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ABSTRACT 
 

Advances in quantitative biomarker development have accelerated new forms of 

data-driven insights for cancer patients. However, most approaches are limited to 

a single modality of data, leaving integrated approaches across modalities 

relatively underdeveloped. Multimodal integration of advanced molecular 

diagnostics, radiologic and histologic imaging, and codified clinical data presents 

opportunities to advance precision oncology beyond genomics. Patients with 

high-grade serous ovarian cancer demonstrate poor prognosis and variable 

response to treatment. Homologous recombination deficiency status, patient age, 

pathologic stage, and residual disease status after cytoreductive surgery are 

important prognostic factors, with recent work also highlighting prognostic 

information captured in computed tomography and histopathologic specimens. 

However, little is known about the capacity of combined features to discriminate 

between patients and explain clinical outcomes. Herein, we developed and 

integrated histopathologic, radiologic, and clinico-genomic machine learning 

models to determine their combined impact on risk stratification. We assembled a 

multimodal dataset of 409 high-grade serous ovarian cancer patients and 

showed that human-interpretable features, such as necrosis on H&E and 

omental textural complexity on CT, are associated with worse prognosis. We 

then integrated these models and demonstrated that the imaging models contain 

complementary—rather than purely mutual—prognostic information to clinico-

genomic prognostic factors, as evidenced by improved risk stratification and 

stronger association with pathological chemotherapy response score than 
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unimodal models. This work empirically supports multimodal machine learning 

approaches as a promising path toward improved risk stratification of cancer 

patients. 
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CHAPTER ONE: Introduction 

As cancer patients traverse diagnostic, treatment, and monitoring 

processes, physicians order a suite of diagnostics across distinct modalities to 

guide management. A significant opportunity thus emerges to aggregate, 

integrate, and analyze these complementary digital assets across large patient 

populations to discover multimodal prognostic features, learning from the 

collective history of large cohorts of patients to inform better management of 

future patients. For example, genomic profiling of tumor tissue has significantly 

enhanced clinical decision-making, and the genomic data produced in turn yield 

a rich molecular repository for further study 1. This leads to further understanding 

of the cancer genome, drug sensitivity 2 and resistance mechanisms, 3 and 

prognostic associations 4,5. During and after treatment, serial radiologic imaging, 

such as positron emission tomography (PET) and computerized tomography 

(CT), quantifies tumor burden in response to intervention, yielding digital archives 

for large-scale machine learning. Pathology specimens depicting cell 

morphology, tissue architecture, and tumor-immune interfaces also are 

increasingly digitized 6. Other modalities in development, such as cell-free DNA 

analysis and serial laboratory medicine tests of biochemical and metabolic 

analytes, provide longitudinal read-outs of tumor progression and recurrence 7–11. 

We contend that integrated anatomic, histologic, and molecular 

measurements approach a comprehensive description of the state of a cancer, 

resulting in an effective “digital biobank” 12 for each patient. At present however, 

even when these data are available, they are rarely integrated, and few 
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advances have been reported that computationally exploit the research discovery 

potential of large-scale, multi-modal integration. Artificial intelligence (AI) and 

machine learning (ML) techniques have enormous potential to convert data into a 

new generation of diagnostic and prognostic models and to drive clinical and 

biological discovery, but the potential of these techniques often goes unrealized 

in biomedical contexts, where research-ready datasets are sparse. Cultural and 

infrastructural changes toward scaled research-ready data archives and 

development of multimodal ML methods will advance our understanding of the 

statistical relationships among diagnostic modalities and the contextual relevance 

of each. Repurposing aggregated, multimodal data—the digital biobanks—

therefore presents opportunities to develop next-generation, data-driven 

biomarkers to advance patient stratification and personalized cancer care. 

