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Abstract

Somatic copy number alterations (CNAs) play an important role in driving aberrant gene

expression in cancer cells. Tumors with a high level of chromosomal instability tend to have

prevalent subclonal CNAs and heterogeneous cancer cell populations. However, the direct

and indirect mechanisms that subclonal CNAs contribute to clone-specific gene expression

remain poorly understood. Dosage effect is one of the direct mechanisms, which describes

the positive correlation between gene copy number and expression. With the emergence of

single cell datasets profiling genetic, epigenetic and transcriptomic aspects of cancer cells,

it is possible to better characterize genotype-phenotype interplay in cancer cells. However,

new computational methods are needed to integrate multi-modality single cell datasets and

model the influence of subclonal CNAs on gene expression.

We developed TreeAlign, which computationally integrates independently sampled single-

cell DNA and RNA sequencing data from the same cell population by assigning tran-

scriptional profiles to genomic subclones. Through explicitly modeling of gene dosage

effects from subclonal CNAs (Chapter 2) and incorporation of allele-specific information

(Chapter 3), TreeAlign achieved improved clone assignment accuracy compared to ex-

isting methods. By fitting the model recursively on scDNA-based phylogeny, TreeAlign

also helps refine subclone definition based on transcriptional divergence. Using TreeAlign,
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we investigated clone-specific transcriptional programs in ovarian cancer and explored the

role of copy number dosage effects in driving subclonal phenotypes (Chapter 4). Our ap-

proach sets the stage for dissecting the relative contribution of fixed genomic alterations

and dynamic epigenetic processes on gene expression programs in cancer.
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Chapter 1

Background

1.1 Clonal evolution and tumor heterogeneity

Cancer arises from clonal evolution, which is the iterative process of genetic alteration

accumulation, clonal expansion and selection [1]. Extensive research efforts have been di-

rected towards characterizing the evolutionary trajectories of cancer cells in both patients

and model systems, elucidating the emergence and disappearance of subclones carrying

specific genetic alterations [2–5]. These studies provided valuable insights on clonal evo-

lution in disease progression. However, as selective forces act upon phenotypic traits rather

than genotypic variations, in addition to profiling genomic changes, it is also important

to profile the phenotypes of cancer cells to gain a comprehensive understanding of cancer

evolution.

Different genomic instability mechanisms shape the diverse landscape of cancer genomes[6,

7]. For example, exogenous mutagens and impaired missense repair mechanisms can lead

to higher prevalence of point mutations [8, 9] which can be characterized by different
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mutational signatures [10]. Whereas chromosomal instability gives rise to frequent am-

plifications and deletions [11]. These genetic distinctions can lead to various cancer cell

phenotypes and subsequent divergent selection pressures [12]. For example, chromosome

unstable tumors with frequent CNAs tend to exhibit higher rates of whole genome doubling

(WGD) [13] and compromised immune responses compared to chromosome stable tumors

[14]. The interplay between somatic alterations and the tumor microenvironment generates

a spectrum of cancer cell phenotypes, enhancing the heterogeneous nature of tumors and

contributing to the complex landscape of cancer biology [15, 16].

Chromosomal instability can leads to frequent CNAs, which are known to contribute to

transcriptomic diversity in cancer cells [17]. It is well established that CNAs of driver

oncogenes and tumor suppressors are causal determinants that change the fitness of cancer

cells [18], leading to clonal expansions, clone-clone variation [3] and tumor evolution. In

addition to impacting specific genes, CNAs often span chromosome arms or whole chro-

mosomes and therefore potentiate transcriptional impact across hundreds of genes with a

single genomic event through copy number (CN) dosage effects. CN dosage effects are

defined as the positive correlation between CN (or gene dosage) and the corresponding

gene expression [19]. It was observed that patient-to-patient transcriptomic differences in

ovarian cancer cells was predominantly influenced by CN dosage effects [20]. Recent re-

ports on the extent of cell-to-cell variation of CNAs in tumors (including in well understood

oncogenes) [21] also raise the critical question of how granular subpopulations are pheno-

typically impacted by subclonal CNAs. Importantly, phenotypic impact of subclonal CNAs

can have both cell intrinsic effects and act as cell-extrinsic determinants of the tumor mi-

croenvironment [20], further illustrating the importance of dissecting how CNAs modulate

phenotypic intra-tumor heterogeneity. In this dissertation, we focus on the impact of gene
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dosage effects from CNAs as a mechanism phenotypic diversification.

1.2 Genetic and transcriptomic ITH

Intra-tumor heterogeneity (ITH) is an important feature of cancer and can be observed

across various levels, from genetic alterations to epigenetic states and transcriptional pro-

files [6]. Findings from previous studies demonstrate that ITH is associated with clinical

outcomes [22, 23] and therapeutic responses [24, 25]. The emergence of treatment resis-

tance can stem from the expansion of pre-existing subclonal populations [26–29] or de-

velopment of drug-resistant cell states [30, 31], underscoring the adaptive nature of cancer

cells. In this context, unraveling ITH across multiple levels and dissecting the clonal evo-

lution processes that generate such diversity become critical in order to better understand

the disease as a whole.

Extensive studies have investigated genetic ITH. In high-grade serous ovarian cancers

(HGSCs), primary tumors were found to be clonally diverse and metastatic tumors were

formed by monoclonal or polyclonal seeding [32]. With the TCGA cohort, Andor et al. re-

vealed that across 12 cancer types, approximately 86% of tumors exhibited a minimum of

two distinct clones [33]. Notably, tumors characterized by increased genetic ITH and coex-

istence of multiple clones demonstrated more aggressive histological features and elevated

risk of mortality.

Genetic ITH poses challenges on the design of target therapy, as tumors with higher genetic

ITH are more likely to harbor subclones with pre-existing resistance to treatment [34]. It

was also observed that even within the same tumor, multiple mechanisms of resistance can
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be acquired during targeted therapy [2]. On the other hand, genetic ITH, along with the mu-

tational processes that generate it, also provide opportunities for new therapeutic strategies.

Colorectal cancers with high microsatellite instability (MSI-H) have escalated mutation

rates within microsatellite regions due to defects in DNA mismatch repair pathways [35].

MSI-H patients show suboptimal responses to chemotherapy [36], but conversely tend to

be more sensitive to PD-1 blockade [37]. Tumors marked by pronounced chromosomal

instability not only display an increased propensity for metastasis but also concurrently

exhibit elevated inflammatory signals through the sGAS-STRING pathway [38], thereby

potentially facilitating the utilization of immunotherapies.

Transcriptomic ITH denotes the variability in gene expression among cancer cells within

a tumor. Transcriptomic ITH can originate from genetic ITH. Subclones in the same tu-

mor have distinct genetic alterations which may lead to dysregulation of different gene

expression programs in cancer cells. It was shown that transcriptomic ITH correlates with

subclonal copy number alterations (CNAs) in lung cancers [39]. In breast cancer cell lines,

genetic changes were found to be associated with differential activation of transcriptional

programs, influencing cell morphologies and proliferation [40]. Aside from genetic in-

fluences, other factors also contribute to transcriptomic ITH. Research on monoclonal tu-

mor xenografts of colorectal cancers has highlighted the substantial contribution of in vivo

multilineage differentiation to transcriptional diversity [41]. Another investigation in lung

squamous cell carcinoma has shown transcriptomic ITH which impacts cancer-associated

pathways and proliferative capacities only had a weak correlation with genetic ITH [42].

To better understand transcriptomic ITH, it is critical to dissect its origin in different cancer

types.

Understanding the spectrum of ITH and the interplay between its various layers is of
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paramount importance. The progression of single-cell sequencing technologies [43], par-

ticularly those enabling simultaneous measurement of multiple modalities within individual

cells, potentially allow us to have a more comprehensive view of ITH.

1.3 Approaches to study ITH in the context of clonal evo-

lution

Different methods have been used to investigate the genomic and phenotypic dynamics

within the context of clonal evolution [43, 44]. The common strategy involves: 1. Profiling

the clonal architecture of cancer cells. 2. Assessing the phenotypes of corresponding cancer

cell populations.

Lineage tracing refers to the group of approaches that monitor the progeny of individual

cells and decipher their lineage relationships. This could be achieved with naturally occur-

ring genetic alterations or artificial tags introduced into cells. The latter approach is only

applicable in model systems. For instance, Neftel et al. used lentiviral vectors to introduce

distinct and heritable genetic markers into cells [45]. These markers were subsequently

deciphered through single-cell RNA sequencing (scRNA-seq). Through this method, they

tagged cancer cells from glioblastoma patients and xenografted them into mouse brains. By

analyzing the tumors formed, they found that cells possessing identical barcodes displayed

distinct transcriptional cell states, thus illuminating the plasticity of states that persists in-

dependently of genetic background. In another investigation by Quinn et al., cancer cells

were genetically engineered with barcodes that could be dynamically edited by Cas9, fa-

cilitating lineage tracing [13]. Subsequent mutations introduced into the barcodes were
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captured through scRNA-seq, thereby enabling the reconstruction of the phylogeny of can-

cer cells. Utilizing this technology, the researchers quantified metastatic dissemination

rates for subclonal populations and elucidated associated metastatic phenotypes.

Phylogenetic relationships can also be deduced from naturally occurring genetic modifica-

tions. This approach is frequently employed to characterize clonal structures in samples

derived from cancer patients. Utilizing paired RNA-seq and whole-exome sequencing data

from the TRACERx project, Martínez-Ruiz et al. and Frankell et al. investigated the

transcriptional profiles and evolutionary patterns of primary and metastatic lung cancers

respectively [4, 39]. The integration of these matched datasets facilitated the identification

of genomic attributes, such as the proportion of the genome affected by subclonal somatic

CNAs, which were linked to transcriptomic ITH. Nevertheless, due to limitations inher-

ent in bulk tumor sampling, establishing connections between genotypic modifications and

phenotypic traits at the subclonal level remains exceedingly challenging. Single-cell se-

quencing technologies have emerged as pivotal tools that allow the resolution of genomic

and phenotypic profiles at the granularity of individual cells. Funnell et al., for instance,

applied single-cell DNA- and RNA-sequencing to analyze primary triple-negative breast

cancer (TNBC) and HGSC cells [21]. Their study revealed clone-specific amplifications in

oncogenes, accompanied by concomitant up-regulation in gene expression. Paired single-

cell datasets are valuable resources for dissecting the interactions between genotypic vari-

ations and phenotypic attributes at subclonal resolution.
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1.4 Challenges in linking genotypes and phenotypes

Establishing a robust connection between genetic compositions and cancer cell phenotypes

is challenging. Conventional bulk sequencing methods have been widely employed to de-

lineate somatic alterations and concomitant phenotypic modifications [46–49]. Although

paired datasets with both DNA and RNA sequencing make it possible to correlate these two

aspects, the resolution of these studies are still limited at the level of patient-derived tumor

samples, and unable to provide a comprehensive view of ITH at the subclonal or single cell

level.

The accurate inference of phylogenetic relationships from whole exome sequencing (WES)

or whole genome sequencing (WGS) data is circumscribed by the identification of shared

and distinctive somatic alterations detected within samples [50, 51]. For bulk RNA se-

quencing, it is complicated by the coexistence of normal cells in the tumor microenviron-

ment. Many computational methods have been proposed to deconvolute cell type specific

expression from bulk RNA-seq data [52–55]. However, the performance of these methods

tend to be highly influenced by the choice of data preprocessing approaches and selection

of cell type markers [56]. With bulk RNA-seq alone, it is hard to distinguish cancer cell

intrinsic and extrinsic transcriptional signals.

