279K -0.03 nd nd nd nd nd nd nd C
E292L 0.03 nd nd nd nd nd nd nd E
V299L -0.88 1.70 1.24 0.23 0.28 0.17 nd nd C
T315A -0.45 0.32 2.02 0.51 0.72 0.17 nd nd C
T315I -1.27 2.45 5.08 2.32 3.75 0.41 nd -0.15 C,D
T315V -1.73 nd nd nd nd nd nd nd B
F317C nd 0.50 1.86 0.28 0.04 0.00 nd nd Ag

F317I nd 0.71 1.79 0.17 0.30 0.51 1.35 1.58 C
F317L 0.23 0.09 0.96 0.72 0.20 0.17 0.29 0.40 C,D
F317R 0.27 nd nd nd nd nd nd nd B
F317V 0.28 1.72 2.36 0.97 0.33 0.72 nd nd C
M343T 0.21 nd nd nd nd nd nd nd Fh

M351T -0.24 0.19 0.00 0.42 0.00 0.17 0.05 -0.08 A,C,D
E355A nd 0.02 0.24 0.47 0.11 0.51 nd nd C
F359C nd -0.01 0.00 0.77 0.68 0.41 nd nd C
F359I 0.10 0.04 0.24 0.28 0.86 0.77 nd nd A
F359V 0.07 -0.11 0.00 0.32 0.60 0.17 nd nd A,C
L384M 0.06 nd nd nd nd nd nd nd Fi
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Table 3.2 continued from previous page
Mutation axitinib bosutinib dasatinib imatinib nilotinib ponatinib gefitinib erlotinib Source of

∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G Clinical
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) Observation

H396R 0.25 -0.10 0.00 0.40 0.25 0.17 nd nd A j

F486S 0.05 nd nd nd nd nd nd nd Ak

E459K nd 0.35 0.41 0.66 0.55 0.30 nd nd C
A: Gruber et al. ([155]),
B: Redaelli et al. ([156]),
C: Cortes et al. ([157]),
D: Branford et al. ([158]),
E: Press et al. ([159]),
F: Shah et al. ([121]),
G: F317C observed with ∆27-183,
H : M343T observed as compound mutation with H396R,
I : L384M observed as compound mutation with M343T,
J : H396R observed as compound mutation with F486S,
K : F486S observed as compound mutation with H396R
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3.4.3 FEP+ predicts affinity changes for clinical Abl mutants

Figure 3.1B depicts the thermodynamic cycle that illustrates how we used relative

free energy calculations to compute the change in ligand binding free energy in

response to the introduction of a point mutation in the kinase (Figure 3.1C). From

prior experience with relative alchemical free-energy calculations for ligand

design, good initial receptor-ligand geometry was critical to obtaining accurate

and reliable free energy predictions [78], so we first focused on the 131 mutations

in Abl kinase across six TKIs for which wild-type Abl:TKI co-crystal structures

were available. Figure 3.4 summarizes the performance of predicted binding

free-energy changes (∆∆G) for all 131 mutants in this set for both a fast

MM-GBSA physics-based method that only captures interaction energies for a

single structure (Prime) and rigorous alchemical free-energy calculations (FEP+).

Scatter plots compare experimental and predicted free-energy changes (∆∆G) and

characterize the ability of these two techniques to predict experimental

measurements. Statistical uncertainty in the predictions and

experiment-to-experiment variability in the experimental values are shown as

ellipse height and widths respectively. The value for experimental variability was

0.32 kcal mol−1, which was the standard error computed from the

cross-comparison in Figure 3.2. For FEP+, the uncertainty was taken to be the

standard error of the average from three independent runs for a particular

mutation, while Prime results are deterministic and are not contaminated by

statistical uncertainty (see Methods).

To better assess whether discrepancies between experimental and computed

∆∆Gs simply arise for known forcefield limitations or might indicate more

significant effects, we incorporated an additional error model in which the

forcefield error was taken to be a random error σFF ≈ 0.9 kcal mol−1, a value
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established form previous benchmarks on small molecules absent conformational

sampling or protonation state issues [54]. Thin error bars in Figure 3.2 represent

the overall estimated error due to both this forcefield error and experimental

variability or statistical uncertainty.

To assess overall quantitative accuracy, we computed both root-mean-squared

error (RMSE)—which is rather sensitive to outliers, and mean unsigned error

(MUE). For Prime, the MUE was 1.161.37
0.96 kcal mol−1 and the RMSE was 1.722.00

1.41 kcal

mol−1. FEP+, the alchemical free-energy approach, achieved a significantly higher

level of quantitative accuracy with an MUE of 0.820.95
0.69 kcal mol−1 and an RMSE of

1.111.30
0.91 kcal mol−1. Notably, alchemical free energy calculations come

substantially closer than MMGBSA approach to the minimum achievable RMSE

of 0.811.04
0.59 kcal mol−1 (due to experimental error; Figure 3.2) for this dataset.
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Figure 3.4: Continued on the next page
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Figure 3.4: Comparison of experimentally-measured binding free-energy changes (∆∆G) for 131 clinically observed mutations and
6 selective kinase inhibitors for which co-crystal structures of wild-type kinase with inhibitor are available. Top panel: Abl:TKI
co-crystal structures used in this study with locations of clinical mutants for each inhibitor highlighted (colored from blue to red for
residues nearest to farthest from ligand) in relation to TKI (green sticks) on the corresponding Abl:TKI wild-type crystal structure. Middle
panel: Scatter plots show Prime and FEP+ computed ∆∆G compared to experiment, with ellipse widths and heights (±σ) for experiment
and FEP+ respectively. The red diagonal line indicates when prediction equals experiment, while the yellow shaded region indicates
area in which predicted ∆∆G is within 1.36 kcal mol−1 of experiment (corresponding to a ten-fold error in predicted affinity change).
∆∆G < 0 kcal mol−1 denotes the mutation increases the susceptibility of the kinase to the inhibitor, while ∆∆G > 0 kcal mol−1 denotes
the mutation increases the resistance of the kinase to the inhibitor. The two mutations that were beyond the concentration limit of the
assay (T315I/dasatinib, L248R/imatinib) were not plotted; 129 points were plotted. Truth tables of classification accuracy, sensitivity
and specificity using two-classes. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib;
131 points were used. For MUE, RMSE, and truth table performance statistics, sub/superscripts denote 95 % CIs. Variability in the
experimental data is shown as ellipse widths and uncertainty in our calculations is shown as ellipse heights. Experimental variability
was computed as the standard error between IC50-derived ∆∆G measurements made by different labs, 0.32 kcal mol−1. The statistical
uncertainty in the Prime calculations was zero because the method is deterministic (σcal = 0), while the uncertainty in the FEP+ calcula-
tions was reported as the standard error, σcal, of the mean of the predicted ∆∆Gs from three independent runs. To better highlight true
outliers unlikely to simply result from expected forcefield error, we presume forcefield error (σFF ≈ 0.9 kcal mol−1 [54]) also behaves as

a random error, and represent the total estimated statistical and forcefield error (
√
σ2

FF + σ2
exp/cal) as vertical error bars. The horizontal

error bars for the experiment (σexp) was computed as the standard error between ∆pIC50 and ∆Kd measurements, 0.58 kcal mol−1. For
Prime, *MUE highlights that the Bayesian model yields a value for MUE that is noticeably larger than MUE for observed data due to
the non-Gaussian error distribution of Prime.
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3.4.4 FEP+ accurately classifies affinity changes for Abl mutants

While quantitative accuracy (MUE, RMSE) is a principle metric of model

performance, an application of potential interest is the ability to classify

mutations as causing resistance to a specific TKI. To characterize the accuracy

with which Prime and FEP+ classified mutations in a manner that might be

therapeutically relevant, we classified mutations by their experimental impact on

the binding affinity as susceptible (affinity for mutant is diminished by no more

than 10-fold, ∆∆G ≤ 1.36 kcal mol−1) or as resistant (affinity for mutant is

diminished by least 10-fold, ∆∆G > 1.36 kcal mol−1). Summary statistics of

experimental and computational predictions of these classes are shown in

Figure 3.2 (bottom) as truth tables (also known as confusion matrices).

The simple minimum-energy scoring method Prime correctly classified 9 of the 18

resistance mutations in the dataset while merely 85 of the 113 susceptible

mutations were correctly classified (28 false positives). In comparison, the

alchemical free-energy method FEP+, which includes entropic and enthalpic

contributions as well as explicit representation of solvent, correctly classified 9 of

the 18 resistance mutations while a vast majority, 105, of the susceptible mutations

were correctly classified (merely 8 false positives). Prime achieved a classification

accuracy of 0.720.79
0.64, while FEP+ achieved an accuracy that is significantly higher

(both in a statistical sense and in overall magnitude), achieving an accuracy of

0.870.92
0.81. Sensitivity (also called true positive rate) and specificity (true negative

rate) are also informative statistics in assessing the performance of a binary

classification scheme. For Prime, the sensitivity was 0.500.73
0.25, while the specificity

was 0.750.83
0.67. To put this in perspective, a CML patient bearing a resistance

mutation in the kinase domain of Abl has an equal chance of Prime correctly

predicting this mutation would be resistant to one of the TKIs considered here,
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while if the mutation was susceptible, the chance of correct prediction would be

∼75%. By contrast, the classification specificity of FEP+ was substantially better.

For FEP+, the sensitivity was 0.500.74
0.29 while the specificity was 0.930.97

0.88. There is a

very high probability that FEP+ will correctly predict that one of the eight TKIs

studied here will remain effective for a patient bearing a susceptible mutation.

3.4.5 How reliant are classification results on choice of cutoff?

Previous work by O’Hare et al. utilized TKI-specific thresholds for dasatinib,

imatinib, and nilotinib [160], which were ∼2 kcal mol−1. Figure 3.5 shows that

when our classification threshold was increased to a 20-fold change in binding

(1.77 kcal mol−1), FEP+ correctly classified 8 of the 13 resistant mutations and with

a threshold of 100-fold change in binding (2.72 kcal mol−1), FEP+ correctly

classified the only two resistant mutations (T315I/dasatinib and T315I/nilotinib).

With the extant multilayered and multinodal decision-making algorithms used by

experienced oncologists to manage their patients’ treatment, or by medicinal

chemists to propose candidate compounds for clinical trials, the resistant or

susceptible cutoffs could be selected with more nuance than the simple 10-fold

affinity threshold we consider here. With a larger affinity change cutoff, for

example, the accuracy with which physical models predict resistance mutations

increases beyond 90% (Figure 3.5). For the alchemical approach, the two-class

accuracy was 0.920.96
0.87 when an affinity change cutoff of 20-fold was used while

using an affinity change cutoff of 100-fold further improved the two-class

accuracy to 0.981.00
0.96.
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Figure 3.5: TKI-by-TKI truth tables with increasingly large classification cutoffs. Truth tables for the six TKIs (axitinib, bosutinib,
dasatinib, imatinib, nilotinib, and ponatinib) using Prime (left, green) and FEP+ (right, blue) with classification cutoff values defining
whether mutations are susceptible (S, experiment; s, prediction) or resistant (R, experiment; r, prediction). A mutation is susceptible if
∆∆G ≤ cutoff or resistant if ∆∆G > cutoff.
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3.4.6 Bayesian analysis can estimate the true error

The statistical metrics—MUE, RMSE, accuracy, specificity, and

sensitivity—discussed above are based on analysis of the apparent performance

of the observed modeling results compared with the observed experimental data

via sample statistics. However, this analysis considers a limited number of

mutants, and both measurements and computed values are contaminated with

experimental or statistical error. To obtain an estimate of the intrinsic performance

of our physical modeling approaches, accounting for known properties of the

experimental variability and statistical uncertainties, we used a hierarchical

Bayesian model (detailed in the Methods) to infer posterior predictive

distributions from which expectations and 95% predictive intervals could be

obtained. The results of this analysis are presented in Figure 3.4 (central tables).

FEP+ is significantly better than Prime at predicting the impact of mutations on

TKI binding affinities, as the apparent performance (using the original

observations) as well as the intrinsic performance (where Bayesian analysis was

used to correct for statistical uncertainty or experimental variation) were

well-separated outside their 95% confidence intervals in nearly all metrics.

Applying the Bayesian model, the MUE and RMSE for FEP+ was 0.790.92
0.68 kcal

mol−1 and 0.991.15
0.85 kcal mol−1 respectively (N=129). For the classification metrics

accuracy, specificity, and sensitivity, the model yields 0.890.92
0.86, 0.910.94

0.89, and 0.691.00
0.46

respectively (N=131). The intrinsic RMSE and MUE of Prime was 1.762.01
1.55 kcal

mol−1 and 1.401.60
1.24 kcal mol−1 (N=129) respectively, and the classification accuracy,

specificity, and sensitivity was 0.730.76
0.70, 0.740.77

0.72, and 0.570.77
0.36 respectively (N=131).

The intrinsic MUE of Prime obtained by this analysis is larger than the observed

MUE reflecting the non-Gaussian, fat-tailed error distributions of Prime results.
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3.4.7 How transferable is FEP+ across the six TKIs?

The impact of point mutations on drug binding are not equally well predicted for

the six TKIs. Figure 3.6 expands the results in Figure 3.4 on a TKI-by-TKI basis to

dissect the particular mutations in the presence of a specific TKI. Prime and FEP+

correctly predicted that most mutations in this dataset (N=26) do not raise

resistance to axitinib, though FEP+ predicted 4 false positives compared with 3

false positives by Prime. The MUE and RMSE of FEP+ was excellent for this

inhibitor, 0.700.93
0.50 kcal mol−1 and 0.911.14

0.64 kcal mol−1 respectively. While the

classification results for bosutinib (N=21) were equally well predicted by Prime as

by FEP+, FEP+ was still able to achieve superior, but not highly significant,

predictive performance for the quantitative metrics MUE and RMSE, which were

0.961.42
0.55 kcal mol−1 and 1.411.97

0.77 kcal mol−1 respectively (FEP+) and 1.131.83
0.60 kcal

mol−1 and 1.802.62
0.92 kcal mol−1 respectively (Prime). For dasatinib, FEP+ achieved

an MUE and RMSE of 0.761.13
0.49 kcal mol−1 and 1.071.57

0.59 kcal mol−1 respectively

whereas the results were, as expected, less quantitatively predictive for Prime

(N=20). The results for imatinib were similar to those of dasatinib above, where

the MUE and RMSE for FEP+ were 0.821.15
0.53 kcal mol−1 and 1.091.43

0.69 kcal mol−1

respectively (N=20). Nilotinib, a derivative of imatinib, led to nearly identical

quantitative performance results for FEP+ with an MUE and RMSE of 0.821.12
0.57 kcal

mol−1 and 1.061.39
0.69 kcal mol−1 respectively (N=21). Similar to axitinib, ponatinib

presented an interesting case because there were no mutations in this dataset that

raised resistance to it. Despite the wide dynamic range in the computed values of

∆∆G for other inhibitors, FEP+ correctly predicted a very narrow range of ∆∆Gs

for this drug. This is reflected in the MUE and RMSE of 0.871.16
0.62 kcal mol−1 and

1.091.46
0.70 kcal mol−1 respectively, which are in-line with the MUEs and RMSEs for

the other TKIs.
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Figure 3.6: Continued on the next page
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Figure 3.6: Physical modeling accuracy in computing the impact of clinical Abl mutations on selective inhibitor binding. Ligand
interaction diagrams for six selective FDA-approved tyrosine kinase inhibitors (TKIs) for which co-crystal structures with Abl were
available (left). Comparisons for clinically-observed mutations are shown for FEP+ (right) and Prime (left). For each ligand, computed
vs. experimental binding free energies (∆∆G) are plotted with MUE and RMSE (units of kcal mol−1) depicted below. Truth tables are
shown to the right. Rows denote true susceptible (S, ∆∆G ≤ 1.36 kcal mol−1) or resistant (R, ∆∆G >kcal mol−1) experimental classes
using a 1.36 kcal mol−1 (10-fold change) threshold; columns denote predicted susceptible (s, ∆∆G ≤ kcal mol−1) or resistant (r, ∆∆G >kcal
mol−1). Correct predictions populate diagonal elements (orange text), incorrect predictions populate off-diagonals. Accuracy, specificity,
and sensitivity for two-class classification are shown below the truth table. Elliptical point sizes and error bars in the scatter plots depict
estimated uncertainty/variability and error respectively (±σ) of FEP+ values (vertical size) and experimental values (horizontal size).
Note: The sensitivity for axitinib and ponatinib is NA, because there is no resistant mutation for these two drugs.
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3.4.8 Understanding the origin of mispredictions

Resistance mutations that are mispredicted as susceptible (false negatives) are

particularly critical because they might mislead the clinician or drug designer into

believing the inhibitor will remain effective against the target. Which resistance

mutations did FEP+ mispredict as susceptible? Nine mutations were classified by

FEP+ to be susceptible when experimentally measured ∆pIC50 data indicate the

mutations should have increased resistance according to our 10-fold affinity

cutoff for resistance. Notably, the 95% confidence intervals for five of these

mutations spanned the 1.36 kcal mol−1 threshold, indicating these

misclassifications are not statistical significant when the experimental error and

statistical uncertainty in FEP+ are accounted for: bosutinib/L248R

(∆∆GFEP+=1.321.94
0.70 kcal mol−1), imatinib/E255K (∆∆GFEP+=0.433.05

−2.19 kcal mol−1),

imatinib/Y253F (∆∆GFEP+=0.951.64
0.26 kcal mol−1), and nilotinib/Y253F

(∆∆GFEP+=0.891.69
0.09 kcal mol−1). The bosutinib/V299L mutation was also not

significant because the experimental ∆∆G, 1.702.33
1.08 kcal mol−1, included the 1.36

kcal mol−1 cutoff; the value of ∆∆G predicted by FEP+ for this mutation was

0.911.02
0.79 kcal mol−1, the upper bound of the predicted value was within 0.06 kcal

mol−1 of the lower bound of the experimental value.