The central premise of multimodal data integration is that orthogonally 

derived data complement one another, thereby augmenting information content 

beyond that of any individual modality. Concretely, modalities with fully mutual 

information would not yield improved multimodal performance compared to each 

modality alone. Modalities with fully orthogonal information, conversely, would 

dramatically improve inference. For example, radiologic scans and pathologic 

specimens describe tumors spatially at different scales and thus are expected to 

describe disparate elements of tumor biology. Each modality is incomplete and 

often noisy, but integrating weak signals across modalities can overcome noise 

in any one modality and more accurately infer response variables of interest, 

such as risk of relapse or treatment failure. 
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To exemplify this premise, we will focus on four major modalities in cancer 

data: histopathology, radiology, genomics, and clinical information (Figure 1). 

While rapid progress using deep learning (DL) and other ML methods has been 

made in each of these individual modalities, major unresolved questions about 

multimodal data integration remain.  What are the latent relationships and 

underlying causal mechanisms at the molecular, cellular, and anatomic scales? 

Can rational multimodal predictive models enhance clinical outcomes for cancer 

patients? Can cancer research exploit advances in computational methods and 

AI models to realize new insights from multimodal data integration? How much 

data is enough to realize such generalizable predictive models? How can 

annotations produced during routine clinical care and focused research studies 

be repurposed to train robust models? How can we fully engage and 

academically credit both clinicians and data scientists in collaborative studies? 

How do we establish data infrastructures to enable meaningful and rapid 

scientific advances while preserving the integrity of patient consent? Herein, we 

explore these questions through literature review and by developing a blueprint 

for navigating the infrastructural, methodological, and cultural challenges along 

the path to achieving robust multimodal data integration in cancer research. 

 

Unimodal machine learning methods to stratify patients 

Cancer imaging data have been exploited to predict molecular features of 

tumors and to discover new prognostic associations with clinical outcomes, and 

we refer readers to a number of excellent reviews in these areas 13–15. In 
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radiology specifically, previous work analyzed features manually extracted by 

radiologists, such as the VASARI set of imaging features for glioma, and their 

association with clinical outcomes and molecular biomarkers 16. However, such 

features are highly prone to inter-reader variability, and the laborious nature of 

extraction limits cohort size. As radiology data are digital by construction, 

automatically extracting deterministic, quantitative features is tractable.17 These 

features have been associated with clinical outcomes, such as response to 

immune checkpoint blockade (ICB)  in pan-cancer analyses 18, residual tumor 

volume after resection in ovarian cancer 19, and progression of disease in 

pediatric optic pathway glioma 20. Furthermore, when cohorts are sufficiently 

large, convolutional neural networks (CNNs), a type of deep neural network 

(DNN)  [Appendix 2] have been shown to predict IDH1 mutational status of 

glioma from magnetic resonance imaging (MRI), pathologic grade of prostate 

cancer from MRI, EGFR mutational status of lung adenocarcinoma from CT, and 

BRCA1/2 mutational status of breast cancer from full-field digital mammography 

21–25. Three-dimensional models incorporating axial context have more 

parameters, and thus require additional controls for overfitting 26, but have 

stratified NSCLC patients by overall survival (OS) 27 and empirically 

outperformed two-dimensional models in other radiology tasks, such as 

diagnosing appendicitis 26. The relative performance of DL versus conventional 

ML-based methods on human-defined (“engineered”) features is largely 

determined by cohort size. 
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Similar computational models have advanced biomarker inference from 

histologic imaging, particularly hematoxylin and eosin (H&E)-stained whole slide 

images (WSIs) 28–32, beyond the previously dominant practice of using 

pathologist-extracted features 33. One notable multi-center example in colorectal 

cancer showed that H&E WSIs contain information predictive of microsatellite 

instability (MSI) status as a biomarker for response to immune checkpoint 

blockade 34,35. However, these DL analyses suffer from poor interpretability and 

depend heavily on large training cohorts (depending on the task and data 

complexity, generally thousands of labeled examples for excellent, generalizable 

performance). Interpretable quantitative analyses of histological images can be 

conducted using expert-guided cellular and tissue annotations, identifying 

biological features such as tumor-infiltrating lymphocytes (TILs) and their 

correlation with molecular features 36. A recent pan-cancer analysis found that 

annotation-guided interpretable features predict endogenous mutational 

processes and features of the tumor microenvironment 37, and other studies have 

linked biologically interpretable features with clinical outcomes 38,39,40. 