Conducting single-cell RNA (Fig. 1.1) and DNA (Fig. 1.2, 1.3) sequencing separately

offers the capacity to profile a large number of individual cells and thereby provides a more

comprehensive depiction of cell populations in tumors. In recent years, an increasing num-

ber of studies have appeared, generating multimodal datasets with single-cell DNA and

single-cell RNA profiles [21, 57–59]. Noteworthy among these is the work of Andor et

al. [57], who profiled the genomes of 8824 cells and the gene expression patterns of more
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than 28,000 cells from diverse gastric cancer cell lines, using 10x scDNA- and scRNA-seq.

Furthermore, Parra et al. [59] conducted a study centered on chromothriptic medulloblas-

toma, generating shallow scDNA- and scRNA-seq profiles encompassing 757 and 22,500

cells across 7 samples, respectively. The measurements of both genetic alterations and

gene expression at single cell level allow us to further dissect different aspects of ITH.

However, a comprehensive understanding of the intricate interplay between genomic and

phenotypic changes requires the development of computational frameworks for integrating

these diverse data modalities.

FIGURE 1.1: An example of scRNA data. a, UMAP embedding of cancer cells
based on scRNA data from patient 045 colored by predicted cell cycle phase. b,
InferCNV-corrected expression profiles for patient 045 [60]. InferCNV is a method

for inferring CNAs from scRNA data.

1.5 High-grade serous ovarian cancers

High-grade serous ovarian cancer (HGSC) is the most lethal gynecological malignancy

[61] and the archetype of cancer to study chromosomal instability. HGSCs are distin-

guished by frequent copy number alterations [17, 62–64] and extensive spread throughout
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FIGURE 1.2: An example of a single cell copy number profile from scDNA data in
patient 118.

FIGURE 1.3: An example of a single cell phylogeny and CN heatmap built using
scDNA data from patient 118.
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the peritoneal cavity [32, 65, 66]. While recent advancements have introduced poly ADP-

ribose polymerase (PARP) inhibitors targeting the prevalent homologous recombination

deficiency (HRD) observed in HGSCs [67, 68], the disease remains largely untreatable in

numerous instances, with a median survival period of 40.7 months [69].

Alterations in TP53 are almost universally present in HGSCs [70]. Inactivation of the ho-

mologous recombination repair pathway is also common and present in around 50% of

cases through genetic alterations or epigenetic silencing of BRCA as well as other genes in

this pathway [70, 71]. Point mutations in genes other than TP53 and BRCA1/2 are infre-

quent. Comparatively, copy number alterations are significantly more prevalent, impacting

oncogenes such as CCNE1 and MYC, as well as tumor suppressors including RB1 and NF1

(Fig. 1.4). In addition to specific gene alterations, HGSCs can also be stratified by varying

mutational processes [72], including the homologous repair deficiency (HRD) subtypes and

foldback inversion (FBI)-bearing subtype. Genomic instability, driven by these mutational

processes, leads to an elevated degree of genetic ITH and shapes clonal evolution in HGSC.

1.6 Outline of this thesis

Our central hypothesis is that through explicitly modeling of (allelic) CN dosage effects,

we can better integrate genomic and transcriptomic data and link cancer cell genotypes and

phenotypes. Motivated by this hypothesis, the first aim of this thesis is to develop a new

computational approach to integrate scDNA and scRNA datasets and infer CN dosage ef-

fects. In Chapter 2, we propose TreeAlign, a Bayesian probabilistic model to assign single

cell expression profiles to a scDNA-based single cell phylogeny while inferring CN dosage

effects. Our second aim is to further improve data integration by considering allele-specific
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FIGURE 1.4: a, Genomic landscape of HGSCs in IMPACT. b, Genomic landscape
of HGSCs in TCGA.
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CN and gene expression. In Chapter 3, I will discuss extensions to TreeAlign which utilize

allele-specific information to further improve the performance and allow us to characterize

subclonal phenotypes of patient derived xenografts and cell lines derived from breast can-

cer and ovarian cancer patients. Finally, with the computational methods proposed, I will

discuss clone-specific transcriptional heterogeneity in HGSCs and the underlying genetic

and non-genetic origins of the heterogeneity (Chapter 4). Interferon-related pathways

were found to be frequently differently expressed between subclones highlighting their im-

portance in driving subclonal phenotypic divergence. With TreeAlign, we were able to

investigate clone-specific transcriptional phenotypes in the context of metastasis and whole

genome duplication. Additionally, I will highlight the potential extension of the TreeAlign

method for integrating additional data modalities such as scATAC. In this thesis, I mainly

focus on single cell datasets from ovarian cancer. With the emergence of more multi-modal

single cell datasets, I would expect that applications of the approaches described in this the-

sis can be expanded to a more diverse set of cancer types and experimental conditions.
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FIGURE 1.5: Graphical abstract of this thesis. We developed TreeAlign for scDNA
and scRNA integration which allows for downstream clone-specific differential ex-

pression and gene set enrichment analysis with dosage effect annotations.
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Chapter 2

TreeAlign for clone assignment and

dosage effect inference

2.1 Introduction

Previous studies using bulk sequencing techniques have investigated the association be-

tween clonal CNAs and gene expression [46–49]. The expression level of a gene can be

influenced by CN dosage effects reflected by the significant positive correlation between

gene expression and the underlying copy number [19]. However, gene dosage effects are

not deterministic and may be subject to compensatory mechanisms, rendering the impact

of CNAs on expression as highly variable across the genome. Transcriptional adaptive

mechanisms [73] including epigenetic modifications and downstream transcriptional regu-

lation, can modulate CN dosage effects [74–76], further obscuring the direct impact of gene

dosage. For example, the expression of certain immune response pathways often exhibit

both CNA-dependent and CNA-independent expression [49].

Theoretically, measuring single cell RNA and DNA data should elucidate how genotypes
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translate to phenotypes at single cell resolution. Technologies that sequence both RNA and

DNA modalities co-registered in the same cell would be ideal for linking genomic alter-

ations to transcriptional changes in tumor evolution. However, pioneering technologies [77,

78] have had limited throughput, lower quality and are still not mature enough for large-

scale profiling of cancer cells. Sequencing single cell RNA or DNA independently allows

more cells to be profiled and reveals a more comprehensive view of the cell populations,

but requires computational integration of the two data modalities.

Several computational methods have been proposed for joint analysis of single cell DNA

and RNA data. CloneAlign [79] is a probabilistic framework to assign transcriptional pro-

files to genomic subclones based on the assumption that the expression level of a gene is

proportional to its underlying copy number. More recent methods SCATrEx [80] and CC-

NMF [81] are also based on this assumption but use different methods to model the simi-

larity between copy number profiles and gene expression patterns. However, these methods

do not consider the possibility that transcriptional effects of copy number could be variable

between genes and therefore lack the specificity to decipher genes that may be subject to

dosage effects from those that are independent of CNAs. In addition, these methods re-

quire using predefined subclones from scDNA data or specify the number of subclones as

input which may propagate errors of uninformative subclones or may miss more granular

gene dosage effects. More importantly, the revelation of phenotypic plasticity as a driver

of genetically independent transcription in cancer cells [82–84] motivates the need to dis-

entangle genetic from epigenetic cell-to-cell mechanisms. No available methods directly

model dosage effects of subclonal CNAs, which is critical to infer which genes are de-

terministically modulated by subclonal CNAs and which genes are independent of CNAs.

Moreover, recent advances have illuminated the extent to which allele-specific CNAs can
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mark clonal haplotypes both in DNA-based [21] and RNA-based [85] single cell analysis,

illustrating both a methodological gap and analytical opportunity for integration.

In this study, we address the questions of how subclonal CNAs drive phenotypic divergence

and evolution in cancer cells, and quantitatively encode dosage effects in this process. We

present a new method, TreeAlign, to enumerate and define CNA-driven clone-specific phe-

notypes, and also a statistical framework to compare the transcriptional readouts of genomi-

cally defined clones. TreeAlign implements a Bayesian probabilistic model that maps gene

expression profiles from scRNA to genomic subclones from scDNA which i) can refine

subclone definition from single cell phylogenies through a recursive process suggested by

transcriptional divergence, ii) explicitly models dosage effects of each gene. Through ex-

tensive simulation, we demonstrate that the TreeAlign outperforms alternative approaches

in both terms of clone assignment and gene dosage effect prediction.

2.2 The total CN model for clone assignment and dosage

effect inference

We developed TreeAlign, a probabilistic graphical model which maps scRNA sequenced

cells to scDNA-derived subclones. TreeAlign employs a recursive algorithm for delineat-

ing subclones from phylogenies constructed using scDNA data, with guidance from gene

expression information. The model jointly infers clone assignments and clone-specific CN

dosage effects. The TreeAlign framework assumes a subset of genes with positively corre-

lated expressions to their underlying copy numbers. For each gene, expression is modeled

by k, where k 2 {0,1} is a Bernoulli variable such that the probability p(k = 1) represents

the probability the gene has clone-specific CN dosage effects (Fig. 2.1). This encoding
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results in genes without dosage effects (low p(k)) to have little or no contribution to the

clone assigning process.
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FIGURE 2.1: Graphical model of total CN TreeAlign.

To infer clone assignments and p(k), TreeAlign requires three inputs: 1) a cell ⇥ gene

matrix of raw read counts from scRNA-seq, 2) a cell ⇥ gene copy number matrix estimated

from scDNA data and 3) A phylogenetic tree (or optionally, predetermined clone labels)

from scDNA profiles. TreeAlign can either assign expression profiles to predefined clone

labels, similar to CloneAlign [79] or can operate on a phylogenetic tree directly to assign

cells to clades of the phylogeny (Fig. 2.2). When using a phylogenetic tree, a Bayesian

hierarchical model is recursively applied starting from the root of the tree, computing the

probability that expression profiles in scRNA can be mapped to a subtree. The stopping

condition of the recursion is satisfied when the genomic or phenotypic differences between
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two subtrees become too small to allow confident assignment of expression profiles. See

Methods for the complete explanation on model setup.

Expression count matrix
ce
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gene

gene

Copy number matrix with 
phylogenetic tree

Clone assignment

TreeAlign Recursively apply to 
subtrees

gene

Probabilities of gene 
expression depending 
on copy number
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FIGURE 2.2: TreeAlign takes raw count data from scRNA-seq, the copy number
matrix and the phylogenetic tree from scDNA-seq. By recursively assigning the
expression profiles to phylogenetic subtrees, TreeAlign infers the clone-of-origin of

cells identified in scRNA-seq and the dosage effects of subclonal CNAs.

2.3 Performance on simulated data

We first evaluated TreeAlign on synthetic datasets, quantifying the effect of three main pa-

rameters in the input data: number of cells (100 - 5000), number of genes (100 - 1000)
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and proportions of genes with dosage effects (10%-100%). Simulations were performed

using the generative model of CloneAlign [79]. We compared the performance of assign-

ing expression profiles to ground truth predefined clones between TreeAlign, CloneAlign

and InferCNV [60]. InferCNV was originally developed for inferring CNAs from gene

expression data, but has also been repurposed for clone assignment in some studies [59].