Four mutations, however, were misclassified to a degree that is statistically

significant given their 95% confidence intervals: dasatinib/T315A,

bosutinib/T315I, imatinib/E255V, and nilotinib/E255V. For dasatinib/T315A,

although the T315A mutations for bosutinib, imatinib, nilotinib, and ponatinib

were correctly classified as susceptible, the predicted free energy changes for

these four TKIs were consistently much more negative than the corresponding

experimental measurements, just as for dasatinib/T315A, indicating there might

be a generic driving force contributing to the errors in T315A mutations for these
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five TKIs. Abl is known to be able to adopt many different conformations

(including DFG-in and DFG-out), and it is very likely that the T315A mutation

will induce conformational changes in the apo protein [161], which was not

adequately sampled in the relatively short simulations, leading to the errors for

T315A mutations for these TKIs. By comparison, the T315I mutations for axitinib,

bosutinib, imatinib, nilotinib, and ponatinib were all accurately predicted with

the exception of bosutinib/T315I being the only misprediction, suggesting an

issue specific to bosutinib. The complex electrostatic interactions between the

2,4-dichloro-5-methoxyphenyl ring in bosutinib and the adjacent positively

charged amine of the catalytic Lys271 may not be accurately captured by the

fixed-charge OPLS3 force field, leading to the misprediction for bosutinib/T315I

mutation.

Insufficient sampling might also belie the imatinib/E255V and nilotinib/E255V

mispredictions because they reside in the highly flexible P-loop. Since E255V was

a charge change mutation, we utilized a workflow that included a transmutable

explicit ion (see Methods). The distribution of these ions in the simulation box

around the solute might not have converged to their equilibrium state on the

relatively short timescale of our simulations (5 ns), and the insufficient sampling

of ion distributions coupled with P-loop motions might lead to misprediction of

these two mutations.

3.4.9 How strongly is accuracy affected for docked TKIs?

To assess the potential for utilizing physics-based approaches in the absence of a

high-resolution experimental structure, we generated models of Abl bound to

two TKIs—erlotinib and gefinitib—for which co-crystal structures with wild-type
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kinase are not currently available. In Figure 3.7, we show the Abl:erlotinib and

Abl:gefitinib complexes that were generated using a docking approach (Glide-SP,

see Methods). These two structures were aligned against the co-crystal structures

of EGFR:erlotinib and EGFR:gefinitib to highlight the structural similarities

between the binding pockets of Abl and EGFR and the TKI binding mode in Abl

versus EGFR. As an additional test of the sensitivity of FEP+ to system

preparation, a second set of Abl:erlotinib and Abl:gefitinib complexes was

generated in which crystallographic water coordinates were transferred to the

docked inhibitor structures (see Methods).

Alchemical free-energy simulations were performed on 13 mutations between the

two complexes; 7 mutations for erlotinib and 6 mutations for gefitinib. The

quantitative accuracy of FEP+ in predicting the value of ∆∆G was

excellent—MUE and RMSE of 0.580.86
0.33 kcal mol−1 and 0.801.09

0.44 kcal mol−1

respectively if crystal waters are omitted, and 0.500.78
0.26 kcal mol−1 and 0.690.97

0.35 kcal

mol−1 if crystal waters were restored after docking. Encouragingly, these results

indicate that our initial models of Abl bound to erlotinib and gefitinib were

reliable because the accuracy and dependability of our FEP+ calculations were

not sensitive to crystallographic waters. Our secondary concern was the accuracy

with which the approach classified mutations as resistant or susceptible.

While the results presented in (Figure 3.7) indicate that FEP+ is capable of

achieving good quantitative accuracy when a co-crystal structure is unavailable, it

is important to understand why a mutation was predicted to be susceptible but

was determined experimentally to be resistant. F317I was the one mutation that

increased resistance to erlotinib (or gefitinib) because it destabilized binding by

more than 1.36 kcal mol−1—1.351.67
1.03 kcal mol−1 (gefitinib) and 1.581.90

1.26 kcal mol−1

(erlotinib), but the magnitude of the experimental uncertainty means we are
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unable to confidently discern whether this mutation induces more than 10-fold

resistance to either TKI. Therefore, the one misclassification by FEP+ in Figure 3.7

is not statistically significant and the classification metrics presented there

underestimate the nominal performance of this alchemical free-energy method.
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Figure 3.7: Predicting resistance mutations using FEP+ for inhibitors for which co-crystal structures with wild-type kinase are not
available. The docked pose of Abl:erlotinib is superimposed on the co-crystal structure of EGFR:erlotinib; erlotinib docked to Abl
(light gray) is depicted in green and erlotinib bound to EGFR (dark gray) is depicted in blue. The docked pose of Abl:gefitinib is
superimposed on the co-crystal structure of EGFR:gefitinib; gefitinib docked to Abl (light gray) is depicted in green and gefitinib bound
to EGFR (dark gray) is depicted in blue. The locations of clinical mutants for each inhibitor are highlighted (red spheres). The overall
RMSEs and MUEs for Prime (center) and FEP+ (right) and two-class accuracies are also shown in the figure. Computed free energy
changes due to the F317I mutation for erlotinib (-e) and gefitinib (-g) are highlighted in the scatter plot. FEP+ results are based on
the docked models prepared with crystal waters added back while the Prime (an implicit solvent model) results are based on models
without crystallographic water.
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3.5 Discussion and Conclusions

Physics-based modeling can reliably predict when a mutation elicits resistance

to therapy The results presented in this work are summarized in Table 3.3. The

performance metrics summarized in Table 3.3 indicates that the set of 131

mutations for the six TKIs in which co-crystal structures were available is on par

with the complete set (144 mutations), which included results based on Abl:TKI

complexes generated from docking models. The performance results for the 13

mutations for the two TKIs (erlotinib and gefitinib) in which co-crystal structures

were unavailable exhibited good quantitative accuracy (MUE and RMSE) and

good classification power.

Overall (N=144), the MM-GBSA approach Prime classified mutations with good

accuracy (0.730.80
0.66) and specificity (0.760.84

0.69) while the alchemical approach FEP+

was a significant improvement in classification accuracy (0.880.93
0.82) and specificity

(0.940.98
0.89). The quantitative accuracy with which Prime was able to predict the

experimentally measured change in Abl:TKI binding (N=142) characterized by

RMSE and MUE was 1.701.98
1.40 kcal mol−1 and 1.141.35

0.93 kcal mol−1 respectively. In

stark contrast, the quantitative accuracy of FEP+ was statistically superior to

Prime with an RMSE and an MUE of 1.071.26
0.89 kcal mol−1 and 0.790.92

0.67 kcal mol−1

respectively.

From the perspective of a clinician, classification rate would be an important

metric to measure the predictive power of technologies such as Prime and FEP+.

To test the hypothesis that reducing the large spread in Prime predictions could

improve its classification rate, we scaled the computed relative free energies and

recalculated the performance metrics (Data shown in publication [40]). As

expected, the MUE and RMSE were improved but the specificity of Prime was
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drastically diminished. Scaling FEP+ eliminated its sensitivity and a naı̈ve model

(all ∆∆Gs = 0.00 kcal mol−1) had zero sensitivity. Lastly, we constructed a

consensus model in which free energies were a weighted average of scaled Prime

and FEP+. This model also had zero sensitivity.

To address the impact of picking a cutoff to classify predicted free energies as

resistant or sensitizing, we computed ROC curves for the various predicted

datasets: Prime, FEP+, naı̈ve model, and consensus model (Data shown in

publication [40]). ROC curves and ROC-AUCs for scaled and non-scaled Prime

were identical, as well as scaled and non-scaled FEP+, because ROC curves are

independent of a linear transformation on the data. ROC-AUC for FEP+ was

0.750.90
0.61 (n=144); ROC-AUC for Prime was 0.660.81

0.52 (n=144); ROC-AUCs for the

naı̈ve model and consensus model were 0.500.50
0.50 (n=144) and 0.780.90

0.67 (n=144)

respectively. These results show that Prime has poor discriminatory power

(ROC-AUC in [0.6,0.7]) while FEP+ has fair discriminatory power (ROC-AUC in

[0.7,0.8]).
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Table 3.3: Summary of FEP+ and Prime statistics in predicting mutational resistance or sensitivity to FDA-approved TKIs

Dataset Method Nquant MUE RMSE Nclass Accuracy Specificity Sensitivity
(kcal mol−1) (kcal mol−1)

all FEP+ 142 0.790.92
0.67 1.071.26

0.89 144 0.880.93
0.82 0.940.98

0.89 0.470.69
0.25

all Prime 142 1.141.35
0.93 1.701.98

1.40 144 0.730.80
0.66 0.760.84

0.69 0.530.76
0.30

xtals FEP+ 129 0.820.95
0.69 1.111.30

0.91 131 0.870.92
0.81 0.930.97

0.88 0.500.74
0.29

xtals Prime 129 1.161.37
0.96 1.722.00

1.41 131 0.720.79
0.64 0.750.83

0.67 0.500.73
0.25

axitinib FEP+ 26 0.700.93
0.50 0.911.14

0.64 26 0.850.96
0.69 0.850.96

0.69 NA
axitinib Prime 26 1.051.71

0.53 1.852.61
0.96 26 0.881.00

0.73 0.881.00
0.73 NA

bosutinib FEP+ 21 0.961.42
0.55 1.411.97

0.77 21 0.760.95
0.57 0.881.00

0.71 0.251.00
0.00

bosutinib Prime 21 1.131.83
0.60 1.802.62

0.92 21 0.810.95
0.62 0.821.00

0.62 0.751.00
0.00

dasatinib FEP+ 20 0.761.13
0.49 1.071.57

0.59 21 0.901.00
0.76 0.941.00

0.79 0.801.00
0.33

dasatinib Prime 20 1.051.54
0.61 1.481.92

0.95 21 0.861.00
0.71 0.881.00

0.69 0.801.00
0.33

imatinib FEP+ 20 0.821.15
0.53 1.091.43

0.69 21 0.861.00
0.71 1.001.00

1.00 0.400.83
0.00

imatinib Prime 20 1.321.81
0.91 1.692.26

1.15 21 0.430.67
0.24 0.500.75

0.25 0.200.67
0.00

nilotinib FEP+ 21 0.821.12
0.57 1.061.39

0.69 21 0.861.00
0.67 0.941.00

0.80 0.501.00
0.00

nilotinib Prime 21 1.501.97
1.06 1.862.25

1.43 21 0.480.67
0.24 0.530.75

0.29 0.251.00
0.00

ponatinib FEP+ 21 0.871.16
0.62 1.091.46

0.70 21 1.001.00
1.00 1.001.00

1.00 NA
ponatinib Prime 21 0.941.54

0.50 1.572.44
0.69 21 0.810.95

0.62 0.810.95
0.62 NA

Glide FEP+ 13 0.500.78
0.26 0.690.97

0.35 13 0.921.00
0.77 1.001.00

1.00 0.000.00
0.00

Glide Prime 13 0.911.56
0.39 1.452.22

0.54 13 0.851.00
0.62 0.831.00

0.58 1.001.00
0.00

Nquant: Number of mutations for which quantitative metrics were evaluated; Nclass: Number mutations for which classification metrics
were evaluated; All: All mutations; xtals: All mutations for which co-crystal structures were available; Glide: erlotinib and gefitinib
Accuracy, specificity, and sensitivity were computed to assess two-class prediction performance:
resistant (∆∆G >1.36 kcal mol−1) or susceptible (∆∆G ≤ 1.36 kcal mol−1).
95% CIs (sub-/superscripts) were estimated from 1000 bootstrap replicates. Note: The sensitivity for axitinib and ponatinib is NA,
because there is no resistant mutation for these two drugs.
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Hierarchical Bayesian model estimates global performance A hierarchical

Bayesian approach was developed to estimate the intrinsic accuracy of the models

when the noise in the experimental and predicted values of ∆∆G was accounted

for. Utilizing this approach, the MUE and RMSE for Prime was found to be

1.391.58
1.23 kcal mol−1 and 1.751.98

1.55 kcal mol−1 (N=142) respectively. The accuracy,

specificity, and sensitivity of Prime was found using this method to be 0.740.76
0.71,

0.750.77
0.73, and 0.590.78

0.40 (N=144) respectively. The MUE and RMSE of FEP+ was found

to be 0.760.87
0.66 kcal mol−1 and 0.951.09

0.82 kcal mol−1 (N=142) respectively, which is

significantly better than Prime. Likewise, a clearer picture of the true classification

accuracy, specificity, and sensitivity of FEP+ was found—0.900.93
0.86, 0.920.95

0.90, and

0.681.00
0.46 respectively.

The high accuracy of FEP+ is very encouraging, and the accuracy can be further

improved with more accurate modeling of a number of physical chemical effects

not currently considered by the method. While highly optimized, the

fixed-charged OPLS3 [54] force field can be further improved by explicit

consideration of polarizability effects [162], as hinted by some small-scale

benchmarks [163]. These features could be especially important for bosutinib,

whose 2,4-dichloro-5-methoxyphenyl ring is adjacent to the positively charged

amine of the catalytic Lys271. Many simulation programs also utilize a long-range

isotropic analytical dispersion correction intended to correct for the truncation of

dispersion interactions at finite cutoff, which can induce an error in

protein-ligand binding free energies that depends on the number of ligand heavy

atoms being modified [164]; recently, efficient Lennard-Jones PME

methods [165, 166] and perturbation schemes [164] have been developed that can

eliminate the errors associated with this truncation. While the currently

employed methodology for alchemical transformations involving a change in

system charge (see Methods) reduces artifacts that depend on the simulation box
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size and periodic boundary conditions, the explicit ions that were included in

these simulations may not have sufficiently converged to their equilibrium

distributions in these relatively short simulations. Kinases and their inhibitors are

known to possess multiple titratable sites with either intrinsic or effective pKas

near physiological pH, while the simulations here treat protonation states and

proton tautomers fixed throughout the bound and unbound states; the accuracy

of the model can be further improved with the protonation states or tautomers

shift upon binding or mutation considered [167, 168]. Similarly, some systems

display significant salt concentration dependence [169], while the simulations for

some systems reported here did not rigorously mimic all aspects of the

experimental conditions of the cell viability assays.

Experimentally observed IC50 changes can be caused by other physical

mechanisms While we have shown that predicting the direct impact of

mutations on the binding affinity of ATP-competitive tyrosine kinase inhibitors

for a single kinase conformation has useful predictive capacity, many additional

physical effects that can contribute to cell viability are not currently captured by

examining only the predicted change in inhibitor binding affinity. For example,

kinase missense mutations can also shift the populations of kinase conformations

(which may affect ATP and inhibitor affinities differentially), modulate ATP

affinity, modulate affinity for protein substrate, or modulate the ability of the

kinase to be regulated or bounded by scaffolding proteins. While many of these

effects are in principle tractable by physical modeling in general it is valuable to

examine our mispredictions and outliers to identify whether any of these cases

are likely to induce resistance (as observed by ∆pIC50 shifts) by one of these

alternative mechanisms.
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Other physical mechanisms of resistance are likely similarly computable. A

simple threshold of 10-fold TKI affinity change is a crude metric for classifying

resistance or susceptibility due to the myriad biological factors that contribute to

the efficacy of a drug in a person. Except for affecting the binding affinity of

inhibitors, missense mutations can also cause drug resistance through other

physical mechanisms including induction of splice variants or alleviation of

feedback. While the current study only focused on the effect of mutation on drug

binding affinity, resistance from these other physical mechanisms could be

similarly computed using physical modeling. For example, some mutations are

known to activate the kinase by increasing affinity to ATP, which could be

computed using free energy methods like FEP.