  Molecular features are the true targets of intervention, either directly or 

through synthetic lethality, and they are thus the most direct measure for 

predicting drug response. Examples include mutations in BRAF in melanoma 41, 

EGFR in NSCLC 42, ERBB2 (HER2) in breast cancer 43, IDH1 in acute myeloid 

leukemia (AML) 44, BRCA1/2 in ovarian 45 and prostate cancer 46 and even rare 

events such as NTRK fusions 47 for solid tumors, among many others. Targeted 

cancer therapies are continually being added, for example, ongoing clinical trials 
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of KRAS (G12C) 48 and 49 and recently PIK3CA 50 in lung and breast cancer, 

respectively. Higher-order genomic properties such as tumor mutational burden 

(TMB) 51, endogenous mutational processes such as MSI 52 and homologous 

recombination deficiency (HRD), and large-scale features such as whole genome 

duplication 53 are also clinically meaningful. In a recent study, Vöhringer et al. 

present an algorithm (TensorSignatures) to characterize transcription-associated 

mutagenesis in seven cancer types 54. Copy number signatures from low-pass 

whole genome sequencing 55 and integrated ML models across single nucleotide 

variant and structural variant scales have also effectively stratified patients into 

prognostic subgroups 56. Both studies find that patients with HRD tumors have 

better prognosis, but further granularity is needed to better resolve clinically 

meaningful subgroups. Emerging spatial genomics techniques 57,58,59 and 

complementary clinical and imaging modalities are opportunities to enrich these 

data and refine prognostication.  

 

Multimodal machine learning methods to stratify patients 

We suggest that such unimodal models across radiology, histopathology, 

molecular, and clinical domains will become the building blocks of integrated 

multimodal models (Figure 1).  A major design choice for multimodal approaches 

is the extent to which each data input should be modeled before encoding joint 

representations (Figure 2). In early fusion architectures, features are simply 

concatenated at the outset and used to train a single model (Figure 2a). At the 

other extreme, late fusion architectures model unimodal data fully individually,  
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Figure 1. Multimodal machine learning data modalities and schemata. (a) 
Example data modalities for integration include radiology, histopathology, and 
genomic information. Image feature extraction involves choosing deep learning 
or engineered features. (b) Sub-models extract unimodal features from each data 
modality. Next, a multimodal integration step generates intermodal features—a 
Tensor Fusion Network (TFN) is indicated here 60 . A final sub-model infers 
patient outcomes. 

 

and then aggregate learned parameters or derived scores (Figure 2b). 

Intermediate fusion architectures develop a representation of each modality and 

then model intermodal interactions before joint modeling 61 (Figure 2c). Most 

multimodal architectures have more parameters to be fit than their unimodal 

counterparts, making them prone to overfitting, which paradoxically can result in 

worse performance in the supervised setting 62. One mechanism to address this 

is incorporating the estimated generalization error in the training objective, using 

techniques such as gradient blending, to directly account for overfitting 62. A 

related design choice is unimodal sub-model complexity. Though 

overparameterized DL models can outperform traditional ML, their performance 

is highly dependent on the size of the training dataset. This data size requirement 

often precludes DL application in biomedical multimodal studies, where 

missingness of individual data modalities, and requirement of laborious curation 

of multiple data modalities limits studies to the very small data regime, defined 

loosely as ~5000 or fewer data points 63. This makes ML on engineered features 

an essential approach in the field and suggests that studies with resource 

constraints requiring very large cohorts, such as those in cancers with high 

heterogeneity, or those where a single modality overwhelmingly carries the 

important discriminative features, may opt for a unimodal study.  
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Figure 2. Fusion architectures of multimodal models. Design choices for 
multimodal models with genomics, radiology, and histopathology data. Filled 
arrows indicate stages with learnable parameters (linear or otherwise), 
transparent arrows indicate stages with no learnable parameters, and partially 
filled arrows indicate the option for learnable parameters, depending on model 
architecture. (a) In early fusion, features from disparate modalities are simply 
concatenated at the outset. (b) In late fusion, each set of unimodal features is 
separately and fully processed to generate a unimodal score before 
amalgamation by a classifier or simple arithmetic. (c) In intermediate fusion, 
unimodal features are initially processed separately prior to a fusion step, which 
may or may not have learnable parameters, and subsequent analysis of the 
fused representation. All schemata shown are for DL on engineered features: for 
CNNs directly on images, unimodal features and unimodal representations are 
synonymous. For linear ML on engineered features, no representations are 
learned between features and stratification.  