InferCNV analysis in this context acts as a way of inferring clone assignment without

the benefit of the scDNA data. Compared to CloneAlign and InferCNV, TreeAlign per-

formed significantly better in terms of clone assignment accuracy especially in the regime

where fewer genes exhibit dosage effects (Fig. 2.3, B.2). For example, in the regime of

60% of genes with dosage effects (1000 cells, 500 genes), TreeAlign achieved mean clone

assignment accuracy of 91.1%, compared to CloneAlign with 75.1% accuracy. The im-

provement in clone assignment accuracy was consistent across all cell and gene number

simulation scenarios. We also tested performance with phylogenetic tree inputs to evalu-

ate if TreeAlign could achieve similar results on tree input compared to pre-defined clone

input. Similar to the "clone" regime, these simulations varied the proportion of genes with

gene dosage effects in 10% increments. TreeAlign was able to assign expression profiles

back to the corresponding clades of the phylogeny with similar accuracies compared to the

clone input in regimes with > 40% genes with dosage effects (Fig. 2.3, B.3). Together

these evaluations reflect that the model effectively obviates a priori tree cutting without

paying a penalty in accurate clone mapping.

We also evaluated the accuracy of predicting dosage effects for each gene in the input

datasets. We compared the simulated and predicted (using p(k) as an estimate) frequency

of genes with CN dosage effects. For high expression genes, simulated and predicted fre-

quencies were highly concordant (Fig. 2.4). For datasets with � 50% of genes with dosage
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a b

FIGURE 2.3: a, Clone assignment accuracy of TreeAlign, CloneAlign and Infer-
CNV on simulated datasets (500 cells, 1000 genes, 3 clones) containing varying
proportions of genes with CN dosage effects. *P< 0.05, **P< 0.01, ***P< 0.001,
****P < 0.0001. Brackets: Wilcoxon signed-rank test. b, Phylogenetic tree (left)
of cells from patient 081 constructed using scDNA data. Heat map (right) of clone
assignment by TreeAlign. Each column shows the assignment of simulated expres-
sion profiles to subtrees of the phylogeny. The bar chart above shows the overall

accuracy of clone assignment.

effects, the mean area under the receiver-operator curve (AUC) was � 0.99 for genes with

relatively high expression level (genes in top 40% in terms of normalized expression levels)

(Fig. B.4). We compared p(k) to a baseline estimation of CN dosage effects which is the

per-gene Pearson correlation coefficient (R) of CN and expression after fitting CloneAlign.

p(k) from TreeAlign had an overall higher AUC compared to R from CloneAlign for pre-

dicting CN dosage effects. This establishes that p(k) captures gene dosage effects and has

the ability to distinguish genes with dosage effects from those without dosage effects.

2.4 Validation on real patient data

We next investigated TreeAlign’s performance on real-world patient derived data. We first

applied TreeAlign on single cell sequencing data from a HGSC patient (patient 022) [20].
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FIGURE 2.4: Scatter plots comparing inferred gene dosage effect frequencies and
the simulated frequencies. Each panel groups genes with similar expression levels
from low expression genes (0-10%, with normalized expression between 0.00076-
0.008) to high expression genes (90-100%, with normalized expression between 1.7-
5.6). Pearson correlation coefficients (R) and P values for the linear fit are shown.

Tumor samples were obtained from both left and right adnexa sites of the patient. scDNA

(n = 1050 cells) and scRNA (n = 4134 cells) data were generated through Direct Library

Preparation (DLP+) [86] and 10x genomics single-cell RNA-seq [87] respectively. 3579

(86.6%) ovarian cancer cells profiled by scRNA were assigned to 4 subclones identified

by scDNA-seq (Fig. 2.6). The expression profiles of clone C and D are overlapped on

the UMAP embedding, while separated from the profiles of clone A and clone B, which

coincides with the shorter phylogenetic distance between clone C and D (Fig. 2.5). The

separation of cells by assigned clones on the expression-based UMAP also suggests that

the genetic subclones possess distinct transcriptional phenotypes.

We confirmed the clone assignment accuracy of TreeAlign by comparing the clonal fre-

quencies estimated by RNA and DNA data (Fig. 2.7). As both scRNA and scDNA data

were generated by sampling from the same populations of cells, the clonal frequency

estimated by the two methods should be consistent. Clonal frequencies in the left and
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FIGURE 2.5: UMAP plot of scRNA-data from patient 022 colored by clone labels
assigned by TreeAlign.

a

b

FIGURE 2.6: a, Single cell phylogenetic tree of patient 022 constructed with
scDNA-data (left). Pie charts on the tree showing how TreeAlign assigns cell ex-
pression profiles to subtrees recursively. The pie charts are colored by the propor-
tions of cell expression profiles assigned to downstream subtrees. The outer ring
color of the pie charts denotes the current subtree. For example, the leftmost pie
chart represents the proportions of cells assigned to the two main subtrees. The
outer ring represents the root of the phylogeny. Red represents the subtree on the
top or clone A. Blue represents the bottom subtree which contains clone B, C and
D. Left heat map, total copy number from scDNA; right heat map, InferCNV cor-
rected expression from scRNA; middle Sankey chart, clone assignments from RNA

to DNA. b, Normalized expression of CLDN16 in clone A and clone B-D.
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right adnexa sample from the two modalities were significantly correlated (R = 0.99, P =

9⇥10�7).

FIGURE 2.7: Correlation between clone frequencies of patient 022 estimated by
scRNA-data (x axis) and scDNA-data (y axis).

In addition, CNAs inferred for scRNA cells using InferCNV [60] were concordant with

the scDNA-based CNA of the clones to which scRNA cells were assigned (Fig. 2.6). For

example, notable clone specific copy number changes can be seen in both scDNA and

scRNA on chromosome X in clone A. Clone B specific amplification on 3q, Clone C and

Clone D specific amplification on 16p can also be observed in both scDNA and scRNA.

By comparing the RNA-derived copy number profiles with scDNA data, we noticed that

inferring copy number from RNA data is not always accurate. For example, the inferred

profiles missed the focal amplification on chromosome 18.

We also held out genes from chromosome 9 and chromosome 12 and re-ran TreeAlign

with the remaining genes. 98.8% cells were assigned consistently as compared to results

using the full dataset. Clone level gene expression on chromosome 9 and 12 was consistent
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with the corresponding copy numbers (Fig. 2.8). These results demonstrated a proof of

principle that TreeAlign can properly integrate scRNA and scDNA datasets and highlighted

that scDNA-seq can provide valuable information on CNAs and tumor subclonal structures

which would be difficult to detect with expression data only.

a b

c d

FIGURE 2.8: a, Scaled expression for regions on chromosome 9. b, Scaled ex-
pression for regions on chromosome 12. c, copy number profiles for regions on
chromosome 9. d, copy number profiles for regions on chromosome 12 as a func-

tion of genes ordered by genomic location.

We then applied TreeAlign to data from an HGSC patient-derived xenograft (PDX) SA610X3XB03802

[21]. Compared to patient 022, clone-specific CN changes are less obvious in this sample

(Fig. 2.9). The two major subclones have CN difference on chromosome 2, 3, 4, 19 and X.

TreeAlign was able to assign expression profiles to the two major clones. After reviewing

the InferCNV output, we noticed that InferCNV was able to capture some of the CNAs such

as the ones on chromosome 2, 19 and X but failed to recover the changes on chromosome

3 and 4.
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FIGURE 2.9: Total CN model of TreeAlign assigned expression profiles of
SA610X3XB03802 to 2 subclones.

Finally, we applied TreeAlign to previously published data from a gastric cell line NCI-

N87 generated by 10x genomics single-cell CNV and 10x scRNA assays [57]. TreeAlign

assigned 3212 cells from scRNA to three clones identified in scDNA. The clonal frequen-

cies estimated by both assays were closely aligned (Fig. B.5). As for the patient 022 data,

the scRNA cells showed subclonal copy number similar to the scDNA clones to which they

were assigned, thus illustrating that TreeAlign also performs well with 10x scDNA data.
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Chapter 3

Allele-specific TreeAlign and

clone-specific CN dosage effects

3.1 Introduction

In the previous chapter, the total CN TreeAlign model was constructed by incorporating

clone-specific CN dosage effects. In addition to altering gene expression, as CNAs usu-

ally affect one allele, this can lead to imbalanced copy numbers of maternal and paternal

alleles, resulting in imbalanced gene expression levels from them (Fig. 3.1). For exam-

ple, genomic segments harboring loss of heterozygosity (LOH) deterministically leads to

mono-allelic expression of genes in the segment while allelic imbalance owing to allele

specific gains will skew the relative expression of specific alleles. Allele-specific CNAs

have been extensively delineated with bulk DNA sequencing methods [88–90]. The in-

vestigation of allele-specific CNAs has revealed a more comprehensive view of the copy

number landscape in cancers, including copy-neutral LOH and "parallel events" [21, 23],

wherein different alleles acquire similar alterations at the same genomic locus in the same
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tumor, implying the occurrence of convergent evolution.

FIGURE 3.1: Allelic imbalance can be inferred from DNA data and RNA data.
We assume a positive correlation between the two measurements to improve clone
assignment. Y axis here represents B (minor) allele frequencies which is a metric

for allelic imbalance.

The emergence of more single-cell sequencing datasets has engendered the development

of novel computational tools, such as CHISEL [91], Alleloscope [92], and SIGNALS [21],

designed to estimate allele-specific CN in individual cells. Single-cell datasets allow better

characterization of cell-to-cell variability in allelic imbalance across cancer cell popula-

tions. For instance, SIGNALS facilitated the identification of losses of Chr 2q region on

different alleles in a TP53-/- hTERT cell line, which was also found to be correlated with

the down-regulation of genes situated within that genomic domain [21]. The presence of

allele-specific CNAs, along with subsequent allele-specific expression (ASE), plays an im-

portant role in the trajectory of cancer evolution [93, 94]. For instance, 6p LOH has long

been known as a prevalent event across diverse cancer types [95, 96], leading to HLA haplo-

type loss and decreased expression of HLA class I [97, 98]. This event potentially confers a

selective advantage, as cancer cells undergoing HLA haplotype loss tend to evade immune

surveillance more effectively [99].
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The estimation of ASE can be derived from RNA-seq data through the analysis of read

counts from heterozygous single nucleotide polymorphisms (SNPs). Various methods have

been proposed to quantify ASE using bulk and single-cell RNA-seq data [100–103]. Given

the inherent association between allele-specific CNAs and ASE, it is possible to leverage

both aspects to integrate genomic and transcriptomic information. Several methods have

been developed to infer allele-specific CNAs from single cell expression data and showed

promising results [85, 104]. In this chapter, we will focus on building the allele-specific

model of TreeAlign to take advantage of the allelic imbalance information. We showed that

the incorporation of the allele-specific model enhances the clone-assignment performance

of TreeAlign. By applying the integrated model that utilizes both total and allele-specific

CN, to datasets from patient-derived xenografts (PDXs) and cell lines, we characterized

clone-specific CN dosage effects and highlighted pathways that were differentially influ-

enced by the cis-effects of CNAs.

3.2 The allele-specific model of TreeAlign

Allele-specific CNAs lead to allele-specific expression imbalance which is detectable in

scRNA data [21, 91]. To exploit how allelic imbalance modulates allele specific expres-

sion, we extended TreeAlign to model both total CN and allelic imbalance (Fig. 3.2, B.1).