Conclusion Revolutionary changes in computing power—especially the arrival

of inexpensive graphics processors (GPUs)—and software automation have

enabled alchemical free-energy calculations to impact drug discovery and life

sciences projects in previously unforeseen ways. In this communication, we

tested the hypothesis that FEP+, a fully-automated relative-alchemical

free-energy workflow, had reached the point where it can accurately and reliably

predict how clinically-observed mutations in Abl kinase alter the binding affinity

of eight FDA-approved TKIs. To establish the potential predictive impact of

current-generation alchemical free energy calculations—which incorporate

entropic and enthalpic effects and the discrete nature of aqueous

solvation—compared to a simpler physics-based approach that also uses modern

forcefields but scores a single minimized conformation, we employed a second

physics-based approach (Prime). This simpler physics-based model, which uses

an implicit model of solvation to score the energetic changes in interaction energy

that arise from the mutation, was able to capture a useful amount of information
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to achieve substantial predictiveness with an MUE of 1.141.35
0.93 kcal mol−1 (N=142),

RMSE of 1.701.98
1.40 kcal mol−1 respectively (N=142), and classification accuracy of

0.730.80
0.66 (N=144). Surpassing these good results, we went on to demonstrate that

FEP+ is able to achieve superior predictive performance— MUE of 0.790.92
0.67 kcal

mol−1 (N=142), RMSE of 1.071.26
0.89 kcal mol−1 (N=142), and classification accuracy of

0.880.93
0.82 (N=144). While future enhancements to the workflows for Prime and

FEP+ to account for additional physical and chemical effects are likely to improve

predictive performance further, the present results are of sufficient quality and

achievable on a sufficiently rapid timescale (with turnaround times ∼6

hours/calculation) to impact research projects in drug discovery and the life

sciences. This work illustrates how the domain of applicability for alchemical

free-energy methods is much larger than previously appreciated, and might

further be found to include new areas as research progresses: aiding clinical

decision-making in the selection of first- or second-line therapeutics guided by

knowledge of likely subclonal resistance; identifying other selective kinase

inhibitors (or combination therapies) to which the mutant kinase is susceptible;

supporting the selection of candidate molecules to advance to clinical trials based

on anticipated activity against likely mutations; facilitating the enrollments of

patients in mechanism-based basket trials; and generally augmenting the

armamentarium of precision oncology.
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3.6 Methods

3.6.1 System preparation

All system preparation utilized the Maestro Suite (Schrödinger) version 2016-4.

Comparative modeling to add missing residues using a homologous template

made use of the Splicer tool, while missing loops modeled without a template

used Prime. All tools employed default settings unless otherwise noted. The Abl

wild-type sequence used in building all Abl kinase domain models utilized the

ABL1 HUMAN Isoform IA (P00519-1) UniProt gene sequence spanning

S229–K512. Models were prepared in non-phosphorylated form. We used a

residue indexing convention that places the Thr gatekeeper residue at position

315 to match common usage; an alternate indexing convention utilized in

experimental X-ray structures for Abl:imatinib (PDB: 1OPJ) [170] and

Abl:dasatinib (PDB: 4XEY) [171] was adjusted to match our convention.

Complexes with co-crystal structures.

Chain B of the experimental structure of Abl:axitinib (PDB: 4WA9) [151] was

used, and four missing residues at the N- and C-termini were added using

homology modeling with PDB 3IK3 [172] as the template following alignment of

the respective termini of the kinase domain. Chain B was selected because chain

A was missing an additional 3 and 4 residues at the N- and C-termini,

respectively, in addition to 3- and 20-residue loops, both of which were resolved

in chain B. All missing side chains were added with Prime. The co-crystal

structure of Abl:bosutinib (PDB: 3UE4) [173] was missing 4 and 10 N- and

C-terminal residues respectively in chain A that were built using homology
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modeling with 3IK3 as the template. All loops were resolved in chain A (chain B

was missing two residues in the P-loop, Q252 and Y253). All missing side chains

were added with Prime. The co-crystal structure of Abl:dasatinib (PDB: 4XEY)

[171] was missing 2 and 9 N- and C-terminal residues, respectively, that were

built via homology modeling using 3IK3 as the template. A 3 residue loop was

absent in chain B but present in chain A; chain A was chosen. The co-crystal

structure of Abl:imatinib (PDB: 1OPJ) [170] had no missing loops. Chain B was

used because chain A was missing two C-terminal residues that were resolved in

chain B. A serine was present at position 336 (index 355 in the PDB file) and was

mutated to asparagine using Prime to match the human wild-type reference

sequence (P00519-1). The co-crystal structure of Abl:nilotinib (PDB: 3CS9) [174]

contained four chains in the asymmetric unit all of which were missing at least

one loop. Chain A was selected because its one missing loop involved the fewest

number of residues of the four chains; chain A was missing 4 and 12 N- and

C-terminal residues, respectively, that were built using homology modeling with

3IK3 as the template. A 4-residue loop was missing in chain A (chain B and C

were missing two loops, chain D was missing a five residue loop) that was built

using Prime. The co-crystal structure of Abl:ponatinib (PDB: 3OXZ) [175]

contained only one chain in the asymmetric unit. It had two missing loops, one 4

residues (built using Prime) and one 12 residues (built using homology modeling

with 3OY3 [175] as the template). Serine was present at position 336 and was

mutated to Asn using Prime to match the human wild-type reference sequence

(P00519-1). Once the residue composition of the six Abl:TKI complexes were

normalized to have the same sequence, the models were prepared using Protein

Preparation Wizard. Bond orders were assigned using the Chemical Components

Dictionary and hydrogen atoms were added. Missing side chain atoms were built

using Prime. Termini were capped with N-acetyl (N-terminus) and N-methyl
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amide (C-terminus). If present, crystallographic water molecules were retained.

Residue protonation states (e.g. Asp381 and Asp421) were determined using

PROPKA [176] with a pH range of 5.0–9.0. Ligand protonation state was assigned

using PROPKA with pH equal to the experimental assay. Hydrogen bonds were

assigned by sampling the orientation of crystallographic water, Asn and Gln flips,

and His protonation state. The positions of hydrogen atoms were minimized

while constraining heavy atoms coordinates. Finally, restrained minimization of

all atoms was performed in which a harmonic positional restraint (25.0 kcal mol−1

−2) was applied only to heavy atoms. Table 3.4 summarizes the composition of the

final models used for FEP.
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Table 3.4: Summary of the preparation of the 6 Abl:TKI co-crystal structure complexes

Experimental structure Prepared model used for simulations

PDB Receptor Ligand Chains # Watera # Rec. atoms, # Aminos, Chain # Water # Rec. # Rec. # Ash # Glh # Hip # Lig. Het. atomd

(Chain) b (Chain) used atoms aminos atoms w/ proton

4wa9 Abl Axit A, B 305 2219 (B) 276 (B) B 131 4580 284 Ash421 0 0 46 neutral
3ue4 Abl Bosut A, B 152 2187 (A) 270 (A) A 89 4581 284 Ash421 0 0 66 NBI,4401

Ash381
4xey Abl Dasat A, B 0 2195 (A) 269 (A) A 0 4581 284 Ash421c 0 0 59 neutral

Ash381c

1opj Abl Imat A, B 231 2336 (B) 288 (B) B 104 4579 284 0 0 0 69 N51,4767
3cs9 Abl Nilot A, B, C, D 266 2142 (A) 264 (A) A 99 4579 284 0 0 0 61 neutral
3oxz Abl Ponat A 89 2152 (A) 268 (A) A 89 4580 284 0 0 0 67 N3,2155

aTotal number of water molecules, bCount includes N-Acetyl/N-terminal (6 atoms) and N-methylamide/C-terminal (6 atoms)
capping groups, cOriginal index in experimental structure was Ash440, Ash400, d(PDB atom name) and (PDB atom serial number).
Ash: Neutral form of Asp; Glh: Neutral form of Glu; Hip: Charged form of His.
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Complexes without co-crystal structures.

Co-crystal structures of Abl bound to erlotinib or gefitinib were not publicly

available. To generate models of these complexes, Glide-SP [177] was utilized to

dock these two compounds into an Abl receptor structure. Co-crystal structures

of these two compounds bound to EGFR were publicly available and this

information was used to obtain initial ligand geometries and to establish a

reference binding mode against which our docking results could be structurally

scored. The Abl receptor structure bound to bosutinib was used for docking

because its structure was structurally similar to that of EGFR in the erlotinib-

(PDB: 4HJO) [178] and gefitinib-bound (PDB: 4WKQ) [179] co-crystal structures.

Abl was prepared for docking by using the Protein Preparation Wizard (PPW)

with default parameters. Crystallographic waters were removed but their

coordinates retained for a subsequent step in which they were optionally

reintroduced. Erlotinib and gefitinib protonation states at pH 7.0±2.0 were

determined using Epik [180]. Docking was performed using the Glide-SP

workflow. The receptor grid was centered on bosutinib. The backbone NH of

Met318 was chosen to participate in a hydrogen bonding constraint with any

hydrogen bond donor on the ligand. The hydroxyl of T315 was allowed to rotate

in an otherwise rigid receptor. Ligand docking was performed with enhanced

sampling; otherwise default settings were used. Epik state penalties were

included in the scoring. The 16 highest ranked (Glide-SP score) poses were

retained for subsequent scoring. To determine the docked pose that would be

subsequently used for free energy calculations, the ligand heavy-atom RMSD

between the 16 poses and the EGFR co-crystal structures (PDB IDs 4HJO and

4WKQ) was determined. The pose in which erlotinib or gefitinib most

structurally resembled the EGFR co-crystal structure (lowest heavy-atom RMSD)
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was chosen as the pose for subsequent FEP+. Two sets of complex structures were

subjected to free energy calculations to determine the effect of crystal waters: In

the first set, without crystallographic waters, the complexes were prepared using

Protein Prep Wizard as above. In the second set, the crystallographic waters

removed prior to docking were added back, and waters in the binding pocket that

clashed with the ligand were removed.

3.6.2 Force field parameter assignment

The OPLS3 forcefield [54] version that shipped with Schrödinger Suite release

2016-4 was used to parameterize the protein and ligand. Torsion parameter

coverage was checked for all ligand fragments using Force Field Builder. The two

ligands that contained a fragment with a torsion parameter not covered by OPLS3

were axitinib and bosutinib; Force Field Builder was used to obtain these

parameters. SPC parameters [181] were used for water. For mutations that change

the net change of the system, counterions were included to neutralize the system

with additional Na+ and Cl- ions added to achieve 0.15 M excess to mimic the

solution conditions of the experimental assay.

3.6.3 Prime (MM-GBSA)

Prime was used to predict the geometry of mutant side chains and to calculate

relative changes in free energy using MM-GBSA single-point estimates [150].

VSGB [182] was used as the implicit solvent model to calculate the solvation free

energies for the four states (complex/wild-type, complex/mutant, apo

protein/wild-type, and apo protein/mutant) and ∆∆G calculated using the
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thermodynamic cycle depicted in Figure 3.1B. Unlike FEP (see below), which

simulates the horizontal legs of the thermodynamic cycle, MM-GBSA models the

vertical legs by computing the interaction energy between the ligand and protein

in both wild-type and mutant states, subtracting these to obtain the ∆∆G of

mutation on the binding free energy.

3.6.4 Alchemical free energy perturbation calculations using

FEP+

Alchemical free energy calculations were performed using the FEP+ tool in the

Schrödinger Suite version 2016-4, which offers a fully automated workflow

requiring only an input structure (wild-type complex) and specification of the

desired mutation. The default protocol was used throughout: It assigns protein

and ligand force field parameters (as above), generates a dual-topology [183]

alchemical system for transforming wild-type into mutant protein (whose initial

structure is modeled using Prime), generates the solvent-leg endpoints (wild-type

and mutant apo protein), and constructs intermediate windows spanning

wild-type and mutant states. Simulations of the apo protein were setup by

removing the ligand from the prepared complex (see System Preparation)

followed by an identical simulation protocol as that used for the complex.

Charge-conserving mutations utilized 12 λ windows (24 systems) while

charge-changing mutations utilized 24 λ windows (48 systems). Each system was

solvated in an orthogonal box of explicit solvent (SPC water [181]) with box size

determined to ensure that solute atoms were no less than 5 (complex leg) or 10

(solvent leg) from an edge of the box. For mutations that change the net charge of

the system, counterions were included to neutralize the charge of the system, and
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additional Na+ and Cl- ions added to achieve 0.15 M excess NaCl to mimic the

solution conditions of the experimental assay. The artifact in electrostatic

interactions for charge change perturbations due to periodic boundary conditions

in MD simulations are corrected based on the method proposed by Rocklin et

al. [184], where the difference in solvation free energy of the solute under

non-periodic boundary condition and that under periodic boundary condition is

approximated by Poisson-Boltzmann method and serves as the correction term

for each system.

System equilibration was automated. It followed the default 5-stage Desmond

protocol: (i) 100 ps with 1 fs time steps of Brownian dynamics with positional

restraints of solute heavy atoms to their initial geometry using a restraint force

constant of 50 kcal mol−1 −2; this Brownian dynamics integrator corresponds to a

Langevin integrator in the limit when τ→0, modified to stabilize equilibration of

starting configurations with high potential energies; particle and piston velocities

were clipped so that particle displacements were limited to 0.1 , in any direction.

(ii) 12 ps MD simulations with 1 fs time step using Langevin thermostat at 10 K

with constant volume, using the same restraints; (iii) 12 ps MD simulations with

1 fs time step using Langevin thermostat and barostat [185] at 10 K and constant

pressure of 1 atmosphere, using the same restraints; (iv) 12 ps MD simulations

with 1 fs time step using Langevin thermostat and barostat at 300 K and constant

pressure of 1 atmosphere, using the same restraints; (v) a final unrestrained

equilibration MD simulation of 240 ps with 2 fs time step using Langevin

thermostat and barostat at 300 K and constant pressure of 1 atmosphere.

Electrostatic interactions were computed with particle-mesh Ewald (PME) [186]

and a 9 cutoff distance was used for van de Waals interactions. The production

MD simulation was performed in the NPT ensemble using the MTK method [187]

with integration time steps of 4 fs, 4 fs, and 8 fs respectively for the bonded, near,
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and far interactions following the RESPA method [188] through hydrogen mass

repartitioning [189]. Production FEP+ calculations utilized Hamiltonian replica

exchange with solute tempering (REST) [190], with automated definition of the

REST region. Dynamics were performed with constant pressure of 1 atmosphere

and constant temperature of 300 K for 5 ns in which exchanges between windows

was attempted every 1.2 ps.

Because cycle closure could not be used to reduce statistical errors via path

redundancy [190], we instead performed mutational free energy calculations in

triplicate by initializing dynamics with different random seeds. The relative free

energies for each mutation in each independent run were calculated using

BAR [191, 192] The reported ∆∆G was computed as the mean of the computed

∆∆G from three independent simulations. Triplicate simulations were performed

in parallel using four NIVIDA Pascal Architecture GPUs per alchemical

free-energy simulation (12 GPUs in total), requiring ∼6 hours in total to compute

∆∆G.

3.6.5 Obtaining ∆∆G from ∆pIC50 benchmark set data

Reference relative free energies were obtained from three publicly available

sources of ∆pIC50 data (Table 3.1). Under the assumption of Michaelis-Menten

binding kinetics (pseudo first-order, but relative free energies are likely

consistent), the inhibitor is competitive with ATP (Equation 3.1). This assumption

has been successfully used to estimate relative free energies [109, 148, 193, 194]

using the relationship between IC50 and competitive inhibitor affinity Ki,

IC50 =
Ki

1 + [S 0]
KM

. (3.1)
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If the Michaelis constant for ATP (KM) is much larger than the initial ATP

concentration S 0, the relation in Equation 3.1 will tend towards the equality IC50 =

Ki. The relative change in binding free energy of Abl:TKI binding due to protein

mutation is simply,

∆∆G = −RT ln
IC50,WT

IC50,mut
(3.2)

where IC50,WT is the IC50 value for the TKI binding to the wild-type protein and

IC50,mut is the IC50 value for the mutant protein. R is the ideal gas constant and T is

taken to be room temperature (300 K).

As alluded to above, relating ∆pIC50s to ∆∆Gs assumes that the Michaelis

constant for ATP is much larger than the initial concentration of ATP, and that the

experimentally observed ∆pIC50 change is solely from changes in kinase:TKI

binding affinity. In practice, not all of these assumptions may hold. For example,

the experimentally observed ∆pIC50 might depend on the metabolism of drugs,

and for drugs with different mechanisms of action than directly binding to the

kinase binding pocket (e.g., binding to the transition structures of kinases, target

gene amplification, up-/down-regulation of positive-/negative-feedback

effectors, diminished synergism of pro-apoptotic machinery, decoupling of the

target from cell survival circuits) [195, 196], their inhibition ability might not

correlate well with binding affinity. However, the comparison between ∆pIC50

and ∆KD is presented in Figure 3.2D, and this comparison indicates the

assumptions we used to relate ∆pIC50 to ∆∆G are reasonable for the dataset we

studied.
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3.6.6 Assessing prediction performance

Quantitative accuracy metrics

Mean unsigned error (MUE) was calculated by taking the average absolute

difference between predicted and experimental estimates of ∆∆G. Root-mean

square error (RMSE) was calculated by taking the square root of the average

squared difference between predicted and experimental estimates of ∆∆G. MUE

depends linearly on errors such that large and small errors contribute equally to

the average value, while RMSE depends quadratically on errors, magnifying their

effect on the average value.

Truth tables

Two-class truth tables were constructed to characterize the ability of Prime and

FEP+ to correctly classify mutations as susceptible (∆∆G ≤ 1.36 kcal mol−1) or

resistant (∆∆G > 1.36 kcal mol−1), where the 1.36 kcal mol−1 threshold represents a

10-fold change in affinity. Accuracy was calculated as the fraction of all

predictions that were correctly classified as sensitizing, neutral, or resistant.

Sensitivity and specificity were calculated using a binary classification of resistant

(∆∆G > 1.36 kcal mol−1) or susceptible (∆∆G ≤ 1.36 kcal mol−1). Specificity was

calculated as the fraction of correctly predicted non-resistant mutations out of all

truly susceptible mutations S. Sensitivity was calculated as the fraction of

correctly predicted resistant mutations out of all truly resistant mutations, R. The

number of susceptible mutations was 113 for axitinib, bosutinib, dasatinib,

imatinib, nilotinib and ponatinib, and 12 for erlotinib and gefitinib; the number of
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resistant mutations R was 18 for axitinib, bosutinib, dasatinib, imatinib, nilotinib,

and ponatinib, and 1 for erlotinib and gefitinib.

Consensus model

First, Prime and FEP+ (n=142) were scaled by minimizing their RMSE to

experiment by optimizing slope using linear regression. The resulting (minimum)

RMSE was used in a subsequent step to combine the scaled FEP+ and scaled

Prime free energies with inverse-variance weighted averaging.

ROC

A ROC curve was generated by computing the true positive rate (sensitivity) and

the true negative rate (specificity) when the classification cutoff differentiating

resistant from sensitizing mutations is changed for (only) the predicted values of

∆∆G. Cutoffs were chosen by taking the minimum and maximum value of ∆∆G

for a data set (Prime or FEP+), and iteratively computing specificity and

sensitivity in steps of 0.001 kcal mol−1, which by this definition will be in the

range [0,1]. Experimental positives and negatives were classified with the 1.36

kcal mol−1 cutoff. ROC-AUC was computed using the trapezoidal rule.

Estimating uncertainties of physical-modeling results

95% symmetric confidence intervals (CI, 95%) for all performance metrics were

calculated using bootstrap by resampling all datasets with replacement, with 1000

resampling events. Confidence intervals were estimated for all performance

metrics and reported as xxhigh
xlow where x is the mean statistic calculated from the
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complete dataset (e.g. RMSE), and xlow and xhigh are the values of the statistic at the

2.5th and 97.5th percentiles of the value-sorted list of the bootstrap samples.

Uncertainty for ∆∆Gs was computed by the standard deviation between three

independent runs (using different random seeds to set initial velocities), where

the 95% CI was [∆∆G−1.96×σFEP+, ∆∆G+1.96×σFEP+] kcal mol−1. 1σ used in plots

for FEP+ and experiment; 0σ for Prime.

Bayesian hierarchical model to estimate intrinsic error

We used Bayesian inference to estimate the true underlying prediction error of

Prime and FEP+ by making use of known properties of the experimental

variability (characterized in Figure 3.2) and statistical uncertainty estimates

generated by our calculations under weak assumptions about the character of the

error.

We presume the true free energy differences of mutation i, ∆∆Gtrue
i , comes from a

normal background distribution of unknown mean and variance,

∆∆Gtrue
i ∼ N(µmut, σ

2
mut) i = 1, . . . ,M (3.3)

where there are M mutations in our dataset. We assign weak priors to the mean

and variance

µmut ∼ U(−6,+6) (3.4)

σmut ∝ 1 (3.5)

where we limit σ > 0.

We presume the true computational predictions (absent statistical error) differ

from the (unknown) true free energy difference of mutation ∆∆Gtrue
i by
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normally-distributed errors with zero bias but standard deviation equal to the

RMSE for either Prime or FEP+, the quantity we are focused on estimating:

∆∆Gtrue
i,Prime ∼ N(∆∆Gtrue

i ,RMSE2
Prime) (3.6)

∆∆Gtrue
i,FEP+ ∼ N(∆∆Gtrue

i ,RMSE2
FEP+) (3.7)

In the case of Prime, since the computation is deterministic, we actually calculate

∆∆Gtrue
Prime for each mutant. For FEP+, however, the computed free energy changes

are corrupted by statistical error, which we also presume to be normally

distributed with standard deviation σcalc,i,

∆∆Gi,FEP+ ∼ N(∆∆Gi,FEP+, σ
2
i,FEP+) (3.8)

where ∆∆Gi,FEP+ is the free energy computed for mutant i by FEP+, and σi,FEP+ is

the corresponding statistical error estimate.

The experimental data we observe is also corrupted by error, which we presume

to be normally distributed with standard deviation σexp:

∆∆Gi,exp ∼ N(∆∆Gi, σ
2
exp) (3.9)

Here, we used an estimate of Kd- and IC50-derived ∆∆G variation derived from

the empirical RMSE of 0.81 kcal mol−1, where we took σexp ≈ 0.81/
√

2 = 0.57 kcal

mol−1 to ensure the difference between two random measurements of the same

mutant would have an empirical RMSE of 0.81 kcal mol−1.

Under the assumption that the true ∆∆G is normally distributed and the

calculated value differs from the true value via a normal error model, it can easily

be shown that the MUE is related to the RMSE via

MUE =

∫
dxtrue p(xtrue)

∫
dxcalc p(xcalc|xtrue) |xcalc − xtrue| (3.10)

108



=

∫
dxtrue

1√
2πσ2

true

e
−

(xtrue−µtrue)2

2σ2
true

∫
dxcalc

1√
2πσ2

calc

e
−

(xcalc−µtrue)2

2σ2
calc |xcalc − xtrue|(3.11)

=

√
2
π

RMSE (3.12)

The model was implemented using PyMC3 [197], observable quantities were set

to their computed or experimental values, and 5000 samples drawn from the

posterior (after discarding an initial 500 samples to burn-in) using the default

NUTS sampler. Expectations and posterior predictive intervals were computed

from the marginal distributions obtained from the resulting traces.

3.6.7 Data availability

All relevant data are publicly available: compiled experimental datasets, input

files for Prime and FEP+ and computational results that support our findings can

be found at GitHub by following the URL: https://github.com/kehauser/

Predicting-resistance-of-clinical-Abl-mutations-to-targeted-kinase-inhibitors-using-FEP

3.6.8 Code availability

Scripts used for statistics analysis (including the Bayesian inference model) can be

found at the following URL: https://github.com/kehauser/

Predicting-resistance-of-clinical-Abl-mutations-to-targeted-kinase-inhibitors-using-FEP
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CHAPTER 4

ENABLING HIGH-THROUGHPUT BIOPHYSICAL EXPERIMENTS ON

CLINICALLY-OBSERVED MUTATIONS

4.1 Gloss

The work in this chapter was published in Biochemistry and is reprinted with
permission. Copyright 2018 American Chemical Society.
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A common roadblock in testing computational methodologies to predict

resistance and selectivity is the relative scarcity of high-quality, publicly available,

and quantitative experimental data for the same compounds measured against

multiples kinases or multiple forms of the kinase. Further, what data is available

is often reported without reliable uncertainty estimates. Studies of internal and

public databases have provided estimates of uncertainties for IC50 [56, 103] and

Ki [198], as well as the pitfalls that come from combining heterogeneous datasets.
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Even for kinases, many of which are extensively studied and are the subjects of

many drug development programs, quantitative data is scarce and difficult to

access publicly. The previous chapter uniquely highlighted this problem: the

RMSE of FEP+ for predicting the impact of mutations was roughly equal to the

RMSE of Kd and IC50 measurements for the same ligand and mutant kinase pairs.

Rather than manually intensive gathering of unreliable public data, an idealized

pipeline for experiments benchmarking computational methods for their ability

to predict selectivity or the impact of mutations would be: express the wildtype

or clinical mutant kinases of interest, measure the affinities using a minimally

perturbative method that allows for the estimation of a ∆∆Gbinding with

well-characterized uncertainty and then benchmark the computational

calculations or methodologies. In the future, one can envision a scenario in which

a novel mutation is mapped onto all relevant structures and computationally

tested for the mutations impact on all available FDA-approved treatments. Any

promising calculations can be confirmed by rapidly expressing the mutant and

performing the biophysical experiments in a high-throughput manner, with a

consistent protocol to enable comparisons between different mutations and

ligands. Engineering this type of pipeline in either direction requires a number of

components. First, we need to be able to identify clinical mutations, through an

assay such as the MSK-IMPACT panel [38]. Then, we need ways to automate the

setup and execution of alchemical free energy calculations for all combinations of

structural conformations and inhibitors of interest. Finally, we need ways to

rapidly engineer and express the mutants to validate the computational

experiments with biophysical measurements. In this chapter, we present work

moving towards enabling the high-throughput expression of kinases and their

clinical mutants using a one-size fits all, automated protocol. We also present two

different high-throughput biophysical measurements that are used to validate the
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quality of the expressed protein, which can be extended to test computational

predictions in a high-throughput, quantitative manner in future work. Finally, the

resulting wild-type kinase plasmids from this work have been made available on

Addgene, which we hope will provide a useful resource to the community for

kinase oriented biophysical studies.

This work was the result of a long collaboration between the Chodera Lab and the

QB3 MacroLab at UC Berkeley. Daniel Parton and John Chodera designed the

structural informatics pipeline and initial expression experiments, which were

carried out at the MacroLab by Scott Gradua and Chris Jeans. Mehtap Işık,

Lucelenie Rodrı́guez-Laureano and I planned and troubleshot the biophysical

experiments, which built on Sonya Hanson’s work in the lab. Julie Behr and I

planned the mutation expression experiments, which were carried out at the

MacroLab. I analyzed and curated the data, as well as wrote and edit the

manuscript, with a great deal of input from all of the authors, especially John

Chodera, Mehtap Işık, Nick Levinson and Markus Seeliger.

The most immediate future work in this area involves further optimizing the

fluorescence-based assay presented in this chapter so that quantitative

measurements of binding affinity can be made. Much of this work is presently

under way already. Exploring novel kinases that have yet to be expressed in

E. coli using this protocol could enable drug discovery and biophysical work on

kinases that have yet to be extensively characterized. While we see promising

yields co-expressing the kinases with phosphatases, many kinases and clinical

mutants still did not express well using this protocol. While future work could

focus on optimizing the protocol used to get better yields from the TEV cleavage,

co-expressing with chaperone protein such as Hsp90 and Cdc37 may rescue

insoluble protein from the cell pellet. Additionally, future work may focus on
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expanding the number of clinical mutants considered for Src and Abl, as well as

additional kinases of interest.

4.2 Abstract

Kinases play a critical role in cellular signaling and are dysregulated in a number

of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics

targeting kinases currently account for roughly 50% of cancer drug discovery

efforts. The ability to explore human kinase biochemistry and biophysics in the

laboratory is essential to designing selective inhibitors and studying drug

resistance. Bacterial expression systems are superior in terms of simplicity and

cost-effectiveness compared to insect or mammalian cells, but have historically

struggled with human kinase expression. Following the discovery that

phosphatase coexpression produced high yields of Src and Abl kinase domains in

bacteria, we have generated a library of 52 His-tagged human kinase domain

constructs that express above 2 µg/mL culture in an automated bacterial

expression system utilizing phosphatase coexpression (YopH for Tyr kinases,

Lambda for Ser/Thr kinases). Here, we report a structural bioinformatics

approach to identify kinase domain constructs previously expressed in bacteria

and likely to express well in our protocol, experiments demonstrating our simple

construct selection strategy selects constructs with good expression yields in a test

of 84 potential kinase domain boundaries for Abl, and yields from a

high-throughput expression screen of 96 human kinase constructs. Using a

fluorescence-based thermostability assay and a fluorescent ATP-competitive

inhibitor, we show that the highest-expressing kinases are folded and have

well-formed ATP binding sites. We also demonstrate that these constructs can
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enable characterization of clinical mutations by expressing a panel of 48 Src and

46 Abl mutations. The wild-type kinase construct library is available publicly via

Addgene.

4.3 Introduction

Kinases play a critical role in cellular signaling pathways, controlling a number of

key biological processes that include growth and proliferation. There are over 500

kinases in the human genome [199, 200], many of which are of therapeutic

interest. Perturbations due to mutation, translocation, or upregulation can cause

one or more kinases to become dysregulated, often with disastrous

consequences [201]. Kinase dysregulation has been linked to a number of

diseases, such as cancer, diabetes, and inflammation. Cancer alone is the second

leading cause of death in the United States, accounting for nearly 25% of all

deaths; in 2015, over 1.7 million new cases were diagnosed, with over 580,000

deaths [202]. Nearly 50% of cancer drug development is targeted at kinases,

accounting for perhaps 30% of all drug development effort globally [84, 203].

The discovery of imatinib, an inhibitor that targets the Abelson tyrosine kinase

(Abl) dysregulated in chronic myelogenous leukemia (CML) patients, was

transformative in revealing the enormous therapeutic potential of selective kinase

inhibitors, kindling hope that this remarkable success could be recapitulated for

other cancers and diseases [204]. While there are now 39 FDA-approved selective

kinase small molecule inhibitors (as of 16 Jan 2018) [3, 205], these molecules were

approved for targeting only 22 out of ∼500 human kinases1, with the vast majority

1These targets are, currently: Abl, DDR1, EGFR, HER2, VGFR1/2/3, Alk, Met, BRAF,
JAK1/2/3, Btk, Pi3K, CDK4, CDK6, MEK, ROS1, FLt3, IGF1R, Ret, Kit, Axl, TrkB, and mTOR [3].
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developed to target just a handful of kinases [206]. The discovery of

therapeutically effective inhibitors for other kinases has proven remarkably

challenging.

While these inhibitors have found success in the clinic, many patients cease to

respond to treatment due to resistance caused by mutations in the targeted

kinase [9], activation of downstream kinases [201], or relief of feedback inhibition

in signaling pathways [207]. These challenges have spurred the development of a

new generation of inhibitors aimed at overcoming resistance [34, 35], as well as

mutant-specific inhibitors that target kinases bearing a missense mutation that

confers resistance to an earlier generation inhibitor [36]. The ability to easily

engineer and express mutant kinase domains of interest would be of enormous

aid in the development of mutant-selective inhibitors, offering an advantage over

current high-throughput assays [208–210], which typically include few

clinically-observed mutant kinases.

Probing human kinase biochemistry, biophysics, and structural biology in the

laboratory is essential to making rapid progress in understanding kinase

regulation, developing selective inhibitors, and studying the biophysical driving

forces underlying mutational mechanisms of drug resistance. While human

kinase expression in baculovirus-infected insect cells can achieve high success

rates [211, 212], it cannot compete in cost, convenience, or speed with bacterial

expression. E. coli expression enables production of kinases without unwanted

post-translational modifications, allowing for greater control of the system. A

survey of 62 full-length non-receptor human kinases found that over 50% express

well in E. coli [211], but often expressing only the soluble kinase domains are

sufficient, since these are the molecular targets of therapy for targeted kinase

inhibitors and could be studied even for receptor-type kinases. While removal of
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regulatory domains can negatively impact expression and solubility, coexpression

with phosphatase was shown to greatly enhance bacterial kinase expression in Src

and Abl tyrosine kinases, presumably by ensuring that kinases remain in an

unphosphorylated inactive form where they can cause minimal damage to

cellular machinery [213].