Given the B allele frequencies (BAFs) estimated from scDNA haplotype blocks using,

for example, SIGNALS [21] and allele-specific expression at corresponding heterozygous

SNPs in scRNA data, the allele-specific model contributes to clone assignment and infers

the probability of the allele assignment p(a = 1) , a 2 {0,1}, which indicates whether the

SNP is on allele B or not. The total copy and allele-specific components of the probabilistic
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graphical model combine to form the "integrated model".
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FIGURE 3.2: Graphical model of integrated TreeAlign.

The software for all models of TreeAlign (https://github.com/shahcompbio/TreeAlign) is

implemented in Python using Pyro [105] and is publicly available. Our implementation

allows users to run the total CN model, allele-specific model and integrated model by pro-

viding different inputs. See Methods for additional mathematical, inference and implemen-

tation details.

With synthetic dataset, we investigated how allele-specific information improves clone as-

signment. We simulated BAFs for varying numbers (0, 250, 500, 750 and 1000) of het-

erozygous SNPs with allelic-imbalance and simulated allele-specific expression from these

SNPs using the generative model of allele-specific TreeAlign. We applied the integrated
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model on these synthetic datasets which contained total CN and allelic information, and

confirmed that clone assignment accuracy was improved when more SNPs were included

(Fig. 3.3).

Extended Data Fig. 3
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FIGURE 3.3: Accuracy of clone assignment for the integrated model of TreeAlign
on simulated scRNA datasets as a function of varying numbers of heterozygous
SNPs in input. Panels represent datasets with different numbers of genes and pro-

portions of genes with CN dosage effects.

We also investigated the influence of inaccurate phylogeny input on TreeAlign perfor-

mance. We randomly selected different proportions of CN profiles from scDNA and shuf-

fled their cell labels in patient 022. With more cell labels being shuffled, the tree will

become less accurate in reflecting the true phylogeny of the population. When less than
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20% of cells were shuffled, TreeAlign was able to resolve the same number of subclones

as with the original data (Fig. 3.4). When more than 50% cells were shuffled, TreeAlign

failed and assigned all expression profiles to the unassigned state. These results suggest

that TreeAlign can tolerate inaccurate phylogeny input to some extent.

Extended Data Fig. 4

a b

FIGURE 3.4: a, Heat map of clone assignment in patient 022. Columns represent
input phylogenies with certain % of cell labels being randomly shuffled. b, Ad-
justed rand index of clone assignment using shuffled phylogenies in patient 022.
Clone assignment results with the original phylogeny were used as ground truth for

comparison.

3.3 Validation on real patient data

We next investigated the extent to which accurate clone assignment solely based on allele

specific expression could be performed on real patient data. We inferred allele specific CN

and BAF using scDNA data from patient 022 using SIGNALS [21]. The allele specific

heat map (Fig. 3.5) revealed characteristic patterns of clonal LOH in whole chromosomes

(e.g. chr 6,13, 14, 17) as well as subclonal losses (e.g. chr 9q in clone A and parallel
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losses on chr 5 across multiple subclones). With the allele-specific model, we assigned

cells from scRNA to clone A as identified by scDNA in patient 022. Clone assignments

were consistent between the allele specific model and the total CN model with 87% cells

concordant. The clone-specific frequencies of reads from B allele in scRNA accurately

reflected scDNA BAF (Fig. B.6), with the exception of SNPs on chromosome X which

showed allelic imbalance in scRNA but not in scDNA due to X-inactivation. The predicted

allele assignments of SNPs from the allele-specific model were also consistent with haplo-

type phasing from scDNA reported by SIGNALS (AUC = 0.84) (Methods). These results

suggest that allelic imbalance information can be effectively exploited for clonal mapping.
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FIGURE 3.5: Integrated TreeAlign model assigns expression profiles to phylogeny
of patient 022. Left heat map, single cell BAF profiles estimated from scDNA-data
using SIGNALS, annotated with clone labels on the left side (BAF profiles without

clone label represent cells ignored by TreeAlign) (Methods).

We then applied the integrated model utilizing both total CN and allele-specific information

on data from patient 022. Relative to the total CN model, the integrated model mapped

scRNA cells to smaller subclones (Fig. 3.5). Specifically we note when considering allele

specificity, Clone B was subdivided into two subclones (B.1 and B.2). Clone B.1 had an

additional deletion at 16q leading to LOH, whereas Clone B.2 had an amplification at 11q
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with increased BAF. Clone D was further divided into four subclones (D.1, D.2, D.3 and

D.4). Clone D.1 and clone D.2 both had a deletion on chromosome 5, but the deletion

events occurred on different alleles in the two subclones with different breakpoints, each

of which was distinct from the 5q deletion on Clone B, indicative that parallel evolution is

indeed reflected in transcription with the allele specific model.

FIGURE 3.6: ROC curves for predicting p(a= 1) with allele-specific TreeAlign and
integrated TreeAlign.

We computed proportions of B allele reads at each heterozygous SNP for each of the sub-

clones assigned from the scRNA data. Subclonal BAF estimated with scDNA data and pro-

portions of reads from B allele from scRNA were significantly correlated ( 0.25 < R < 0.53

for each subclone, P < 2.2⇥ 10�22) (Fig. 3.7, 3.8 and B.6), consistent with more accu-

rate clone assignment. With integrated TreeAlign, we also achieved better performance for

predicting allele assignment parameter a of SNPs compared to the allele-specific model

(Fig. 3.6). We note that recent identifications of parallel allele-specific alterations whereby

maternal and paternal alleles are independently lost or gained in different cells [21, 23,

91] would further complicate clonal mapping, if allele specificity is not taken into account.
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Here we show that mono-alleleic expression of maternal and paternal alleles is consis-

tent with coincident maternal and paternal allelic loss in different clones (Fig. 3.5). The

allele-specific TreeAlign model correctly assigns cells at this level of granularity that would

otherwise be missed.

a

b

FIGURE 3.7: a, BAF of subclones with scDNA. b, Proportional of reads from B
allele for subclones in scRNA.

We compared the performance of total CN, allele-specific and integrated TreeAlign us-

ing subsampled datasets of patient 022 and evaluating against results from the full dataset

(Fig. 3.9). The total CN and integrated model were robust to reduced numbers of cells.

Compared to the total CN model, the integrated model performed significantly better when

fewer genomic regions were included in the input suggesting it is more robust when there
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FIGURE 3.8: Correlation between % of reads from B allele in scRNA and BAF
estimated with scDNA in patient 022. Annotations at the top indicate the Pearson

correlation coefficient (R) and P value derived from a linear regression.

are fewer copy number differences between subclones. The allele-specific model without

total CN is inferior, as expected.

a b

FIGURE 3.9: a, Robustness of clone assignment to gene subsampling in patient
022. Adjusted rand index was calculated by comparing clone assignments using
subsampled datasets to the complete dataset. b, Robustness of clone assignment to

cell subsampling in patient 022.
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3.4 Inferring copy number dosage effects in human can-

cer data

We next compared the integrated model to the total CN model on a recently published

cohort of cell lines and PDXs with scDNA and scRNA matched data from Funnell et al (re-

ferred to as "Signature cohort") [21]. We applied TreeAlign on data from PDXs of Triple

Negative Breast Cancer (TNBC) (n = 3) and HGSC (n = 6). In addition we tested the

model on one ovarian cancer control cell line and 6 184-hTERT cell lines engineered to

induce genomic instability from a diploid background with CRISPR loss of function of

TP53 combined with BRCA1 or BRCA2. Both integrated and total CN TreeAlign were

run on matched DLP+ and 10x scRNA-seq data. The integrated model was fitted for 1-10

rounds (Fig. B.8) and the total CN model was fitted for 1-3 rounds (Fig. B.7) when we ran

TreeAlign with the phylogeny input. The integrated model only failed to assign expression

profiles to any subclones for cell line SA906a, due to a low number of genes (n = 32) with

CN differences and heterozygous SNPs (n = 7) with BAF differences between subclones.

In comparison, the total CN model failed in 8 cases due to lack of allelic information. As

expected, the integrated model characterized more clones and achieved a lower number

of cells not confidently assigned to a subclone (Fig. 3.10). For cells that were assigned

confidently by the integrated model but not the total CN model, their InferCNV-corrected

expression showed higher correlation coefficients with the CN profiles of subclones as-

signed by the integrated model compared to random subclones (Fig. B.10), implying better

performance of the integrated model.

For high expression genes (mean normalized expression > 0.1) located in clone specific



Chapter 3. Allele-specific TreeAlign and clone-specific CN dosage effects 37

a cb

FIGURE 3.10: a, Number of clones characterized by total CN and integrated model
(Wilcoxon signed-rank test). b, Frequencies of unassigned cells (Methods) from
total CN and integrated model (Wilcoxon signed-rank test). c, Distribution of Pear-
son correlation coefficients (R) between scDNA-estimated total CN and InferCNV-
corrected expression for cells assigned by the integrated model but unassigned by
the total CN model. Left, correlation distribution calculated by comparing Infer-
CNV profiles to CN profiles of a random subclone; Right, correlation distribution
calculated by comparing InferCNV profiles to CN profiles of subclones assigned by

integrated TreeAlign.

copy number (CSCN) regions, 76.7% (64.4% - 86.6% across cases) had p(k) > 0.5 sug-

gesting their expression is dependent on copy number (Fig. B.11, B.12). Taking together

the simulation results and the fact that there are 13.4% - 35.6% genes with low CN dosage

effects (p(k)  0.5), we would expect benefits of incorporating k and p(k) in TreeAlign

as compared to CloneAlign. It was reported that cancer genes tend to have stronger CN-

expression correlation compared to non-cancer genes in HGSCs [106]. We also observed

concordant results that cancer genes annotated by COSMIC Cancer Gene Census [107]

tend to have higher p(k) compared to non-cancer genes suggesting stronger CN dosage

effects in cancer genes (Fig. B.12).

When we summarized p(k) by genomic locations, we noticed that genes located at the same
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CSCN region had more consistent p(k). Notably, p(k) of genes in a contiguous region ex-

hibited significantly lower variation compared to randomly sampled genes across different

regions (Fig. 3.11). It should be noted that we only included CN events that span more

than 10 genes in this analysis. Therefore, it is not known whether the conclusion still holds

for more focal copy number events. In addition to broad regions of the genome, we note

subclonal high-level amplifications affecting known oncogenes which have been identified

previously [21]. Using TreeAlign, we also identified subclonal amplifications of onco-

genes accompanied by consistent changes in gene expression. For example, in OV2295,

subclonal upregulation of MYC expression coincides with the clone-specific MYC am-

plification with p(k) > 0.8 (Fig. B.13). To investigate whether MYC pathway activation

was also impacted by non-CNA driven effects, we performed pathway enrichment on genes

with low p(k) and found genes in the Hallmark MYC Target V1 gene set [108] significantly

enriched in low p(k) genes. Combined with HLAMP results, this suggests the pathway can

be regulated by both CN dosage effects and other (potentially non-genomic) effects at the

subclonal level (Fig. B.14), further highlighting the importance of p(k) for interpreting the

mechanism of gene dysregulation.



Chapter 3. Allele-specific TreeAlign and clone-specific CN dosage effects 39

FIGURE 3.11: Variance of p(k) sampled from the same genomic regions and across
regions.
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Chapter 4

Clone-specific phenotypes in HGSCs

4.1 Introduction

Investigations into the genetic ITH of HGSCs have relied on bulk and single cell DNA

sequencing [21, 32, 62, 64], which unveiled dynamic changes in clonal composition based

on tumor location and treatment. Clonal diversity is also closely linked to the surrounding

immune microenvironment, with tumors situated in immune-rich environments demon-

strating reduced diversity, implying the prevalence of purifying selection [66]. Leveraging

scDNA-seq improves our ability to further disentangle genetic ITH in HGSC. By apply-

ing scDNA-seq to HGSC and TNBC PDXs, extensive cell-to-cell variations in amplitudes

and breakpoints of CN events were identified and shown to be associated with the ongoing

mutational processes [21].