The protein databank (PDB) now contains over 100 human kinases that were

expressed in bacteria, according to PDB header data. Many of these kinases were

expressed and crystallized as part of the highly successful Structural Genomics

Consortium (SGC) effort to increase structural coverage of the human

kinome [214]. Since bacterial expression is often complicated by the need to tailor

construct boundaries, solubility-promoting tags, and expression and purification

protocols individually for each protein expressed, we wondered whether a

simple, uniform, automatable expression and purification protocol could be used

to identify tractable kinases, select construct boundaries, express a large number

of human kinases and their mutant forms, and produce a convenient bacterial

expression library to facilitate kinase research and selective inhibitor

development. As a first step toward this goal, we developed a structural

informatics pipeline to use available kinase structural data and associated

metadata to select constructs from available human kinase libraries to clone into a

standard set of vectors intended for phosphatase coexpression under a simple

automatable expression and purification protocol. Using an expression screen for

multiple construct domain boundaries of Abl, we found that transferring

construct boundaries from available structural data can produce constructs with

useful expression levels, enabling simple identification of construct domain

boundaries. We then completed an automated expression screen in Rosetta2 cells

of 96 different kinases and found that 52 human kinase domains express with

yields greater than 2 µg/mL culture. To investigate whether these kinases are

117



properly folded and useful for biophysical experiments, we performed a

fluorescence-based thermostability assay on the 14 highest expressing kinases in

our panel and a single-well high-throughput fluorescence-based binding affinity

measurement on 39 kinases. These experiments demonstrated that omany of the

expressed kinases were folded, with well formed ATP binding sites capable of

binding a small molecule kinase inhibitor. To demonstrate the utility of these

constructs for probing the effect of clinical mutations on kinase structure and

ligand binding, we subsequently screened 48 Src and 46 Abl mutations, finding

that many clinically-derived mutant kinase domains can be expressed with useful

yields in this uniform automated expression and purification protocol.

All source code, data, and wild-type kinase plasmids associated with this project

are freely available online:

• Source code and data:

https://github.com/choderalab/kinase-ecoli-expression-panel

• Interactive table of expression data:

http://choderalab.org/kinome-expression

• Plasmids: https://www.addgene.org/kits/chodera-kinase-domains

118

https://github.com/choderalab/kinase-ecoli-expression-panel
http://choderalab.org/kinome-expression
https://www.addgene.org/kits/chodera-kinase-domains


4.4 Results

4.4.1 Construct boundary choice impacts Abl kinase domain

expression

To understand how alternative choices of expression construct boundaries can

modulate bacterial expression of a human kinase domain, we carried out an

expression screen of 84 unique construct boundaries encompassing the kinase

domain of the tyrosine protein kinase ABL1.

Three constructs known to express in bacteria were chosen from the literature and

used as controls, spanning Uniprot residues 229–500 (PDBID: 3CS9) [215],

229–512 (PDBID: 2G2H) [216] and 229–515 (PDBID: 2E2B) [217]. 81 constructs

were generated combinatorially by selecting nine different N-terminal boundaries

spanning residues 228–243 and nine different C-terminal boundaries spanning

residues 490–515, chosen to be near the start and end points for the control

constructs (Figure 4.1A). Each of the three control constructs included six

replicates to provide an estimate of the typical standard error in expression

readout for the experimental constructs, which was found to be between 0.42–1.5

µg/mL (Figure 4.1A, green constructs).

Briefly, the impact of construct boundary choice on Abl kinase domain expression

was tested as follows (see Methods for full details). His10-TEV N-terminally

tagged wild-type Abl constructs2 were coexpressed with YopH phosphatase in a

96-well format with control replicates distributed randomly throughout the plate.

His-tagged protein constructs were recovered via a single nickel affinity

2Parent plasmid is a pET His10 TEV LIC cloning vector and is available on Addgene (Plasmid
#78173).
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chromatography step, and construct yields were quantified using microfluidic

capillary electrophoresis following thermal denaturation. Expression yields are

summarized in Figure 4.1A, and a synthetic gel image from the constructs with

detectable expression is shown in Figure 4.2. Abl construct bands are present at

sizes between 29 and 35 kDa (due to the variation in construct boundaries), and

YopH phosphatase (which is not His-tagged but has substantial affinity for the

nickel beads) is present in all samples at its expected size of 50 kDa. Strikingly,

despite the fact that N-terminal and C-terminal construct boundaries only varied

over 15–25 residues, only a small number of constructs produced detectable

expression (Figure 4.1B). As highlighted in Figure 4.1C (left), the best N-terminal

boundaries (residues 228, 229, 230) are located on a disordered strand distant

from any secondary structure; N-terminal boundaries closer to the beta sheet of

the N-lobe gave poor or no detectable expression (Figure 4.1B).

The best C-terminal construct boundaries (residues 511 and 512) occur in an

α-helix (Figure 4.1C, right). Of note, this α-helix is not resolved in

PDBID:2E2B [217], suggesting this structural element may only be weakly

thermodynamically stable in the absence of additional domains. In previous

work, this α-helix was shown to undergo a dramatic conformational change

which introduces a kink at residue 516, splitting the α-helix into two [20]. This

suggests a high potential for flexibility in this region.

Two of the control constructs (which differ in construct boundary by only one or

two residues) were in the top six expressing constructs (Figure 4.1A), and were in

fact within 60% of the maximum observed expression yield. From this, we

concluded that transferring construct boundaries from existing kinase domain

structural data would be sufficient to bias our constructs toward useful

expression levels for a large-scale screen of multiple kinases.
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Figure 4.1: Abl kinase domain construct expression screen illustrates high sensitivity to construct boundaries. (A) Abl kinase domain
construct boundaries with highest expression yields. Standard deviations of the yield are listed for control constructs for which six
replicates were performed to give an indication of the uncertainty in experimental constructs. Secondary structure is indicated on the
sequence. Beta sheets are colored blue and alpha helices are colored orange. (B) Heatmap showing average yields for constructs (in
µg/mL culture) with detectable expression as a function of N- and C-terminal construct boundaries. (C) left: PDBID: 2E2B with the nine
N-terminal construct boundary amino acids shown as yellow spheres. right: PDBID: 4XEY with the nine C-terminal construct boundary
amino acids shown as green spheres. Black arrows indicate residue numbers.
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Figure 4.2: Expression yields of Abl kinase domain constructs for all constructs with detectable expression. A synthetic gel image
rendering generated from Caliper GX II microfluidic gel electrophoresis data following Ni-affinity purification and thermal denatura-
tion for all Abl constructs with detectable expression. Each well is marked with the Abl kinase domain construct residue boundaries
(Uniprot canonical isoform numbering). Bands for YopH164 phosphatase (50 kDA) and Abl kinsase domain constructs (28–35 kDA) are
labeled.
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4.4.2 Screen of 96 kinases finds 52 with useful levels of

automated E. coli expression

To begin exploring which human kinase domains can achieve useful expression

in E. coli using a simple automatable expression and purification protocol, a panel

of kinase domain constructs for 96 kinases, for which bacterial expression has

been previously demonstrated, was assembled using a semi-automated

bioinformatics pipeline. Briefly, a database was built by querying Uniprot [218]

for human protein kinase domains that were both active and not truncated. This

query returned a set of target sequences that were then matched to their relevant

PDB constructs and filtered for expression system (as determined from PDB

header EXPRESSION SYSTEM records), discarding kinases that did not have any

PDB entries with bacterial expression. As a final filtering step, the kinases were

compared to three purchased kinase plasmid libraries (described in Methods),

discarding kinases without a match. Construct boundaries were selected from

PDB constructs and the SGC plasmid library, both of which have experimental

evidence for E. coli expression, and subcloned from a plasmid in a purchased

library (see Methods). Selecting the kinases and their constructs for this

expression trial in this method rested on the basis of expected success: these

specific kinase constructs were bacterially expressed and purified to a degree that

a crystal structure could be solved. While expression protocols used to produce

protein for crystallographic studies are often individually tailored, we considered

these kinases to have a high likelihood of expressing in our semi-automated

pipeline where the same protocol is utilized for all kinases. Statistics of the

number of kinases obtained from the PDB mining procedure are shown in

Figure 4.3A. Surprisingly, the most highly sampled family was the CAMK family,

suggesting researchers may have found this family particularly amenable to
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bacterial expression. Based on the results of the previous experiment scanning

Abl constructs for expression, we decided to use construct boundaries that were

reported in the literature for each kinase. This process resulted in a set of 96

plasmid constructs distributed across kinase families (Figure 4.3B).
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Figure 4.3: Kinome wide search for expressible kinases. (A) The number of PDB structures per kinase family, from the database built
to select kinases for expression. (B) The distribution among familes of candidate kinases in our expression screen. (C) Caliper GX II
synthetic gel image rendering of the highest expressing kinases, quantified using microfluidic capillary electrophoresis. (D) Kinome
distribution of expression based on our 96 kinase screen. Dark green circles represent kinases with expression above 50 µg/mL culture
yield. Light green circles represent kinases with expression between 50 and 12 µg/mL yield. Yellow circles represent kinases with
expression between 12 and 7 µg/mL yield. Orange circles represent kinases with any expression (even below 2 µg/mL) up to 7 µg/mL
yield. Image made with KinMap: http://www.kinhub.org/kinmap.
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Table 4.1: Kinase domain constructs with yields >2 µg/mL culture for 96-kinase expression screen. Kinases are listed by Uniprot
designation and whether they were co-expressed with Lambda or truncated YopH164 phosphatase. Yield (determined by Caliper GX
II quantitation of the expected size band) reported in µg/mL culture, where total eluate volume was 120 µL from 900 µL bacterial
culture. Yields are shaded green (yield > 12 µg/mL), yellow (12 > yield > 7 µg/mL) and orange (yield < 7 µg/mL); kinase domain
constructs with yields that were undetectable or < 2 µg/mL are not listed. ‡ denotes that the second kinase domain of KS6A1 HUMAN
was expressed; all other kinases were the first or only kinase domain occurring in the ORF. Construct boundaries are listed in UniProt
residue numbering for the UniProt canonical isoform. An interactive table of expression yields and corresponding constructs is available
at http://choderalab.org/kinome-expression

Kinase Construct Boundary Plasmid Source and ID Phosphatase Yield (µg/mL)

MK14 HUMAN 1–360 Addgene 23865 Lambda 70.7
VRK3 HUMAN 24–352 SGC Oxford VRK3A-c016 Lambda 67.5
GAK HUMAN 24–359 SGC Oxford GAKA-c006 Lambda 64.7
CSK HUMAN 186–450 Addgene 23941 YopH 62.5
VRK1 HUMAN 3–364 Addgene 23496 Lambda 62.3
KC1G3 HUMAN 24–351 SGC Oxford CSNK1G3A-c002 Lambda 56.3
FES HUMAN 448–822 Addgene 23876 YopH 44.0
PMYT1 HUMAN 24–311 SGC Oxford PKMYT1A-c004 Lambda 38.0
MK03 HUMAN 1–379 Addgene 23509 Lambda 36.4
STK3 HUMAN 16–313 Addgene 23818 Lambda 34.3
DYR1A HUMAN 24–382 SGC Oxford DYRK1AA-c004 Lambda 34.1
KC1G1 HUMAN 24–331 SGC Oxford CSNK1G1A-c013 Lambda 34.1
MK11 HUMAN 24–369 SGC Oxford MAPK11A-c007 Lambda 31.7
MK13 HUMAN 1–352 Addgene 23739 Lambda 31.7
EPHB1 HUMAN 602–896 Addgene 23930 YopH 28.9
MK08 HUMAN 1–363 HIP pJP1520 HsCD00038084 Lambda 28.5
CDK16 HUMAN 163–478 Addgene 23754 Lambda 26.9
EPHB2 HUMAN 604–898 HIP pJP1520 HsCD00038588 YopH 25.1
PAK4 HUMAN 291–591 Addgene 23713 Lambda 23.9
CDKL1 HUMAN 2–304 SGC Oxford CDKL1A-c024 Lambda 23.2
SRC HUMAN 254–536 Addgene 23934 YopH 22.0
STK16 HUMAN 24–316 SGC Oxford STK16A-c002 Lambda 20.7
MAPK3 HUMAN 33–349 Addgene 23790 Lambda 18.8
PAK6 HUMAN 383–681 Addgene 23833 Lambda 18.0
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Table 4.1 continued from previous page
Kinase Construct Boundary Plasmid Source and ID Phosphatase Yield (µg/mL)

CSK22 HUMAN 1–334 HIP pJP1520 HsCD00037966 Lambda 17.9
MERTK HUMAN 570–864 Addgene 23900 YopH 16.8
PAK7 HUMAN 24–318 SGC Oxford PAK5A-c011 Lambda 14.7
CSK21 HUMAN 1–335 Addgene 23678 Lambda 14.5
EPHA3 HUMAN 606–947 Addgene 23911 YopH 14.1
BMPR2 HUMAN 1–329 SGC Oxford BMPR2A-c019 Lambda 14.1
M3K5 HUMAN 659–951 HIP pJP1520 HsCD00038752 Lambda 14.0
KCC2G HUMAN 24–334 SGC Oxford CAMK2GA-c006 Lambda 13.3
E2AK2 HUMAN 254–551 HIP pJP1520 HsCD00038350 Lambda 11.6
MK01 HUMAN 1–360 HIP pJP1520 HsCD00038281 Lambda 11.2
CSKP HUMAN 1–340 HIP pJP1520 HsCD00038384 Lambda 10.1
CHK2 HUMAN 210–531 Addgene 23843 Lambda 8.1
KC1G2 HUMAN 4–312 SGC Oxford CSNK1G2A-c002 Lambda 7.6
DMPK HUMAN 2 4–433 SGC Oxford DMPK1A-c026 Lambda 7.6
KCC2B HUMAN 11–303 Addgene 23820 Lambda 7.1
FGFR1 HUMAN 456–763 Addgene 23922 YopH 6.1
KS6A1 HUMAN‡ 413–735 SGC Oxford RPS6KA1A-c036 Lambda 5.7
DAPK3 HUMAN 9–289 Addgene 23436 Lambda 4.0
STK10 HUMAN 18–317 HIP pJP1520 HsCD00038077 Lambda 3.7
KC1D HUMAN 1–294 Addgene 23796 Lambda 3.7
KC1E HUMAN 1–294 Addgene 23797 Lambda 3.5
NEK1 HUMAN 23–350 SGC Oxford NEK1A-c011 Lambda 3.3
CDK2 HUMAN 1–297 Addgene 23777 Lambda 3.1
ABL1 HUMAN 229–512 HIP pJP1520 HsCD00038619 YopH 2.5
DAPK1 HUMAN 2–285 HIP pJP1520 HsCD00038376 Lambda 2.4
DYRK2 HUMAN 23–417 SGC Oxford DYRK2A-c023 Lambda 2.4
HASP HUMAN 24–357 SGC Oxford GSG2A-c009 Lambda 2.3
FGFR3 HUMAN 449–759 Addgene 23933 YopH 2.3
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From these constructs, a set of 96 His10-TEV N-terminally tagged kinase domain

constructs were generated, coexpressed with a phosphatase in E. coli, purified via

nickel bead pulldown, and quantified using microfluidic gel electrophoresis. The

96 kinases were coexpressed with either Lambda phosphatase (for Ser/Thr

kinases) or a truncated form of YopH phosphatase3 (for Tyr kinases).