Previous investigations have similarly delved into the transcriptomic ITH and character-

ized recurrent cancer cell states in HGSC through scRNA-seq [109, 110]. The integration

of matched scDNA and scRNA datasets facilitated by TreeAlign can provide us a great

opportunity to link the genetic and transcriptomic ITH.
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We applied TreeAlign on data collected through MSK-SPECTRUM, which is an ongo-

ing project at MSK aiming to discover spatio-temporal determinants of ovarian cancer

evolution, treatment and response [20]. Multimodal data including genomic, pathologic,

radiologic and clinical information were collected from HGSC patients. As a part of the

project, scRNA-seq and scDNA-seq were conducted on tumor samples from multiple in-

traperitoneal sites such as left/right adnexa, omentum and ascites. The MSK-SPECTRUM

cohort currently contains scRNA-seq and scDNA-seq data from more than 40 patients and

is a valuable resource to investigate the transcriptional phenotypes of HGSCs.

This chapter is dedicated to the application of TreeAlign to HGSC samples from MSK-

SPECTRUM and Signature cohort, with a primary focus on unraveling clone-specific tran-

scriptional diversity and elucidating the phenotypes associated with metastasis and whole

genome doubling.

4.2 Clone-specific transcriptional phenotypes

We sought to interpret clone-specific transcriptional phenotypes and phenotypic divergence

during clonal evolution from TreeAlign mappings. For patient 022, differential expression

and gene set enrichment analysis identified genes and pathways upregulated in each clone

(Fig. 4.1). In total, we found 1346 genes significantly upregulated (adjusted P < 0.05,

MAST [111]) in at least one of the subclones in patient 022. 52.1% (701) of these genes

were not located in CSCN regions, while 47.9% (645) genes were located within CSCN re-

gions. For 90.7% (585/645) of genes in CSCN regions, p(k) was > 0.5, reflecting probable

gene dosage effects.

Immune related pathways such as IFN-a and IFN-g response were differentially expressed,
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FIGURE 4.1: Scaled expression of upregulated genes in each subclone in patient
022, showing genes in rows and subclones in columns. Genes in the COSMIC

Cancer Gene Census [107] are highlighted.

and with increased relative expression in clone A (Fig. 4.2). Clone A contains cells from

both right and left adnexa, thus dysregulation of these pathways cannot be simply explained

by the microenvironment of clone A. Differential expression of immune related pathways

was also found between more closely related subclones (Fig. B.15). Compared to clone

B.2, clone B.1 also has enriched expression in IFN-a and IFN-g signaling pathways and

downregulation in MYC targets V1 and G2M checkpoint gene sets. Clone D.4, compared

to other clone D subclones, had down-regulated TNF-a signaling via NFkB. Seeking to

explain the relative contribution of subclonal CNAs to differentially expressed pathways,

we analyzed the proportion of differentially expressed genes found in subclonal CNAs

for each pathway. Only 17.4% (4/23) of differentially expressed genes in the Allograft

Rejection gene set are in CSCN regions compared to 61.5% (24/39) in the MYC Targets

V1 gene set highlighting the distinct impact of subclonal CNA between pathways (Fig.

B.16).

We conducted a similar analysis on data from the Signature cohort. Differential expression

analysis revealed varying proportions of DE genes located in CSCN regions ranging from
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ba

FIGURE 4.2: a, UMAP embedding of expression profiles from patient 022 colored
by clone labels assigned by integrated TreeAlign model. b, Differentially expressed

genes between clone A and other subclones (clone B-D) in patient 022.

1.3% to 63.9%, indicating that transcriptional heterogeneity due to cis-acting subclonal

CNAs varied across tumors (Fig. 4.3).

a b

FIGURE 4.3: a-b, Proportions of subclonal differentially expressed genes located
in CSCN regions for (a) 184-hTERT cell lines, (b) an HGSC control cell line and

PDXs.

In addition to pathways such as KRAS signaling which are known to be important in

these tumors, using GSEA, we found that IFN-a and IFN-g response pathways also show

variable expression between subclones of TNBC and HGSC PDXs frequently (Fig. 4.5).

We applied TreeAlign on additional patients from SPECTRUM with matched scRNA and
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scDNA data and summarized frequently dysregulated pathways between clones (Fig. 4.6).

Immune related pathways such as IFN-a and IFN-g response again show highly variable

expression between clones. For example, in patient 105, clone E has upregulated expres-

sion of genes in IFN responses and antigen presentation (Fig. 4.4). IFN signaling has

important immune modulatory effects, and has been previously linked to immune evasion

and resistance to immunotherapy [112]. The recurrent differential expression of immune

related pathways between subclones suggests their importance in clonal divergence in these

cancers of genomic instability.

FIGURE 4.4: a, UMAP embedding of cancer cell expression profiles from patient
105 colored by clone assignment from TreeAlign. b, Differentially expressed genes

between clone E and other subclones in patient 105.

To investigate transcriptional diversity within and across subclonal populations, we calcu-

lated Pearson correlation coefficients and Euclidean distance between cells using the top

20 principal components of the gene expression matrices. In addition to TreeAlign, we also

used InferCNV to assign cells from scRNA to genomic clones. We found that cells sam-

pled from the same TreeAlign clone or InferCNV clone tend to have higher correlation and
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FIGURE 4.5: Pathways with clone-specific expression patterns in TNBC and HGSC
PDXs.

FIGURE 4.6: Pathways with clone-specific expression patterns in additional SPEC-
TRUM patients.
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lower distance (Fig. 4.7), suggesting lower transcriptional diversity within the subclonal

populations.

Extended Data Fig. 10

a b

c d

FIGURE 4.7: a-b, mean Euclidean distance between cells in scRNA-data sampled
across or within subclones for (a) HSGC PDXs and cell lines and (b) patient 022. c-
d, mean Pearson correlation coefficient between cells in scRNA-data sampled across

or within subclones for (c) HSGC PDXs and cell lines and (d) patient 022.



Chapter 4. Clone-specific phenotypes in HGSCs 47

4.3 Cis-effects of CNAs in HGSC metastasis

We also tried to delineate the transcriptional variances existing between primary and metastatic

HGSCs and to elucidate whether these transcriptional discrepancies can be directly at-

tributed to the cis-effects of CNAs. We focused on four patients (specifically, patients 009,

037, 081, and 083) from the SPECTRUM dataset (Fig. B.20, B.21, 4.8 and B.22), where

both scDNA and scRNA data were available, spanning the primary anatomical sites of

left and right adnexa, in addition to metastatic locations such as the infracolic omentum.

We employed DE and GSEA to compare the cancer cells from the primary and metastatic

sites for each patient. Parameter p(k), as inferred by TreeAlign, enabled us to discriminate

whether a gene’s expression relied upon clone-specific CN dosage effects.

Across all four patients, most genes displaying significant differential expression between

primary and metastatic sites were not situated within CSCN regions. This suggests that the

observed differences in their expression levels were not primarily attributed to cis-effects of

clone-specific CNAs. We further categorized genes located within CSCN regions into two

distinct groups based on their p(k) values: genes with high p(k) (p(k) � 0.5) and genes

with low p(k) (p(k) < 0.5). Subsequently, GSEA was applied independently to high p(k)

genes, low p(k) genes, and genes located outside CSCN regions to identify pathways that

exhibited enrichment within these gene sets.

In the case of patient 009, immune-related pathways such as interferon gamma signaling

and PD-1 signaling were found to be upregulated in cancer cells at the metastatic site for

genes located outside CSCN regions. This suggests that these pathways are not predomi-

nantly regulated by the cis-effects of CNAs. Similarly, for patient 081, interferon signaling
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pathways exhibited upregulation in metastatic sites, but this upregulation was evident pri-

marily in genes with low p(k) or genes located outside CSCN regions, rather than in genes

with high p(k) (Fig. 4.8). This observation indicates that gene regulatory mechanisms other

than CN dosage effects assume a more significant role in modulating immune signaling at

metastatic sites.

a b

c d

FIGURE 4.8: a, Differentially expressed genes between metastatic and primary sites
in patient 081. (b,) Number of upregulated genes in metastatic and primary sites
grouped by p(k) level in patient 081. c, Upregulated gene sets among genes outside
of CSCN regions in patient 081 metastatic site. (d,) Upregulated gene sets among

low p(k) genes in patient 081 metastatic site.

4.4 Clone-specific changes in WGD tumors

Whole genome doubling (WGD) is a frequently occurring event in cancer, detectable in

approximately 30% of tumors [113–115]. This genomic alteration manifests early in the

trajectory of tumorigenesis, allowing cancer cells to tolerate detrimental somatic mutations



Chapter 4. Clone-specific phenotypes in HGSCs 49

within LOH regions [12]. Consequently, WGD is particularly favored in tumors marked

by elevated rates of somatic CNAs [115]. WGD also exhibits an association with immune

evasion. Tumors displaying WGD tend to exhibit reduced number of tumor-infiltrating

leukocytes and diminished immune responses [14, 115]. Hypotheses have been formulated

suggesting that WGD in tumors may lead to impaired antigen presentation or a reduced

concentration of neoantigens, thereby contributing to the observed dampened immune re-

sponses [14]. In this section, we focused on exploring the transcriptional phenotypes linked

to WGD and demonstrating the feasibility of distinguishing between closely related diploid

and tetraploid subclonal populations through the utilization of TreeAlign.

Using scDNA data, we were able to estimate the prevalence of WGD in tumor samples

from SPECTRUM. Notably, the distribution of WGD frequency exhibited a bimodal pat-

tern within this cohort (Fig. 4.9). Specifically, 25 samples had more than 80% of cells

with WGD (referred to as "WGD samples"), while 38 samples exhibited fewer than 20%

of cells with WGD (referred to as "nWGD samples"). Only three samples presented with

WGD frequencies ranging between 20% and 80%. Moreover, it was observed that samples

derived from the same patient often displayed consistent WGD status. Among the 19 pa-

tients for whom scDNA data was available at multiple anatomical sites, only patient 081

had both a WGD sample (from the infracolic omentum) and an nWGD sample (from the

left adnexa), consistent with the notion that WGD is an early event in the progression of

cancer.

Subsequently, employing DE and GSEA, we conducted a comparative analysis of cancer

cells from WGD and nWGD samples with scRNA data (Fig. 4.10). This analysis revealed

that cancer cells originating from WGD samples exhibited a down-regulation in the expres-

sion of genes associated with interferon signaling pathways, alongside an up-regulation of
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FIGURE 4.9: Frequencies of WGD cells in SPECTRUM samples

MYC targets V1, mitotic spindle and DNA repair pathways. These findings were consistent

with prior analyses [115] and indicated that WGD in cancer cells may result in a diminished

immune response and contribute to the down-regulation of interferon signaling.

Interestingly, in the case of patient 081 infracolic omentum, despite 91.76% (512 out of

558) of cancer cells in the tetraploid state, the remaining 8.16% cells are diploid, forming a

distinct subclone as informed by scDNA data. We applied TreeAlign to assign cancer cell

expression profiles from this sample to the two subclones with different ploidy. TreeAlign

proficiently assigned 89.17% (1687 out of 1885) of scRNA cells to the tetraploid clone

and 10.83% (145 out of 1885) to the diploid clone, in accordance with the scDNA-based

estimations (Fig. 4.11). Cells assigned to the tetraploid clone exhibited a higher total

read count per cell and a greater proportion of reads originating from mitochondrial genes

(Fig. 4.12). Leveraging these cell assignments, we were able to undertake a comparative
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FIGURE 4.10: Volcano plot showing upregulated and downregulated pathways in
WGD samples
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analysis of gene expression between the closely related diploid and tetraploid subclones

originating from the same anatomical site (Fig. 4.13). In concordant with the broader

sample-level comparisons, the gene set of MYC targets V1 was found to be up-regulated in

the tetraploid clone. However, interferon gamma response pathways and related immune

pathways displayed an up-regulation in the tetraploid cells, diverging from the sample-level

results.
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FIGURE 4.11: UMAP embedding of cancer cells from patient 081 infracolic omen-
tum colored by ploidy state assigned by TreeAlign

Patient 081’s unique presentation of mixed diploid and tetraploid cells at infracolic omen-

tum, alongside the availability of matched scDNA and scRNA data, enabled TreeAlign

to characterize WGD and nWGD clones originating from the same anatomical site, thus

facilitating a comparative analysis of their transcriptional phenotypes in the same microen-

vironment. The presence of additional cases exhibiting similar characteristics could fur-

ther harness the utility of TreeAlign in elucidating transcriptional changes associated with

WGD.
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a b

c d

FIGURE 4.12: a, Number of genes detected per cell in patient 081 scRNA grouped
by ploidy status. b, Number of reads per cell in patient 081 scRNA grouped by
ploidy status. c, Percentage of reads from mitochondrial genes in patient 081 scRNA
grouped by ploidy status. d, Percentage of reads from ribosomal genes in patient 081

scRNA grouped by ploidy status.
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FIGURE 4.13: Volcano plot showing upregulated and downregulated pathways in
WGD samples in WGD cells from patient 081 infracolic omentum
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4.5 Potential extension of TreeAlign to other data modali-

ties

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is

a powerful technique to probe the epigenetic landscape of individual cells by measuring

chromatin accessibility. Beyond its primary usage in characterizing epigenetic signals,

scATAC-seq data can also capture CN signals, as genomic regions experiencing gains or

losses in copy number tend to have corresponding shifts in chromatin accessibility. There-

fore, chromatin accessibility, as quantified by scATAC-seq, exhibits a positive correlation

with the underlying CN status. To extract CN information from scATAC data, multiple

methods have been developed [92, 116, 117], enabling the inference of both total and

allele-specific CN profiles. However, due to relatively low coverage achieved at the single-

cell level, scATAC-seq generally characterizes CN events with lower resolution compared

to scDNA-seq[118].

In this section, we explored the feasibility of integrating scDNA and scATAC, these dis-

tinct but complementary data modalities using the TreeAlign framework. Specifically, we

generated scATAC data for two patients, patient 037 and patient 051 in SPECTRUM (Fig.

4.14), in conjunction with their respective scDNA profiles (Fig. 4.15). We merged scATAC

profiles from the two patients. Our goal was to investigate whether TreeAlign could be

employed to effectively integrate scDNA and scATAC data, thereby enabling us to assign

scATAC profiles back to the corresponding copy number profiles of the originating patient.

In contrast to scRNA data, where we utilized cell ⇥ gene expression matrices as input, for

scATAC, we generated cell ⇥ genomic region matrices of fragment counts, with each re-

gion spanning 500kb in length, as TreeAlign input. In parallel, for the copy number input,
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FIGURE 4.14: UMAP embedding of scATAC profiles of cancer cells from patient
037 and patient 051

we used cell ⇥ genomic region CN matrices rather than cell ⇥ gene matrices. TreeAlign

successfully assigned scATAC profiles to the correct patient, achieving an accuracy of

96.81%. Although the divergence between CN profiles from different patients typically

exceeds that between subclones within a patient, making scATAC profile assignment com-

paratively more straightforward in this scenario, the successful integration underscores the

potential applicability of the TreeAlign framework to other data modalities.

In summary, our findings showcase the adaptability of TreeAlign for effectively merging

scATAC and scDNA data, a development with the potential to enhance our understanding

of the intricate interplay between genomic alterations and epigenetic states at the single-

cell level. Furthermore, this study opens the door to the application of TreeAlign across a

broader spectrum of data types, promising deeper insights into diverse aspects of cellular
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a

b

FIGURE 4.15: Heatmaps showing single cell CN profiles inferred from DLP+ data
for patient 051 (a) and patient 037 (b
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heterogeneity and its genetic underpinnings.
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Chapter 5

Conclusion

TreeAlign establishes a probabilistic framework for integration of scRNA and scDNA data

and inference of dosage effects of subclonal CNAs. TreeAlign achieves high accuracy of

assigning single cell expression profiles to genetic subclones and was built to operate on

phylogenetic trees directly, therefore informing phenotypically divergent subclones during

the recursive clone assignment process. In addition to scRNA and scDNA integration,

TreeAlign disentangles the cis dosage effects of subclonal CNAs which highlights highly

regulated pathways in clonal evolution. The model also has improved flexibility allowing

either total or allelic copy number or both to be used as input. With additional allele-specific

information, TreeAlign has improved prediction accuracy and model robustness and is able

to identify more refined clonal structures.

5.1 Limitations and future directions of TreeAlign

In terms of limitations, TreeAlign was designed to integrate matched scRNA and scDNA

datasets. For partially matched datasets with different clonal compositions, TreeAlign
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may have compromised performance. TreeAlign also assigns expression profiles based on

clone-specific CNAs. For cancer types not driven by CN events, TreeAlign is not suitable

due to lack of input features. The way TreeAlign encodes the relationship between gene

expression and CN could also be further improved in the future. By default, TreeAlign trun-

cates CNs > 10 to 10 and represents the CN-expression relationship with a linear function.

Functions that are more biologically meaningful could be used to replace the current setup.

Last, although we tried to address the issue of tree cutting by implementing an iterative

process to allow TreeAlign define subclones informed by transcriptional profiles, the sin-

gle cell phylogenetic tree itself is still purely based on scDNA data. Applying TreeAlign

on trees constructed by different phylogenetic inference methods may result in different

clones being characterized.

Based on TreeAlign, we may consider other model setup to address some of the current

limitations. In CCNMF [81], which is another method for scDNA and scRNA integration,

the authors use negative matrix factorization to co-cluster scDNA and scRNA profiles to

define clones. I think it is possible to combine this approach and the dosage effect modeling

in TreeAlign to allow defining clones or phylogenies based on both genomic and transcrip-

tomic information. The underlying assumption is that there exists a set of clones with

distinct CN profiles and these profiles can explain both scDNA and scRNA data. From the

clone-specific CN profiles, we can model scDNA output using a hidden markov model and

model scRNA output based on dosage effects similar to TreeAlign. The resulting model

should be able to infer clone-specific CNs, CN dosage effects and assign cells from scDNA

and scRNA to a set of clones. Additionally, I think it is possible to enforce phylogenetic

constraints on the inferred clone-specific CN profiles, and through this way, we can also

infer clone-based phylogenies. In this model setup, clones or phylogenies are defined by
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both scDNA and scRNA which may be more informative for the integration task.

In this dissertation, we validated and compared TreeAlign to other methods using synthetic

datasets. The synthetic datasets were produced from the generative model of CloneAlign.

For Bayesian probabilistic modeling, it is a common approach to generate synthetic data

from the generative model for validation. However, if the method outperforms competing

methods on synthetic datasets, it does not mean that it will definitively perform better on

real datasets since the assumption on the distributions of the real data could be inaccurate.

Using synthetic datasets generated by an independent method unrelated to the models being

evaluated may be a better approach for fairer comparisons. One potential solution here is

using constrained autoencoders [119] to simulate CN-dependent scRNA data for validating

TreeAlign and related methods.

We also expect potential extensions of TreeAlign for integration of other single cell data

modalities such as single-cell epigenetic data. Current methods for integration of scRNA

and scATAC data are primarily based on nearest neighbor graphs or other distance metrics

to match similar cells across multimodal datasets. In Chapter 4.5, by mixing scATAC data

from multiple patients, we demonstrated it is possible to assign scATAC profiles back to

correct patients. The advantage of TreeAlign is that it estimates how well the expression

of a gene matches with the given biological assumption, hence it is more interpretable and

provides explanations for gene expression variations.

With development of technologies that allow sequencing multiple modalities (e.g. RNA

and DNA) co-registered in the same cell, one question we may ask is whether TreeAlign

would still be useful in the future. With such co-registered datasets, the clone assignment

functionality of TreeAlign would no longer be needed, however, the ideas of inferring CN
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dosage effects and modeling gene expression with genomic features are still useful for

interpreting biological mechanisms that regulate cell phenotypes.

5.2 Understanding transcriptional regulations with TreeAlign

The emergence of more single cell multimodal datasets enable future studies to further re-

veal how genotypes translate to phenotypes and how ongoing mutational processes drive

clonal diversification and evolution in cancer cells. In Chapter 4, we explored clone-specific

gene expression profiles in HGSCs and characterized potential impact of metastasis and

WGD on transcriptional phenotypes in cancer cells subclones. It remains an open question

whether the CN-expression relation is consistent across tumors and whether application at

scale can reveal phenotypic consequences of copy number alterations at subclonal resolu-

tion.

CN dosage effect is only one of mechanisms that genetic changes regulate gene transcrip-

tion. Other genetic alterations such as point mutations and structural variations can also

impact expression. Besides dosage effects, CN changes can also affect expression through

other mechanisms. For instance, CN changes spanning promoter or enhancer regions can

alter corresponding gene expression [120]. In addition to genetic changes, gene expres-

sion can also be affected by epigenetic changes including DNA methylation and histone

modifications. For example, it was found that in ovarian cancers, the decreased copy num-

ber dosage effects of non-cancer genes coincided with increased DNA methylation level,

suggesting methylation played a stronger role in regulating gene expression [106]. Finally,

crosstalks between transcriptional pathways and interactions with the microenvironment

can also affect expression regulations. Genes in immune related pathways are known to
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have stronger transcriptional effects that offset dosage effects [49] and tend to be strongly

regulated by immune cells in the tumor microenvironment. I think explicit probabilistic

modeling of these processes, such as the dosage effect modeling in TreeAlign, will en-

hance our understanding of different mechanisms that influence cancer cell transcriptional

phenotypes.

As TreeAlign also integrates allele-specific CN and expression, it would be interesting to

investigate patterns of LOH and allele-specific expression on a subclone level as modu-

lators of germline alterations and bi-allelic inactivation to better understand these events

in the context of tumor heterogeneity and clonal evolution. With the emergence of more

single-cell spatial transcriptomics data, it would also be interesting to explore clone-specific

phenotypes and corresponding microenvironment together, and further dissect the origins

of phenotypic divergence between clones. Previous research has established methods for

inferring CNAs from spatial transcriptomics dataset without matching DNA data [121]. We

expect that concepts introduced in TreeAlign will further facilitate the integration of single

cell multimodal datasets and the interpretation of associations between modalities.