Instead of eluting with imidazole, purified kinase was cleaved off nickel beads by

the addition of 10% TEV protease to minimize phosphatase contamination in the

resulting eluate, allowing us to assess whether resulting yields would be

sufficient (and sufficiently free of phosphatase) to permit activity assays. While

the initial panel of 96 kinases was well-distributed among kinase families

(Figure 4.3B), the most highly expressing kinases (yield of more than 12 µg

kinase/mL culture) were not evenly distributed (Figure 4.3D). While many of the

kinases chosen from the CMGC and CK1 families expressed well in our panel,

nearly all of the kinases from the CAMK and AGC family express below 12 µg

kinase/mL (Figure 4.3D). 52 kinases demonstrated a useful level of soluble

protein expression, here defined as greater than 2 µg/mL, naı̈vely expected to

scale up to better than 2 mg/L culture (Table 4.1). Some kinases (shaded green in

Table 4.1) demonstrated very high levels of expression, while others (shaded

orange in Table 4.1) would likely benefit from further rounds of construct

boundary optimization or solubility tags to boost soluble expression. The 17 most

highly expressing kinases showed relatively high purity after elution, though we

note that eluting via TEV site cleavage results in a quantity of TEV protease in the

eluate (Figure 4.3C), but does not cause the elution of the His-tagged

phosphatases which would hinder the ability to perform kinase activity assays.

3Yoph164 phosphatase, engineered to minimize intrinsic affinity for nickel purification resin by
the QB3 MacroLab based on parent plasmid pCDFDuet1-YOPH, a gift from the Kuriyan Lab.
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Further optimization of elution conditions may be required for optimizing kinase

recovery via TEV cleavage [219–221].

Constructs with expression yields above 2 µg/mL have been made available via

Addgene: https://www.addgene.org/kits/chodera-kinase-domains

4.4.3 High-expressing kinases are folded with a well-formed

ATP binding site

To determine whether the expressed kinases were properly folded, we performed

both a fluorescence-based thermostability assay (Figure 4.4) as well as a

fluorescent ATP-competitive ligand binding measurement to quantify whether

the ATP binding site was well-formed (Figure 4.5).
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Figure 4.4: Fluorescence-based thermostability assay demonstrates many high-expressing kinases are well-folded. A fluorescence-
based thermostability assay was performed on the 14 kinases shown to express above a minimum 0.24 mg/mL concentration after
elution. SYPRO Orange fluorescence (solid blue line) was measured at 580 nm (half bandwidth 20 nm) after excitation at 465 nm (half
bandwith 25 nm) as as the temperature was ramped from (x-axis) in Nickel Buffer A (25 mM HEPES pH 7.5, 5% glycerol, 400 mM NaCl,
20 mM imidazole, 1 mM BME). The temperature was held at 25◦C for 15 sec before ramping up to 95◦C with a ramp rate of 0.06◦C/s.
The unfolding temperature Tm (black dashed line and insert) was determined from the maxima of the normalized first derivative of
fluorescence (red dashed line). Fluorescence emission at 580 nm is shown on the left y-axis. To control for signals resulting from TEV
protease contamination present at 0.01–0.03 mg/mL, TTK, a kinase with no detectable expression in our panel as determined via Caliper
GX II quantitation was in included (panel 15).
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4.4.4 Fluorescence-based thermostability assay

A fluorescence-based thermostability assay was performed with the hydrophobic

dye SYPRO Orange to determine whether a strong two-state unfolding signal

could be observed (see Methods). Also referred to as thermofluor or differential

scanning fluorimetry (DSF), as the temperature is slowly increased, unfolded

proteins will expose hydrophobic patches that SYRPO orange will bind to,

causing an increase in fluorescence [222–224]. While the fluorescence of solvated

SYPRO Orange is temperature-dependent, clear unfolding temperatures (Tm) can

often be identified from peaks in the first derivative of the observed fluorescence

signal. Figure 4.4 shows the fluorescence (blue line), the absolute value of its

derivative (red dashed line), and the unfolding temperature determined from the

maximum absolute derivative (Tm) for the the 14 kinases that were eluted to

concentrations above 0.24 mg/mL eluate, which was determined to be the

minimum concentration required for optimal resolution of melting curves upon

dilution to 10 µL. Because TEV-eluted kinase was used directly in this assay, TEV

protease contaminant varies from 0.01–0.03 mg/mL in the resulting assay mix.

The selected minimum concentration ensured that the kinase was roughly an

order of magnitude higher concentration than the contaminating TEV.

Most of the kinases assayed had strong peaks above room temperature,

suggesting that they are well-folded in the elution buffer (25 mM HEPES pH 7.5,

5% glycerol, 400 mM NaCl, 20 mM imidazole, 1 mM BME) at room temperature.

Some kinases, such as a DYR1A and GAK (Figure 4.4, panels 6 and 9), had two

shallow inflection points in SYPRO fluorescence as a function of temperature.

While STK3 does not have a strong peak above room temperature, titration with

an ATP-competitive inhibitor suggests this kinase either has a well-formed ATP

binding site or folding can be induced by ligand binding (Figure 4.5, panel 10). As
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a control, a sample with no detectable kinase expression (TTK from our

expression panel) was assayed (Figure 4.4, panel 9), which showed nearly no

fluorescence signal.

4.4.5 ATP-competitive inhibitor binding fluorescence assay

To determine whether expressed kinases had well-folded ATP binding sites, we

probed their ability to bind an ATP-competitive inhibitor. While a pan-kinase

inhibitor such as staurosporine could be used as a fluorescent probe [225], the

ATP-competitive inhibitor bosutinib shows a much stronger increase in

fluorescence around 450–480 nm when bound to kinases with well-folded ATP

binding sites [226, 227]. While excitation at 350 nm can be used, excitation at

280 nm results in lower background, potentially due to fluorescent energy

transfer between kinase and ligand. Despite the weak affinity of bosutinib for

many kinases, its aqueous solubility is sufficient to provide a quantitative

assessment of ATP-competitive binding to many kinases at sufficiently high

concentrations to function as a useful probe [226, 227].

Here, we utilized this approach as a qualitative probe for ATP-competitive ligand

binding, due to uncertainty in the ligand concentration caused by significant

evaporation over the course of the sequential titration experiment (see Methods

section for a more in depth discussion). 33 of the kinases in our expression panel

had sufficient yields to prepare 100 µL of 0.5 µM kinase assay solutions, and were

assessed for binding to bosutinib (Figure 4.5, panels 1-33), with a

concentration-dependent increase in fluorescence signal (colored spectra) over the

baseline ligand fluorescence titrated into buffer (gray spectra) providing evidence

of a well-formed ATP binding site. Six of the lowest expression kinase constructs
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(Figure 4.5, panels 39-44) were prepared by diluted 20 µL to a reaction volume of

100 µL and assessed for bosutinib binding. Unexpectedly, these kinases also

showed evidence of binding, suggesting this assay is able to detect a well-formed

ATP binding site even for protein concentrations less than 0.5 µM. To demonstrate

that unfolded kinases do not demonstrate this increase in fluorescence over

ligand-only baseline, thermally denatured MK14 was included as a control next

to folded MK14 from a large-scale expression prep (Figure 4.5, panels 37–38), with

thermally denatured MK14 exhibiting little difference from titrating ligand into

buffer alone.
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Figure 4.5: Fluorescence emission spectra as a function of the fluorescent ATP-competitive kinase inhibitor bosutinib demonstrates
the presence of a well-formed ATP binding pocket. The ATP-competitive inhibitor bosutinib shows a strong increase in fluorescence
centered around 450 nm when bound to kinases with well-folded ATP binding sites upon excitation at 280 nm [226]. To assess whether
the kinases from the high-throughput expression screen were well-folded, bosutinib was titrated in a 15-concentration series geometri-
cally spanning 0.008 µM to 18.99 µM (colored lines, higher concentrations are shown in warmer colors) in 15 increments for 39 expressing
kinases with protein concentration adjusted to ∼0.5 µM in 100 µL assay volume. Eluted TEV protease contaminant varies from 0.01–0.03
mg/mL in the assay volumes. The control MK14 and boiled MK14 (boiled for 10 min at 95◦C) were produced in a large scale expression
from the same plasmid as used in the high-throughput expression protocol and they were included as positive and negative controls
for bosutinib binding to ATP binding pocket. Fluorescence emission spectra (y-axis, bandwidth 20 nm) were measured from 370 nm
to 600 nm (x-axis) for excitation at 280 nm (bandwidth 10 nm). For reference, the fluorescence of bosutinib titrated into buffer titration
(panel 36) is shown in grayscale in each panel. Significant increases in fluorescence signal above baseline qualitatively indicate the
presence of a well-formed ATP binding site.
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4.4.6 Expressing clinically-derived Src and Abl mutants

Next-generation sequencing has enabled generation of massive datasets rich with

missense alterations in kinases observed directly in the clinic [37–39], and has

been particularly transformative in the field of oncology. To determine how well

our human kinase domain panel supports the automated expression of

clinically-identified missense mutants for biophysical, biochemical, and structural

characterization, we attempted to express 96 missense mutations mined from

sequencing studies of cancer patients. The mutations were gathered using

cBioPortal [228] from publicly available sources and a large clinical tumor

sequencing dataset from the Memorial Sloan Kettering Cancer Center [38]

sequenced in the MSK-IMPACT panel [229].
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Table 4.2: Expression yields for engineered clinical missense mutants of Abl kinase domains with yields > 2 µg/mL culture. Abl
kinase domain constructs with engineered clinical mutations with expression yields >2 µg/mL culture are listed, sorted by yield. Yield
was determined by Caliper GX II quantitation of the expected size band and reported in µg/mL culture, where total eluate volume was
80 µL purified from 900 µL bacterial culture. Wild-type (WT) controls for both Src and Abl (here, a single well for each) are shown as
the first entry for each gene.

Abl1 (229–512) Mutationa Functional Impact Scoreb yield (µg/mL) % of WT expression

WT – 5.1 –
I403T Low 17.8 350
I293M Low 9.8 193
P309S Neutral 7.8 153
E453K Low 7.3 144
Y440H Medium 7.1 140
E292D Low 6.9 135
G251C High 5.2 102
E282Q Neutral 5.1 102
G250R Neutral 5.1 100
G254R High 5.0 98
Y312C Neutral 4.7 93
E453Q Low 3.7 73
R328K Low 3.5 69
D482E Neutral 2.5 49
F382L Medium 2.1 41
G390W Medium 2.1 41

a Uniprot amino acid sequence numbering of primary isoform
b MutationAssesor Score [230, 231], which predicts functional impact via conservation
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Table 4.3: Expression yields for engineered clinical missense mutants of Src kinase domains with yields > 2 µg/mL culture. Src
kinase domain constructs with engineered clinical mutations with expression yields >2 µg/mL culture are listed, sorted by yield. Yield
was determined by Caliper GX II quantitation of the expected size band and reported in µg/mL culture, where total eluate volume was
80 µL purified from 900 µL bacterial culture. Wild-type (WT) controls for both Src and Abl (here, a single well for each) are shown as
the first entry for each gene.

Src (254–536) Mutationa Functional Impact Scoreb yield (µg/mL) % of WT expression

WT – 35.7 –
T456S Neutral 80.9 227
R388G Medium 61.5 172
K298E High 54.5 153
V380M Neutral 51.7 145
D368N Neutral 49.9 140
D521N Low 42.8 120
R463Q Neutral 38.4 108
R391C Neutral 37.5 105
E323D Low 37.2 104
A309V Low 35.q 98
G303D Neutral 34.1 96
R362Q Neutral 33.6 94
L361M Medium 31.7 89
A421V Neutral 30.7 86
V402L Neutral 30.6 86
V397M Medium 29.8 84
Q278E Neutral 29.6 83
Q312H Low 29.5 83
L353V Medium 29.0 81
L454V Neutral 29.0 81
P307R Neutral 28.6 80
V340I Low 28.0 78
P307S Neutral 24.2 68
D476N Neutral 23.3 65
D351N Neutral 22.9 64
T293A Neutral 22.2 62
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Table 4.3 continued from previous page
Src (254–536) Mutationa Functional Impact Scoreb yield (µg/mL) % of WT expression

S345C Low 22.2 62
P428S Medium 22.2 62
E507D Neutral 20.7 58
D389E High 20.0 56
R503Q Neutral 17.3 49
D407H High 15.9 45
R463L Neutral 14.9 42
G291C Medium 11.9 33
G347E Medium 10.2 29
R483W High 9.8 27
P487L Medium 6.0 17
R463W Medium 5.2 15
R362W Low 3.9 11
S493F Low 3.0 8
P491S Low 2.2 6

a Uniprot amino acid sequence numbering of primary isoform
b MutationAssesor Score [230, 231], which predicts functional impact via conservation
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Using our structural informatics pipeline, a database was built focusing on the

kinases we found to be expressible in E. coli. To add the mutation data, we

retrieved public datasets from cBioPortal [232, 233] along with annotations from

Oncotator [234] through their respective web service APIs. We then added

mutations and annotations from the MSKCC dataset [38] by extracting the

mutations from a local copy of the dataset and retrieving annotations from

Oncotator. The annotated mutations were filtered for mutations that occurred

within the construct boundaries of our kinase domains. We found 63 unique

clinical mutations appearing within our kinase domain construct boundaries for

Abl and 61 for Src. We subsequently selected 48 mutants for Abl and 46 for Src to

express, aiming for a panel of mutants distributed throughout the kinase domain

(Figure 4.6A), with wild-type sequences included as controls. Mutations were

introduced using site-directed mutagenesis and assayed for expression yields

(Figure 4.6B). Those with yields above 2 µg kinase/mL culture are listed in

Tables 4.3 and 4.2.

High-expressing mutants appear to be distributed relatively uniformly

throughout the kinase domain (Figure 4.6A). While the vast majority of the Src

mutants expressed at a usable level, many of the Abl mutants expressed below the

2 µg/mL threshold. This can primarily be attributed to the low level of expression

for wild-type Abl construct (Table 4.1). In instances where kinase activity is not

required, yield could be increased via the introduction of inactivating

mutations [213] or further tailoring of expression and purification protocols.
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Figure 4.6: Expression yields for engineered clinically-derived Src and Abl missense mutants. (A) All Abl and Src clinically-identified
mutants assessed in the expression screen are displayed as sticks. Mutants with expression yields >2 µg/mL are colored green, while
those with yields <2 µg/mL are colored orange. Rendered structures are Abl (PDBID: 2E2B) and Src (PDBID: 4MXO) [227]. (B) Synthetic
gel images showing ABl (top) or Src (bottom) expression, with wells labeled by missense mutation. Yield was determined by Caliper GX
II quantitation of the expected size band and reported in µg/mL culture, where total eluate volume was 120 µL following nickel bead
pulldown purification from 900 µL bacterial culture. Residue mutations use numbering for the Uniprot canonical isoform.
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4.5 Discussion

We have demonstrated that a simple, uniform, automatable protocol is able to

achieve useful bacterial expression yields for a variety of kinase domain

constructs. While yields could likely be further improved by a variety of

methods—such as the addition of solubility-promoting tags, construct domain

boundary and codon optimization, or mutations to improve the solubility or

ablate catalytic activity—the simplicity of this approach suggests widespread

utility of automated bacterial expression for biophysical, biochemical, and

structural biology work for the further study of human kinase domains.

Our expression test of 81 different construct boundaries of the Abl kinase domain

demonstrated a surprising sensitivity of expression yields to the precise choice of

boundary. This sensitivity may be related to where the construct is truncated with

respect to the secondary structure of the protein, as disrupting secondary

structure could cause the protein to improperly fold, leading to low soluble

protein yield even when total expression is high. Of note, the highest expressing

C-terminal boundaries for Abl were residues 511 and 512. These residues fall in

the regulatory alpha helix αI [20]. This helix has been shown to undergo a

dramatic conformational change upon binding to the myristoylated N-terminal

cap, which introduces a sharp ”kink” in residues 516–519. These residues may

lead to higher levels of soluble expression by truncating an secondary structural

element that is unusually flexible. Indeed, this helix is not resolved in some X-ray

structures (PDBID:2E2B) [217], further suggesting that this helix is less

thermodynamically stable than expected. Control replicates of three constructs

indicate good repeatability of expression yields in the high-throughput format.

This screen suggests that optimization of construct boundaries could potentially

further greatly increase yields of poorly expressing kinase domains. Codon
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optimization for bacterial expression could also increase expression for kinase

domains with low yield due to codon bias [235], as could coexpression with

chaperones [236].

For those kinases that did express, a fluorescence-based thermostability assay

indicated that many of the highest-expressing kinases are well folded. An

ATP-competitive inhibitor binding fluorescent assay provides qualitative

evidence that the 39 kinases that had sufficiently high expression levels to be

assayed have a well-formed ATP-binding site capable of binding bosutinib, a

small molecule ATP-competitive kinase inhibitor. Taken together, these two

experiments demonstrate that our expression protocol produces folded kinases

with utility for biophysical experiments and drug design.

The tolerance of these bacterial constructs to many engineered clinical missense

mutations suggests a promising route to the high-throughput biophysical

characterization of the effect of clinical mutants on anticancer therapeutics.

Mutations that did not express well may destabilize the protein, or may increase

the specific activity of the kinase. A higher specific activity would require more

phosphatase activity, wasting ATP to prevent high levels of phosphorylation that

have been hypothesized to cause difficulty expressing kinases without a

coexpressed phosphatase in bacteria [213]. Mutations that are destabilizing may

show improved expression if coexpressed with more elaborate chaperones such as

GroEL and Trigger factor [236]. Mutations that increase the specific activity of the

kinase might also express better when combined with an inactivating mutation.

High-throughput automated kinase expression could be combined with

enzymatic or biophysical techniques for characterizing the potency of a variety of

clinical kinase inhibitors to assess which mutations confer resistance or

sensitivity. While the process of engineering, expressing, purifying, and assaying
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mutants currently takes approximately two weeks, it is possible that new

techniques for cell-free bacterial expression [237, 238] may reduce this time to a

matter of days or hours in a manner that might be compatible with clinical time

frames to impact therapeutic decision-making.

We hope that other laboratories find these resources useful in their own work.

4.6 Methods

4.6.1 Semi-automated selection of kinase construct sequences for

E. coli expression

Selection of human protein kinase domain targets

Human protein kinases were selected by querying the UniProt API (query date 30

May 2014) for any human protein with a domain containing the string ”protein

kinase”, and which was manually annotated and reviewed (i.e. a Swiss-Prot

entry). The query string used was:

taxonomy:"Homo sapiens (Human) [9606]" AND domain:"protein

kinase" AND reviewed:yes

Data was returned by the UniProt API in XML format and contained protein

sequences and relevant PDB structures, along with many other types of genomic

and functional information. To select active protein kinase domains, the UniProt

domain annotations were searched using the regular expression ˆProtein

kinase(?!; truncated)(?!; inactive), which excludes certain domains

annotated ”Protein kinase; truncated” and ”Protein kinase; inactive”. Sequences
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for the selected domains, derived from the canonical isoform as determined by

UniProt, were then stored.

Matching target sequences with relevant PDB constructs

Each target kinase gene was matched with the homologous in any other species, if

present, and all UniProt data was downloaded. This data included a list of PDB

structures which contain the protein, and their sequence spans in the coordinates

of the UniProt canonical isoform. PDB structures which did not include the

protein kinase domain or truncated more than 30 residues at each end were

filtered out. PDB coordinate files were then downloaded for each remaining PDB

entry. The coordinate files contain various metadata, including the

EXPRESSION SYSTEM annotation, which was used to filter PDB entries for those

which include the phrase ”ESCHERICHIA COLI”. The majority of PDB entries

returned had an EXPRESSION SYSTEM tag of ”ESCHERICHIA COLI”, while a

small number had ”ESCHERICHIA COLI BL21” or ”ESCHERICHIA COLI

BL21(DE3)”.

The PDB coordinate files also contain SEQRES records, which should contain the

protein sequence used in the crystallography or NMR experiment. According to

the PDB-101 (http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/

primary-sequences-and-the-pdb-format), the SEQRES should include the

”sequence of each chain of linear, covalently-linked standard or modified amino

acids or nucleotides. It may also include other residues that are linked to the

standard backbone in the polymer.” However, we found that these records are

very often misannotated, instead representing only the crystallographically

resolved residues. Since expression levels can be greatly affected by insertions or

deletions of only one or a few residues at either terminus [239], it is important to
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know the full experimental sequence. To measure the authenticity of a given

SEQRES record, we developed a simple metric by hypothesizing that most crystal

structures would likely have at least one or more unresolved residues at one or

both termini and that the presence of an expression tag, which is typically not

crystallographically resolved, would indicate an authentic SEQRES record. To

achieve this, unresolved residues were first defined by comparing the SEQRES

sequence to the resolved sequence, using the SIFTS service to determine which

residues were not present in the canonical isoform sequence [240]. Regular

expression pattern matching was used to detect common expression tags at the

N- or C-termini. Sequences with a detected expression tag were given a score of 2,

while those with any unresolved sequence at the termini were given a score of 1,

and the remainder were given a score of 0. This data was stored to allow for

subsequent selection of PDB constructs based on likely authenticity in later steps.

The number of residues extraneous to the target kinase domain, and the number

of residue conflicts with the UniProt canonical isoform within that domain span

were also stored for each PDB sequence.

Plasmid libraries

As a source of kinase DNA sequences for subcloning, we purchased three kinase

plasmid libraries: the Addgene Human Kinase ORF kit , a kinase library from the

Structural Genomics Consortium (SGC), Oxford (http://www.thesgc.org), and a

kinase library from the PlasmID Repository maintained by the

Dana-Farber/Harvard Cancer Center. Annotated data for the kinases in each

library was used to match them to the human protein kinases selected for this

project. The plasmid open reading frames (ORFs) were translated into protein

sequences and aligned against the target kinase domain sequences from UniProt.
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Also calculated were the number of extraneous protein residues in the ORF,

relative to the target kinase domain sequence, and the number of residue conflicts

with the UniProt sequence. Our aim was to subclone the chosen sequence

constructs from these library plasmids into our expression plasmids.

Selection of sequence constructs for expression

Of the kinase domain targets selected from UniProt, we filtered out those with no

matching plasmids in our available plasmid libraries or no suitable PDB construct

sequences. For this purpose, a suitable PDB construct sequence was defined as

any with an authenticity score greater than zero (see above). Library plasmid

sequences and PDB constructs were aligned against each Uniprot target domain

sequence, and various approaches were considered for selecting the construct

boundaries to use for each target, and the library plasmid to subclone it from.

Candidate construct boundaries were drawn from two sources: PDB constructs

and the SGC plasmid library, has been successfully tested for E. coli expression.

For most of the kinase domain targets, multiple candidate construct boundaries

were available. To select the most appropriate construct boundaries, we sorted

them first by authenticity score, then by the number of conflicts relative to the

UniProt domain sequence, then by the number of residues extraneous to the

UniProt domain sequence span. The top-ranked construct was then chosen. In

cases where multiple library plasmids were available, these were sorted first by

the number of conflicts relative to the UniProt domain sequence, then by the

number of residues extraneous to the UniProt domain sequence span, and the

top-ranked plasmid was chosen. This process resulted in a set of 96 kinase

domain constructs, which (by serendipity) matched the 96-well plate format we
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planned to use for parallel expression testing. We selected these constructs for

expression testing.

An interactive table of the selected plasmids, constructs, and aligned PDB files

can be viewed at http://choderalab.org/kinome-expression.

Automation of the construct selection process

While much of this process was performed programmatically, many steps

required manual supervision and intervention to correct for exceptional cases.

While these exceptions were encoded programmatically as overrides to ensure

the scheme could be reproduced from existing data, we hope to eventually

develop a fully automated software package for the selection of expression

construct sequences for a given protein family, but this was not possible within

the scope of this work.

4.6.2 Mutagenesis protocol

Point mutations were introduced with a single-primer QuikChange reaction.

Primers were designed to anneal at 55◦C both upstream and downstream of the

point mutation, and with a total length of approximately 40 bases. At the codon

to be modified, the fewest possible number of bases was changed. Plasmid

template (160 ng) was mixed with 1 µM primer in 1x PfuUltra reaction buffer,

with 0.8 mM dNTPs (0.2 mM each) and 1 U PfuUltra High-Fidelity DNA

polymerase (Agilent), in a total volume of 20 µL. Thermocycler settings were 2

min at 95◦C, followed by 18 cycles of 20s at 95◦C, 1 min at 53◦C, 12 min at 68◦C

(2min/kb), then 1 minute at 68◦C. After cooling to room temperature, 4 µL of the
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PCR reaction was added to 16 µL CutSmart Buffer (NEB) containing 10 U DpnI

(NEB). After incubation for 2.5 hours at 37◦C, 6 µL of this mixture was used to

directly transform XL1-Blue chemically competent cells (Agilent) according to the

manufacturer’s protocol. Transformants were picked for plasmid mini-preps and

the presence of the point mutations was confirmed by sequencing.

4.6.3 Expression testing

For each target, the selected construct sequence was subcloned from the selected

DNA plasmid. Expression testing was performed at the QB3 MacroLab (QB3

MacroLab, University of California, Berkeley, CA 94720)

[http://qb3.berkeley.edu/macrolab/], a core facility offering automated gene

cloning and recombinant protein expression and purification services.

Each kinase domain was tagged with a N-terminal His10-TEV and coexpressed

with either the truncated YopH164 for Tyr kinases or lambda phosphatase for

Ser/Thr kinases. All construct sequences were cloned into the 2BT10 plasmid, an

AMP resistant ColE1 plasmid with a T7 promoter, using ligation-independent

cloning (LIC). The inserts were generated by PCR using the LICv1 forward

(TACTTCCAATCCAATGCA) and reverse (TTATCCACTTCCAATGTTATTA) tags

on the primers. Gel purified PCR products were LIC treated with dCTP. Plasmid

was linearized, gel purified, and LIC-treated with dGTP. LIC-treated plasmid and

insert were mixed together and transformed into XL1-Blues for plasmid preps.

Expression was performed in Rosetta2 cells (Novagen) grown with Magic Media

(Invitrogen autoinducing medium), 100 µg/mL of carbenicillin and 100 µg/mL of

spectinomycin. Single colonies of transformants were cultivated with 900 µL of

MagicMedia into a gas permeable sealed 96-well block. The cultures were
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incubated at 37◦C for 4 hours and then at 16◦C for 40 hours while shaking. Next,

cells were centrifuged and the pellets were frozen at -80◦C overnight. Cells were

lysed on a rotating platform at room temperature for an hour using 700 µL of

SoluLyse (Genlantis) supplemented with 400 mM NaCl, 20 mM imidazole,

1 µg/mL pepstatin, 1 µg/mL leupeptin and 0.5 mM PMSF.

For protein purification, 500 µL of the soluble lysate was added to a 25 µL Protino

Ni-NTA (Machery-Nagel) agarose resin in a 96-well filter plate. Nickel Buffer A

(25 mM HEPES pH 7.5, 5% glycerol, 400 mM NaCl, 20 mM imidazole, 1 mM

BME) was added and the plate was shaken for 30 min at room temperature. The

resin was washed with 2 mL of Nickel Buffer A. For the 96-kinase expression

experiment, target proteins were eluted by a 2 hour incubation at room

temperature with 10 µg of TEV protease in 80 µL of Nickel Buffer A per well and a

subsequent wash with 40 µL of Nickel Buffer A to maximize protein release.

Nickel Buffer B (25 mM HEPES pH 7.5, 5% glycerol, 400 mM NaCl, 400 mM

imidazole, 1 mM BME) was used to elute TEV resistant material remaining on the

resin. Untagged protein eluted with TEV protease was run on a LabChip GX II

Microfluidic system to analyze the major protein species present.

For the clinical mutant and Abl1 construct boundaries expression experiments,

target proteins were washed three times with Nickel Buffer A prior to elution in

80 µL Nickel Buffer B. The eluted protein was run on a LabChip GX II

Microfluidic system to analyze with major protein species were present.

4.6.4 Fluorescence-based thermostability assay

To assess whether the highly-expressed wild-type kinase constructs are folded, a

thermofluor thermostability assay [222–224] was performed for kinase constructs
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that have a minimum of 0.24 mg/mL protein concentration in the eluate. After

diluting 9 µL of eluate by 1 µL dye, the effective assay concentration is

0.216 mg/mL minimum in 10 uL assay volume. Previous optimization efforts in

the lab determined that 0.20 mg/mL was the lower limit of well-defined Tm

detection. This minimum concentration also ensured that the kinase was present

at roughly an order of magnitude concentration higher than contaminating TEV

protease.

Kinase expression panel eluates, which were kept in 96-well deep well plate

frozen at -80◦C for 2 years prior to the thermal stability assay, were thawed in an

ice-water bath for 30 min. 9 µL of each kinase eluate was added to a 384 well PCR

plate (4titude-0381). 100X SYPRO Orange dye solution was prepared from a

5000X DMSO solution of SYPRO Orange Protein Gel Stain (Life Technologies, Ref

S6650, LOT 1790705) by dilution in distilled water. In initial experiments, SYPRO

Orange dye solution was diluted in kinase binding assay buffer (20 mM Tris

0.5 mM TCEP pH 8), which caused the dye to precipitate out of solution.

Particulates in the dye solution were pelleted by tabletop centrifugation (2 min,

5000 RCF) and the solution was kept covered with aluminum foil in the dark to

prevent photodamage. 1 µL of 100X dye solution was added to each kinase eluate

sample in 384-well PCR plate. The plate was sealed with Axygen UC-500 Ultra

Clear Pressure Sensitive sealing film. To remove any air bubbles, the sample plate

was centrifuged for 30 sec with 250 g using Bionex HiG4 centrifuge. Sample

mixing was performed by orbital shaking with Inheco shakers for 2 min at 1000

RPM.

A thermofluor melt was performed using a LightCycler 480 (Roche) qPCR

instrument using an excitation filter of 465 nm (half bandwidth 25 nm) and

emission filter at 580 nm (half bandwidth 20 nm). LightCycler 480 Software
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Version 1.5.1 was used to operate the instrument and analyze the results. The

temperature was held at 25◦C for 15 s before ramping up to 95◦C with a ramp rate

of 0.06◦C/s. During temperature ramp 10 fluorescence acquisitions/◦C were

recorded with dynamic integration time mode, melt factor of 1, quant factor of 10,

and maximum integration time of 2 sec. Thermal protein denaturation causes

hydrophobic patches of protein to be exposed, which SYPRO Orange dye can

bind. Binding of SYPRO Orange dye is detected as an increase in fluorescence at

580 nm. Presence of a clear thermal denaturation peak in the absolute value of the

derivative of the fluorescence as a function of temperature serves as an indication

that the proteins were well-folded. Observed fluorescence was plotted as a

function of temperature, and a melting temperature Tm was determined as the

maximum of the absolute value of its first derivative.

4.6.5 ATP-competitive inhibitor binding fluorescence assay

To determine whether the expressed kinases had a well-folded ATP-binding site,

we assessed whether the eluted kinase was capable of binding the

ATP-competitive small molecule kinase inhibitor bosutinib. We designed

fluorescence-based binding assays following earlier work reporting that this

quinoline-scaffold inhibitor undergoes a strong increase in fluorescence upon

binding (even weakly) to kinase ATP-binding sites [226]. By titrating in the ligand

to close to the solubility limit, even weak binding to the ATP-binding site can be

detected by observing emission increases around 450 nm during excitation at

280 nm.

For 33 of the kinases in our expression panel, 0.5 µM kinase solutions from kinase

expression panel eluates were prepared in kinase binding assay buffer (20 mM
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Tris 0.5 mM TCEP pH 8) for a final volume of 100 µL in a black 96-well vision

plate (4titude-0223). Six low-expressing kinases (Figure 4.5, panels 39-44) were

prepared by diluting 20 µL of eluate in kinase binding assay buffer (20 mM Tris

0.5 mM TCEP pH 8) to a final volume of 100 µL, for final concentrations below

0.5 µM. The plate was shaken for 2 min clockwise and 2 min counter-clockwise by

orbital shaking with Inheco shakers at 2000 RPM and centrifuged for 30 sec with

1000 g using Bionex HiG4 centrifuge. Fluorescence emission spectra were

measured from 370 nm to 600 nm (20 nm bandwidth) in 5 nm steps using 280 nm

excitation (10 nm bandwidth) from both the top and bottom of the well using a

Tecan Infinite M1000 PRO.