In conclusion, we anticipate that studying how copy number alterations impact gene expres-

sion programs in cancer applies broadly to different questions in cancer biology including

etiology, tumor evolution, drug resistance and metastasis. In these settings, TreeAlign pro-

vides a flexible and scalable method for explaining gene expression with subclonal CNAs

as a quantitative framework to arrive at mechanistic hypotheses from multimodal single

cell data. Our approach provides a new tool to disentangle the relative contribution of fixed

genomic alterations and other dynamic processes on gene expression programs in cancer.
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Appendix A

Methods

A.1 TreeAlign total CN model

The TreeAlign model is a probabilistic graphical model as shown in Fig. 2.1. Here we

describe the model in detail. Let X be a cell ⇥ gene expression matrix of raw counts from

scRNA-seq for N cells and G genes, and xng be the scRNA read count for cell n and gene g.

Let L be a gene ⇥ cell copy number matrix for G genes and C clones, and lgc be the copy

number at gene g for clone c. To assign cells from the expression matrix to a clone in copy

number matrix, we use a categorical variable zn which indicates the clone to which a cell

should be assigned. zn = c if cell n is assigned to clone c. zn is drawn from a Categorical

distribution with Direchlet prior.

zn=1...N ⇠Categorical(p) (A.1)

p ⇠ Dir(a) (A.2)
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To indicate whether the expression of a gene is dependent on the underlying CN, we intro-

duced another indicator variable kg. kg = 0 if expression of gene g is not dependent on CN.

kg = 1 if expression of gene g is dependent on CN. kg is a Bernoulli random variable with

Beta prior.

kg=1...G ⇠ Bernoulli(p(kg)) (A.3)

p(kg)⇠ Beta(b1,b2) (A.4)

where we have b1 = 1,b2 = 1 as default.

Our assumption is that yng, the expected expression of gene g in cell n - will be proportional

to the copy number of gene g in clone c to which cell n is assigned, if expression of gene g

is dependent on copy number as indicated by kg. Based on this assumption, our model is:

yng = E[xng|zn = c] = ln ⇤
[µg0 ⇥lgc ⇥ kg +µg1 ⇥ (1� kg)]⇥ eyn·wT

g

ÂG
g0=1 [µg00 ⇥lg0c ⇥ kg0 +µg01 ⇥ (1� kg0)]⇥ eyn·wT

g0
(A.5)

Xn = (xn1, ...,xnG) (A.6)

Yn = (yn1, ...,ynG) (A.7)

Xn=1...N ⇠ Multinomial(ln,Yn) (A.8)

where ln is the total scRNA read count from cell n. Vector Yn represents the expected read

count for each gene in cell n. Xn is the actual read count from each gene in cell n we

want to model. µg0 is the per-copy expression of gene g if the expression is dependent on
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copy number while µg1 is the expression of gene g if its expression is independent of copy

number. The intuition is that when kg = 1, we expect the expression of g is proportional to

its copy number; when kg = 0, the expression of g is not dependent on the underlying copy

number. We specified a softplus transformed Normal prior over the per-copy expression

µg0 and µg1.

µg0,µg1 ⇠ log(1+ eN (µ 0
g,10)) (A.9)

where we set µ 0
g to the softplus inverse transformed mean read count of gene g across all

cells.

The inner product yn ·wT
g introduces noise into the model to avoid over-fitting. Their priors

were set as described previously [79].

A.2 TreeAlign allele-specific model

To use allele specific copy number information for clone assignment, we set up a separate

model, allele-specific TreeAlign which only takes in allele specific information. The input

to allele-specific TreeAlign includes single cell level B allele frequencies at heterozygous

SNPs estimated from scDNA data and read counts of reference allele and alternative allele

of these SNPs from scRNA-data.

Let tns be the scRNA read count at a heterozygous SNP s in cell n, rns be the scRNA

read count from the reference allele at heterozygous SNP s in cell n. Both tns and rns can

be obtained by genotyping heterozygous SNPs of interests with tools such as cellsnp-lite

[122].
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With scDNA data, we can estimate bsc, the BAF for SNP s and clone c using tools such

as SIGNALS [21]. We assume that fns(zn = c), the expressed reference allele frequency at

cell n and SNP s when cell n is assigned to clone c is controlled by the followings: 1). DNA

BAF at that SNP of clone c and 2). whether the reference allele in scRNA data is B allele or

not. We use a binary variable as to indicate whether the reference allele at SNP s should be

assigned as B allele. as can be obtained using SIGNALS which can use information from

scDNA to phase the SNPs in scRNA and assign alleles according. We can also treat as as a

hidden variable and jointly infer it from the allele-specific model of TreeAlign. Comparing

as inferred from TreeAlign to SIGNALS output allows us to estimate the performance of

TreeAlign.

p(as)⇠ Beta(b 0
1,b 0

2) (A.10)

as=1...S ⇠ Bernoulli(p(as)) (A.11)

fns(zn = c) = as ⇤bsc +(1�as)⇤ (1�bsc) (A.12)

rns ⇠ Binomial(tns, fns) (A.13)

where we have b 0
1 = 1,b 0

2 = 1 as default.

The total CN model and allele-specific model share categorical variable zn which indicates

the clone assignment of cell n. Therefore, zn can be inferred from the two models separately

or combined depending on the input data provided. The integrated model is illustrated in

(Fig. 3.2). The prior distributions of all random variables are summarised in (Fig. B.1).
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A.3 Model implementation and inference

TreeAlign is implemented with Pyro [105] which is a universal probabilistic programming

language written in Python and supported by PyTorch. Inference of TreeAlign is done by

Pyro’s Stochastic Variational Inference (SVI) functions automatically. Specifically, we use

the AutoDelta function which implements the delta method variational inference [123].

The delta method variational inferences use a Taylor approximation around the maximum

a posterior (MAP) to approximate the posterior. Optimization is performed using the Adam

optimizer. By default, we set a learning rate of 0.1 and the convergence is determined when

the relative change in ELBO is lower than 10�5 by default.

A.4 Incorporating phylogeny as input

In addition to the gene ⇥ clone copy number matrix, TreeAlign can also take the cell

times gene copy number matrix from scDNA directly along with the phylogenetic tree

constructed from this matrix as input. Starting from the root of the phylogeny, TreeAlign

summarizes the copy number of gene g for each clade by taking the mode of copy number,

and assigns cells from scRNA to clade-level CN profiles. This process is repeated recur-

sively from the root of the phylogeny to smaller clades until: i) TreeAlign can no longer

assign cells consistently in multiple runs (less than 70% cells have consistent assignments

between runs by default), or ii) the number of genes located in CSCN regions becomes too

small (100 genes in CSCN regions by default), or iii) Limited number of cells remain in

scDNA or scRNA (100 by default). By default, TreeAlign also ignores subclades with less

than 20 cells in scDNA. Some scRNA cells may remain unassigned to the scDNA phyloge-

netic tree. For a single cell, if the clone assignment probability < 0.8 or clone assignments
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are not consistent in 70% of repeated runs, the cell will be denoted as unassigned. This

feature is important to the model because there might be incomplete sampling of a given

tumor, leading to a subclone only appearing in one of the two data modalities. Note, all

parameters are fully configurable at run time by the user.

A.5 Benchmarking clone assignment and dosage effect pre-

diction with simulations

Simulations were performed similarly as described previously. CloneAlign v.2.0 model

was fit to the MSK-SPECTRUM patient 081 dataset to obtain the empirical estimations of

model parameters. Then we simulated from CloneAlign considering the following scenar-

ios: 1. Varying proportion (10%, 20%, 30%, . . . , 90%) of genes with dosage effect. 2.

Varying number of genes (100, 500 and 1000) in CSCN regions. 3. Varying number of

cells (100, 1000 and 5000) in scRNA.

We compared TreeAlign to CloneAlign and InferCNV v.1.3.5 in terms of the performance

of clone assignment. For CloneAlign, we summarized clone-level copy number by calcu-

lating the mode of copy number for each gene and ran CloneAlign with default parameters.

For InferCNV, we used the recommended setting for 10x. 3,200 non-cancer cells were

randomly sampled from the SPECTRUM dataset and used as the set of reference “normal”

cells. To assign clones with InferCNV, we calculated Pearson correlation coefficient be-

tween InferCNV corrected gene expression profile (expr.infercnv.dat) and the clone-level

copy number profiles from scDNA. Cells from scRNA-seq were assigned to the clone ac-

cording to the highest correlation coefficient. Accuracy of clone assignment was computed
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to compare the performance of the three methods. We also evaluated the TreeAlign’s per-

formance on predicting CN dosage effects.

To evaluate TreeAlign’s performance on predicting CN dosage effects, we calculated the

area under the curve (AUC) using p(k) output by TreeAlign, and compared it to a baseline

model. The baseline model for CN dosage effects was constructed by 1). assigning ex-

pression profiles to genomic clones using CloneAlign 2). calculating Pearson correlation

coefficients (R) between normalized read count from scRNA and clone-specific CN from

scDNA for each gene in input. The resulting R can be viewed as a metric for CN dosage

effects. We calculated the baseline model AUC using R and compared it to TreeAlign

model.

To demonstrate the performance of allele-specific TreeAlign, for the simulated datasets

with 30% CN-dependent genes, we also simulated reference allele and total read counts

for varying number of heterozygous SNPs (0, 250, 500, 75, 1000 and 1250) from the

generative model of allele-specific TreeAlign. Adjusted rand index of clone assignments

was calculated to evaluate the performance of the integrated TreeAlign model on simulated

datasets with varying numbers of heterozygous SNPs.

To evaluate TreeAlign’s performance inaccurate trees, we randomly shuffled labels for dif-

ferent proportions (10%, 20%,...,90%) of cells on the phylogeny of patient 22. TreeAlign

was run with the shuffled phylogenies. Clone assignment results were compared to results

obtained from the original phylogeny using adjusted rand index.
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A.6 MSK SPECTRUM data

We obtained matched scRNA and scDNA from two HGSC patients (patient 022 and patient

081) from the MSK SPECTRUM cohort [20]. Samples were collected under Memorial

Sloan Kettering Cancer Center’s institutional IRB protocol 15-200 and 06-107. Single cell

suspensions from surgically excised tissues were generated and flow sorted on CD45 to

separate the immune component as previously described. CD45 negative fractions were

then sequenced using the DLP+ platform as previously described [3, 21, 86].

A.7 Gastric cancer cell line data

Preprocessed scDNA data and scRNA count matrix of the gastric cancer cell line (NCI-

N87) [57] were downloaded from SRA (PRJNA498809) and GEO (GSE142750). Copy

number calling for scDNA were performed using the Cellranger-DNA pipeline using de-

fault parameters.

A.8 PDXs and additional cell line data

scRNA and scDNA from 6 HGSC PDX samples (SA1052BX1XB01516, SA1052JX1XB01535,

SA1053BX1XB01603, SA1091AX1XB01790, SA1093CX1XB01917, SA1181AX1XB02700),

3 TNBC PDX samples (SA1035X6XB03216, SA1035X7XB03502, SA610X3XB03802),

1 ovarian cancer cell line (OV2295) and 6 hTERT-184 cell lines (SA039, SA1054, SA1055,

SA1188, SA906a, SA906b) were obtained and processed as described previously [21].
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A.9 scDNA data analysis

scDNA DLP+ data was processed as previously described [21, 86]. Cells with quality

score > 0.75 and not in S-phase were retained for downstream analysis. Allele specific

copy number was called using SIGNALS, which provides allele specific copy number of

the from A|B in 500kb bins across the genome. A and B being the copy number of alleles

A and B respectively with total CN = A+ B. As the single cell data is sparse, only a

subset of germline SNPs have coverage in each cell, therefore to produce the input required

for TreeAlign (B-Allele frequencies per SNP per cell), we impute the BAF of each SNP

assuming that a SNP will have the same BAF as the bin in which the SNP resides.