Bosutinib free base (LC Labs, cat no. B-1788, lot no. BSB-103, M.W. 530.45 Da) was

dispensed directly from a roughly 10 mM DMSO stock solution to the assay

solution using a Tecan HP D300 Digital Dispenser. The 10 mM DMSO stock

solution was prepared gravimetrically using an automated balance (Mettler

Toledo Balance XPE205 with LabX Laboratory Software) by dispensing 39.02 mg

solid Bosutinib powder stored under nitrogen gas at 25◦C into 8.0499 g DMSO

(Alfa Aesar, cat no. 42780, log no. Y25B604, density 1.1004 g/mL at ambient

temperature) which is kept dry under argon gas at 25◦C. To minimize

atmospheric water absorption due to the hygroscopic nature of DMSO, the

10 mM stock solution was pipetted into wells of a 96-well stock plate by an

automated liquid handling device (Tecan EVO 200 with air LiHa) and sealed with

foil seal (PlateLoc). Ligand was dispensed to the assay plate with HP D300 (using

aliquots of stock solution pipetted from a freshly pierced stock plate well)

targeting a roughly geometrically-increasing series of ligand concentrations in

each well to achieve the following total ligand concentrations after each dispense:

0.008 µM, 0.013 µM, 0.023 µM, 0.038 µM, 0.064 µM, 0.109 µM, 0.183 µM, 0.308 µM,

0.519 µM, 0.875 µM, 1.474 µM, 3.174 µM, 6.037 µM, 10.862 µM, 18.991 µM. The
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plate was shaken by HP D300 for 10 sec after usage of each dispensehead. After

each titration, the plate was shaken with Inheco shakers (2 min clockwise and

counter-clockwise, 2000 RPM, orbital shaking) and centrifuged (30 sec, 1000 g)

using a Bionex HiG4 centrifuge. Fluorescence spectra from 370 nm to 600 nm

(bandwith 20 nm) in 5 nm steps using 280 nm excitation (bandwidth 10 nm) were

read from both the top and bottom of the well using a Tecan Infinite M1000 PRO.

In total, the experiment took 17.5 hours to complete due to the time-consuming

spectral read after each dispense, likely resulting in significant evaporation from

some wells during the experiment.

ATP-competitive binding was analyzed qualitatively for each kinase by plotting

the fluorescence spectra as a function of concentration to detect

concentration-dependent increases in fluorescence. As a control for background

ligand fluorescence independent of protein binding, fluorescence spectra of three

replicates of ligand into buffer titrations were plotted. As a positive control,

MK14 produced by a validated large scale expression protocol (see

Supplementary Methods) from the same plasmid used in the high-throughput

protocol was included. To control for non-specific binding to unfolded protein,

we included boiled MK14 (prepared from the large scale expression of MK14 by

boiling at 95◦C for 10 min). A concentration-dependent increase in fluorescence

was interpreted as evidence that the ATP-binding site of the kinase was well

folded and allowed for bosutinib binding. Due to the length of the experiment, it

is possible that evaporation reduced the well volume below 100 µL and

potentially caused bosutinib to reach higher concentration levels than expected.

This creates uncertainty for data points, as bosutinib may either be a higher

concentration (due to evaporation) or a lower concentration (due to potential

precipitation caused by lower well volumes) than expected. For this reason, we

have interpreted the experiment as qualitative evidence of binding, instead of
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quantitatively. Bosutinib binding is an indication of proper folding of the ATP

binding pocket of these recombinantly expressed kinase constructs.

4.6.6 Large Scale expression and purification protocol for MK14

Large scale expression of MK14 was performed at the QB3 MacroLab (QB3

MacroLab, University of California, Berkeley, CA 94720

[http://qb3.berkeley.edu/macrolab/], a core facility offering automated gene

cloning and recombinant protein expression and purification services.

Rosetta2(DE3)pLysS cells (Novagen) were used to co-express MK14 (same

plasmid as from the high-throughput kinase expression panel) and 13SA Lamda

phosphatase. The cells were grown in 2YT Medium (16 g/L Tryptone, 10 g/L

Yeast Extract, 5 g/L NaCl) to OD600 of 0.5 at 37◦C. The culture was cooled to 16◦C

and induced with 0.5 mM IPTG overnight. The cultures were pelleted at

5000 rpm for 30 min and resuspended in 20 mL Nickel buffer A (25 mM HEPES

pH 7.5, 10% glycerol, 400mM NaCl, 20 mM imidazole, 5 mM BME) with the

following protease inhibitors: 1 µg/mL leupeptin, 1 µg/mL pepstatin, and

0.5 mM PMSF). The resuspended cells were frozen at -80◦C.

When ready for purification, the cells were thawed and ruptured using a

homogenizer (Avestin C3, 15000psi, 3 passes). The broken cells were pelleted at

15000 rpm for 30 min (SS34 rotor). Clarified lysate was loaded onto a 5 mL

HisTrap FF Crude column (GE Healthcare) and washed with Nickel buffer A to

remove any unbound material. The protein was eluted with Nickel buffer B

(25 mM HEPES pH 7.5, 10% glycerol, 400mM NaCl, 400 mM imidazole, 5 mM

BME) and pooled for buffer exchange into Nickel buffer A on a HiPrep 26/10

Desalting Column (GE Healthcare). Rough protein yields were quantified using
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theorectical extinction coefficients calculated using ProtParam

(http://ca.expasy.org/tools/protparam.html). The His tag was cleaved off of

MK14 by incubation with TEV protease (25◦C, 2 hours, 1:20 mass ratio).

After tag cleavage, the sample was run over a 5 mL HisTrap FF Crude column

(GE Healthcare) with Nickel buffer A. The flow-through was collected,

concentrated to roughly 5mL using centrifugal concentrators (10 kDA MWCO,

Millipore) and loaded onto a HiPrep 16/60 Sephacryl S-200 HR column (GE

Healthcare). The sample was equilibrated into Gel Filtration buffer (20 mM

Tris-HCl pH 8.0, 150 mM NaCl, 5% glycerol, 1 mM DTT) and fractions containing

MK14 were pooled and concentrated (10 kDA MWCO centrifugal concentrators,

Millipore). 500 µL aliquots of MK14 were snap frozen in liquid nitrogen and

stored at -80◦C. Quantification by theoretical extinction coeffcient suggests the

final MK14 concentration was roughly 4.0 mg/mL (97 µM), roughly 22.4 mg/L of

culture yield.

4.7 Author Contributions

Conceptualization, JDC, DLP, SKA, MI, LRL, SMH, NML, MAS; Methodology,

DLP, MI, LRL, SMH, SKA, JDC, NML, MAS; Software, DLP, JDC, SMH; Formal

Analysis, SKA, JDC, MI, SMH; Investigation, MI, LRL, SG, CJ, SKA, SMH;

Resources, CJ, SG; Data Curation, SKA, MI, LRL, DLP, JMB; Writing-Original

Draft, SKA, LRL, DLP, JDC, SG, SMH, MI; Writing - Review and Editing, SKA,

JDC, MI, LRL, SHM, SG, CJ, NML, MAS; Visualization, SKA, JDC, MI, SMH;

Supervision, JDC, NML, MAS; Project Administration, SKA, JDC, MI, SMH;

Funding Acquisition, JDC, SMH

155



4.8 Acknowledgments

DLP, SMH, LRL, SKA, MI, and JDC acknowledge support from the Sloan

Kettering Institute. This work was funded in part by the Marie-Josée and Henry

R. Kravis Center for Molecular Oncology, the National Institutes of Health (NIH

grant R01 GM121505 and National Cancer Institute Cancer Center Core grant P30

CA008748), the Functional Genomics Institute (FGI) at MSKCC, and a Louis

V. Gerstner Young Investigator Award. MAS acknowledges funding support by

NIH grant R35 GM119437. The authors are grateful to Gregory Ross (MSKCC) for

assistance in preparing the computational infrastructure for selecting clinical

point mutants, and to Sarah E. Boyce (current address: Schrödinger, New York,

NY) for assistance with multiple stages of this project. We gratefully acknowledge

the members of the MSKCC Molecular Diagnostics Service in the Department of

Pathology for their efforts in collecting and compiling mutations for Abl and Src

kinases used here. We thank the Kuriyan lab for the gift of pCDFDuet1-YOPH

plasmid. The authors are grateful to Addgene for their help in making the

plasmids generated by this work available to the research community at minimal

cost.

156

http://www.addgene.org


CHAPTER 5

CONCLUSION

The work contained in this dissertation comprises contributions to the field of

physical modeling to predict selectivity and resistance, as well as steps towards

enabling the generation of the data sets needed to better evaluate free energy

methodologies. Chapter 2 provides insight into the speedup in selectivity

optimization we can expect from free energy calculations based on correlation in

the forcefield error, using kinases as model system relevant to drug discovery

efforts. Chapter 3 evaluates the ability of free energy calculations to predict the

impact of missense mutations on kinase inhibitor binding, an important first step

towards using physical modeling to characterize rare mutations, or develop

next-generation inhibitors. Finally, Chapter 4 presents the first stage of the

idealized pipeline to automate the process of identifying novel mutations,

predicting their impact on inhibitor binding, and rapidly testing those predictions

using biophysical experiments. The high-throughput expression protocol and

biophysical assays discussed in Chapter 4 are key to generating that types of data

needed to further validate the promising results discussed in Chapters 2 and 3.

Chapter 2 shows that correlation in the forcefield error can accelerate

optimization of compounds for selectivity in a congeneric series of ligands.

Maintaining a running estimate of the correlation coefficient ρ over the course of a

discovery project will allow computational chemists to better understand the

uncertainty in their selectivity predictions. Further, the work presented in

Chapter 2 suggests that when the correlation of forcefield errors is high,

expending additional computational effort to reduce statistical error will yield

further speed ups. In Chapter 3, we present evidence that alchemical free energy

calculations can accurately predict the impact of clinical kinase mutations on Abl
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binding affinity for a number of different ligands. This work suggests that

working from a single crystal structure for each ligand, or even docking a ligand

into the crystal structure of a somewhat related ligand, is sufficient to predict the

impact of mutations with good classification power. Chapter 4 presents an

automated, one size fits all protocol for expressing a wide array of human protein

kinases in E. coli. This protocol was shown to be useful for expressing clinical

mutations in Src and Abl kinase, enabling its use for the development of selective

and mutant-specific inhibitors, as well as for testing the methodologies presented

in Chapters 2 and 3.

Each Chapter discusses the work that remains before free energy calculations can

be used to their fullest potential for developing selective inhibitors, or

next-generation inhibitors to overcome resistance. Larger data sets covering a

wider range of proteins, even within the kinase family, will allow us to draw

conclusions about the correlation of forcefield error, as well develop heuristics to

predict expected correlation before running any calculations. Further work on

additional forcefields, and the parameters that free energy calculations are

sensitive to when predicting the impact of mutations, is important for moving

free energy tools closer to being used to prioritize mutants for biophysical

characterization, predicting potential resistance mutations, or understanding a

novel clinical mutation. Importantly, much progress remains to be made on

understanding the importance of including multiple conformations in predicting

ligand binding affinity, especially for conformationally-plastic proteins like

kinases.

While this dissertation primarily focuses using on alchemical free energy

calculations, we expect that these approaches could be fruitfully combined with

statistical learning methods. With the rapid accumulation of high-throughput
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binding assays, clinical sequencing, and structural information, exciting future

work will combine physical modeling with machine learning to utilize the wealth

of data available for the kinome to improve predictions about selectivity and

resistance.
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SUPPLEMENTAL FIGURES FROM CHAPTER 2
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Figure A.1: CDK2 adopts an inactive conformation in the crystal structure used for the CDK2/ERK2 calculations (A) CDK2 (5K4J)
adopts an inactive conformation in the absence of its cyclin. The DFG motif is in a DFG-in conformation, with the αC helix rotated
outwards, breaking the salt bridge between K33 and E51 (Uniprot numbering) that is typically a marker of an active conformation.
Notably, the Phe in the DFG motif does not completely form the hydrophobic spine due to the rotation of the αC helix [241] (B) The
CDK2 structure used for the CDK2/CDK9 calculations (4BCK) contains cyclin A and adopts a DFG-in/αC helix-in conformation that
forms the salt bridge between K33 and E51. This is typically indicative of a fully active kinase [18, 104].
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Figure A.2: Correlation coefficient ρ controls the shape of the joint marginal distribution of errors As ρ increases, the joint marginal
distribution of errors become more diagonal. Each panel shows 10000 samples drawn from a multivariate normal distribution centered
around 0 kcal/mol, where the per target error was set to 1 kcal/mol and ρ to the value indicated in bold over the plot.
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Figure A.3: Correlation reduces the expected error for selectivity predictions As corelation coefficient ρ increases, σselectivity decreases.
The intersection between CDK2/CDK9 σselectivity (green curve) and ρ (black distribution) indicates the range of expected σselectivity values.
The intersection for CDK2/ERK σselectivity (blue curve) and ρ (gray distribution) suggests the expected σselectivity range for that set of
calculations.
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Figure A.4: Each replicate of the CDK2/CDK9 calculations yields a consistent RMSE and MUE
Three replicates of the CDK2/CDK9 calculations with different random seeds, but otherwise the same input structures, files, and
parameters. The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds to a
transformation between a ligand i to a set reference ligand j (Compound 1a) for a given target. All values are shown in units of kcal/mol.
The horizontal error bars show the the 95% CI based on an assumed experimental uncertainty of 0.3 kcal/mol[56] expanded assuming
no correlation between each measurement. For selectivity, the errors were propagated under the assumption that they were completely
uncorrelated. The black line indicates agreement between calculation and experiment, while the gray shaded region represent 1.36
kcal/mol (or 1 log unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95% confidence intervals. (A) Replicate
1 (B) Replicate 2 (C) Replicate 3
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Figure A.5: Each replicate of the CDK2/CDK9 calculations yields consistent errors and correlation coefficient
(A) (left) The joint posterior distribution of the prediction errors for CDK2 (X-axis) and CDK9 (Y-axis) from the Bayesian graphical model
for replicate 1. (right) The posterior marginal distribution of the correlation coefficient (ρ) is shown in gray for replcicate 1. The inserted
box shows the mean and 95% confidence interval for the correlation coefficient. (B) and (C) The same as above, but for replicates 2 and
3, respectively
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Figure A.6: Each replicate of the CDK2/ERK2 calculations yields a consistent RMSE and MUE
Three replicates of the CDK2/ERK2 calculations with different random seeds, but otherwise the same input structures, files, and pa-
rameters. The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds to a
transformation between a ligand i to reference ligand j (Compound 6) for a given target. All values are shown in units of kcal/mol. The
horizontal error bars show the the 95% CI based on an assumed experimental uncertainty of 0.3 kcal/mol[56] expanded assuming no
correlation between each measurement. We show the 95% CI based on the estimated statistical as vertical blue error bars. For selectivity,
the errors were propagated under the assumption that they were completely uncorrelated. The black line indicates agreement between
calculation and experiment, while the gray shaded region represent 1.36 kcal/mol (or 1 log unit) error. The MUE and RMSE are shown
on each plot with bootstrapped 95% confidence intervals. (A) Replicate 1 (B) Replicate 2 (C) Replicate 3
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Figure A.7: Each replicate of the CDK2/ERK2 calculations yields consistent errors and correlation coefficient
(A) (left) The joint posterior distribution of the prediction errors for CDK2 (X-axis) and ERK2 (Y-axis) from the Bayesian graphical model
for replicate 1. (right) The posterior marginal distribution of the correlation coefficient (ρ) is shown in gray for replcicate 1. The inserted
box shows the mean and 95% confidence interval for the correlation coefficient. (B) and (C) The same as above, but for replicates 2 and
3, respectively
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Figure A.8: The pooled replicates show good agreement in predictions for individual ligands
The experimental values are shown on the X-axis and calculated values on the Y-axis. Each data point corresponds to a transformation
between a ligand i to reference ligand j (Compound 6 for CDK2/ERK2, Compound 1a for CDK2/CDK9) for a given target. All values
are shown in units of kcal/mol. The horizontal error bars show the assumed experimental uncertainty of 0.3 kcal/mol[56] for each
individual measurement, expanded assuming the error is uncorrelated. We show the 95% CI based on the estimated statistical as
vertical blue error bars. For selectivity, the errors were propagated under the assumption that they were completely uncorrelated. The
black line indicates agreement between calculation and experiment, while the gray shaded region represent 1.36 kcal/mol (or 1 log
unit) error. The MUE and RMSE are shown on each plot with bootstrapped 95% confidence intervals. (Top) CDK2/CDK9 replicates
(Bottom) CDK2/ERK2 replicates
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Figure A.9: The standard deviation for each edge is smaller than the estimated cycle closure uncertainties
The cycle closure uncertainty for each edge of the map is shown on the Y-axis and the standard deviation for that edge in all three
replicate calculations is shown on the X-axis, in kcal/mol. Each point corresponds to an edge of the FEP map. The edges for all three
replicates are pooled and shown together. (Top) CDK2/CDK9 calculations (Bottom) CDK2/ERK2 calculations.
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Table A.1: The CDK2 and CDK9 binding sites are more similar than the CDK2 and ERK2 binding sites
Sequence based similarity of the binding sites based on multiple sequence alignments of the 85 residues annotated by the KLIFS
database [100, 101]

Kinase CDK2 CDK9 ERK2
CDK2 1.0 0.57 0.52
CDK9 0.57 1.0 0.52
ERK2 0.52 0.52 1.0
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