A.10 Clustering and phylogenetic inference

Clustering and phylogenetic inference of scDNA was performed using UMAP and HDB-

SCAN (parameters min_samples=20, min_cluster_size=30, cluster_selection_epsilon=0.2).

For patient 022, we also constructed phylogenetic trees using Sitka38 as previously de-

scribed.

A.11 Genotyping SNPs in scRNAseq cells

SNPs identified in scDNA-seq and matched bulk whole genome sequencing were geno-

typed in each single cell using cell-snplite with default parameters.
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A.12 scRNA data analysis

scRNA data were processed as previously described7. Read alignment and barcode fil-

tering were performed by CellRanger v.3.1.0. Cancer cell identification was performed

with CellAssign. Principal-component analysis (PCA) was performed on the top 2000

highly variable features output by function FindVariableFeatures using Seurat v.4.2 [124].

UMAP embeddings and visualization were generated using the first 20 principal compo-

nents. Unsupervised clustering was performed using FindNeighbors function followed by

FindClusters function (resolution=0.2). To compare transcriptional heterogeneity across or

within clones, we randomly sampled 100 expression profiles from the following groups: 1.

all cancer cells in a patient/cell line/PDX 2. cancer cells in the same TreeAlign clone 3.

cancer cells in the same InferCNV clone. Pearson correlation coefficients and Euclidean

distance between the sampled expression profiles were calculated using the top 20 principal

components.

A.13 Differential expression and gene set enrichment anal-

ysis

Differential expression analysis was performed using FindAllMarkers and FindMarkers

function (test.use="MAST", latent.vars=c("nCount_RNA", "nFeature_RNA")) in Seurat

v.4.2. Only G1 cells were used in differential expression analysis to avoid confounding

of cycling cells. Cell cycle phase was annotated with CellCycleScoring function in Seurat.

We used the fgsea v.1.24.0 [125] package to conduct gene set enrichment analysis with
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Hallmark gene sets (n=50) downloaded from MSigDB[126]. We set the following param-

eters for the gene set enrichment analysis: nperm=1000, minSize=15, maxSize=500.

A.14 Statistical analysis and visualization

Statistical tests and visualization were performed with R (v.4.2) package ggpubr (v.0.5.0)

and ggplot2 (v.3.4).

A.15 Data Availability

Processed data containing input and output of TreeAlign have been deposited in Zenodo

(https://doi.org/10.5281/zenodo.7517412). Raw scDNA data and scRNA count matrix of

the gastric cancer cell line (NCI-N87) can be accessed from SRA (PRJNA498809) and

GEO (GSE142750). Raw scDNA and scRNA data from Funnell et al. are available at

https://ega-archive.org/studies/EGAS00001006343. Raw scRNA data for patient 022 and

patient 081 are available at https://www.synapse.org/msk_spectrum.

A.16 Code Availability

The code is publicly accessible on a GitHub repository (https://github.com/shahcompbio/TreeAlign),

which implements TreeAlign and describes how to generate simulated datasets.
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Appendix B

Supplementary Figures

Extended Data Fig. 1

FIGURE B.1: Descriptions and prior distributions of random variables and data in
TreeAlign model.
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FIGURE B.2: Accuracy of clone assignment for TreeAlign, CloneAlign and Infer-
CNV in simulated scRNA datasets as a function of varying proportions of genes
with CN dosage effects. Panels represent datasets with different numbers of cells

and genes.
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Extended Data Fig. 2
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FIGURE B.3: Phylogenetic trees (left) constructed with scDNA-data from
SPECTRUM-OV-081 along with Heat maps (right) showing clone assignment of

simulated datasets by TreeAlign.
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Extended Data Fig. 3
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FIGURE B.4: AUC of CN dosage effect p(k) predicted by CloneAlign and
TreeAlign as a function of gene expression level. Genes were assigned to 10 bins
based on expression level. Ranges of normalized expression for each bin were
shown in brackets. Panels represent simulated datasets with varying gene dosage

effect frequencies.
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a b c

d e

Extended Data Fig. 5

FIGURE B.5: a, UMAP plot of scRNA-data from gastric cell line NCI-N87 colored
by clone labels assigned by total CN TreeAlign. b, Clone frequencies of NCI-N87
estimated by scRNA-data (x axis) and scDNA-data (y axis). c, Scaled expression
and copy number profiles for regions on chromosome 1 and 19 as a function of genes
ordered by genomic locations. d, Phylogenetic tree constructed with scDNA-data. e,
Phylogenetic tree constructed with scDNA-data along with pie charts showing how
TreeAlign assigns cell expression profiles to subtrees recursively. The pie charts are
colored by the proportions of cell expression profiles assigned to downstream sub-
trees. The outer ring color of the pie charts indicates the current subtree. Heat maps
of copy number profiles from scDNA (left) and InferCNV corrected expression pro-
files from scRNA (right). The Sankey chart in the middle shows clone assignment

from expression profiles to copy number based clones by total CN TreeAlign.
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Extended Data Fig. 7

FIGURE B.6: a, BAF of heterozygous SNPs estimated from scRNA-data and
scDNA-data for clone A and other clones (clone B - C) in patient 022 (ordered
by gene location along chromosome). b, violin plot of BAF in SPECTRUM-OV-
022 (Wilcoxon signed-rank test). b, Confusion matrix comparing clone assignment
between total CN TreeAlign and integrated TreeAlign for patient 022. c, Correla-
tion between proportions of reads from B allele in scRNA and BAF estimated from

scDNA in patient 022 subclones (Wilcoxon signed-rank test).
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Extended Data Fig. 8

a b

c d

e f

FIGURE B.7: a, times of fitting the total CN model with phylogeny input. b, Dis-
tribution of iterations for each inference run at convergence or before the maximum
iteration of 900. c, Scatter plot showing the number of iterations and the number
of cells in scRNA input for each run colored by frequencies of unassigned cells. d,
Scatter plot showing the number of iterations and the number of genes in scRNA in-
put for each run. e, Scatter plot showing the time to finish for each run as a function
of the number of cells in scRNA input. f, Scatter plot showing the time to finish for

each run as a function of the number of genes in scRNA input.
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Extended Data Fig. 9
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c d

e f

FIGURE B.8: a, rounds of fitting the integrated model with phylogeny input. b, Dis-
tribution of iterations for each inference run at convergence or before the maximum
iteration of 900. c, Scatter plot showing the number of iterations and the number
of cells in scRNA input for each run colored by frequencies of unassigned cells. d,
Scatter plot showing the number of iterations and the number of genes in scRNA in-
put for each run. e, Scatter plot showing the time to finish for each run as a function
of the number of cells in scRNA input. f, Scatter plot showing the time to finish for

each run as a function of the number of genes in scRNA input.
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Extended Data Fig. 10

a b

FIGURE B.9: a-b, Correlation between clone frequencies estimated by scRNA-data
(x axis) and scDNA-data (y axis) by TreeAlign and InferCNV in (a) HSGC PDXs

and cell lines and (b) patient 022.
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Extended Data Fig. 11

FIGURE B.10: Distribution of Pearson correlation coefficients (R) between scDNA
estimated total copy number and InferCNV corrected expression for unassigned
cells from total CN model. Left, correlation distribution calculated by comparing In-
ferCNV profiles to CN profiles of a random subclone; Right, correlation distribution
calculated by comparing InferCNV profiles to CN profiles of subclones assigned by
integrated TreeAlign. Each panel represents results from a tumor sample/cell line.
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Extended Data Fig. 12

a

b

FIGURE B.11: a, Distribution of p(k) in hTERT-184 and control cell lines. b,
Distribution of p(k) in PDXs.
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Extended Data Fig. 13

a b

c

d e

FIGURE B.12: a, Distribution of p(k) in PDXs and cell lines. b, Distribution of p(k)
in patient 022. c, Proportions of genes with low CN dosage effects (p(k) < 0.5) in
PDXs and cell lines. d-e, p(k) for cancer genes and non-cancer genes in (d) PDXs

and cell lines and (e) patient 022.
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a

Extended Data Fig. 14

FIGURE B.13: a, Examples of genes with high level amplifications and high CN
dosage effects.
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a

b

Extended Data Fig. 14

FIGURE B.14: a, Dot plot showing significantly enriched pathways in low p(k)
genes. b, Significantly enriched pathways in low p(k) genes from all PDXs and cell
lines. p(k) from all samples were combined before performing gene set enrichment

analysis.
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Extended Data Fig. 15
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FIGURE B.15: a, UMAP plot of expression profiles of clone B.1 and B.2 in patient
022. b, UMAP plot of expression profiles of clone D.1, D.2, D.3 and D.4 in patient
022 colored by clone assignments. c, UMAP plot of expression profiles of clone D
in patient 022 colored by Louvain unsupervised clustering. d, UMAP plot of expres-
sion profiles of clone D in patient 022 colored by cell cycle phase. e, Differentially
expressed genes between clone A and clone B-D. f, Differentially expressed genes
between cells in clone B.1 and B.2. g, Differentially expressed genes between cells

in clone D.4 and D.1 - D.3.
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Extended Data Fig. 15

FIGURE B.16: Frequencies of DE genes in CSCN regions summarized by Hallmark
pathways
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Extended Data Fig. 16

FIGURE B.17: Enriched and depleted pathways in clone A compared to other clones
in patient 022



Appendix B. Supplementary Figures 92

Extended Data Fig. 16

FIGURE B.18: Enriched and depleted pathways in clone B.1 compared to clone B.2
in patient 022
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Extended Data Fig. 16

FIGURE B.19: Enriched and depleted pathways in clone D.4 compared to the rest
of cells in clone D in patient 022
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FIGURE B.20: a, Differentially expressed genes between metastatic and primary
sites in patient 009. b, Number of upregulated genes in metastatic and primary
sites grouped by p(k) level in patient 009. c-d, Upregulated gene sets among genes
outside of CSCN regions in patient 009 primary (c) and metastatic site (d). e, Upreg-
ulated gene sets among high p(k) genes in patient 009 primary site. f, Upregulated

gene sets among low p(k) genes in patient 009 metastatic site.



Appendix B. Supplementary Figures 95

SPECTRUM-OV-037

a b

c d

e

h

f

g

FIGURE B.21: a, Differentially expressed genes between metastatic and primary
sites in patient 037. b, Number of upregulated genes in metastatic and primary sites
grouped by p(k) level in patient 037. c-d, Upregulated gene sets among genes
outside of CSCN regions in patient 037 primary (c) and metastatic site (d). e-f, Up-
regulated gene sets among high p(k) genes in patient 037 primary (e) and metastatic
site (f). g-h, Upregulated gene sets among low p(k) genes in patient 037 primary

(g) and metastatic site (h).
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SPECTRUM-OV-083
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FIGURE B.22: a, Differentially expressed genes between metastatic and primary
sites in patient 083. b, Number of upregulated genes in metastatic and primary sites
grouped by p(k) level in patient 083. c, Upregulated gene sets among genes outside
of CSCN regions in patient 083 metastatic site. d-e, Upregulated gene sets among
high p(k) genes in patient 083 primary (d) and metastatic site (e). f, Upregulated

gene sets among low p(k) genes in patient 083 metastatic site.
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