 

Preliminary applications of multimodal machine learning models to stratify cancer 

patients 

Multimodal patient stratification using complementary multi-omics cancer 

data is well developed 64–69.  The Cancer Genome Atlas (TCGA) catalogues of 

genomic, transcriptomic, epigenomic and proteomic data enabled integrated, 

multimodal inference. For example, integrating bulk transcriptomics, miRNA 

sequencing, and promoter methylation status with early fusion autoencoders 

showed enhanced ability to stratify hepatocellular carcinoma patients by OS 65. A 

similar approach identified distinct survival subtypes in the majority of TCGA 

cancer types, outperforming existing stratification methods 66. Joint 

dimensionality reduction techniques, such as integrative non-negative matrix 

factorization, learn unsupervised representations of multi-omic profiles for 

downstream association with outcomes and biomarkers 70.  As experimental and 

computational techniques advance, these data will more completely characterize 
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the molecular state of patients’ disease 71,72, yet they still only capture a fraction 

of the informative data. 

Several multi-omic models also incorporate traditional clinical features 

73,74. For example, dimensionality reduction, early fusion (Figure 2), and a deep 

Cox Proportional Hazards (CPH) model to integrate multi-omics with age and 

hormone receptor status stratified breast cancer patients by OS more accurately 

than unimodal models 74. Adding additional modalities can paradoxically fail to 

increase performance, with most clinico-genomic models in the study slightly 

underperforming the genomic model alone, except when tumor mutational and 

copy number burdens were integrated 74. Further work is needed to determine 

when and why adding modalities is useful. CPH models also are limited by their 

assumption of linear dependence on each variable and challenges with handling 

tied samples (when events occur at the same time). Deep binned time survival75 

overcomes these limitations by discretizing follow-up times and predicts risk of 

NSCLC recurrence from 30 clinical and histopathologic features. Recurrent 

neural networks (RNNs), a leading method for time series prediction [Appendix 

2], have not yet been widely applied in oncology but have been shown to 

accurately predict clinical events from multimodal serological and clinical data 

76,77. 

 Though under-developed relative to clinical and ‘omics integration, 

multimodal models including histopathology imaging features have recently 

emerged. One such model uses deep highway networks [Appendix 2] to 

integrate H&E images with mRNA-seq and miRNA-seq data to learn the 
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importance of individual genomic features rather than perform a priori 

dimensionality reduction 78, embedding the individual data modalities in the 

same, shared information space by minimizing the similarity loss. The model 

achieves a c-Index of 0.78 to stratify patients by OS79 and is robust to 

missingness, but it conceptually encourages mutual information, potentially at the 

expense of complementary information gained via fusion methods (Figure 2), 

though this remains to be tested in a head-to-head comparison. 

Similarly, Imaging-AMARETTO 80, a framework developed on TCGA 

glioma data, advances associations between imaging phenotypes and molecular 

multi-omics, but it does not integrate information explicitly for prognostication. 

Other examples of multimodal ML studies using histopathology include cellular 

morphologic features and mRNA-seq data integration in NSCLC 81, combined 

histologic and gene expression features in breast cancer 82, and genomic survival 

convolutional neural networks83 and TFNs 84 in glioma. TFNs are intermediate 

fusion architectures using the outer product of deep unimodal embeddings 60, 

which enables the model to learn intermodal dynamics and outperform models 

based only on grade and molecular subtype (c-Index 0.83 vs 0.78) or any 

individual modality 84. It also outperforms simpler multimodal models, such as 

genomic survival convolutional networks (c-Index 0.83 vs 0.78). In general, these 

studies demonstrate that multimodal integration with histopathologic imaging 

improves outcome predictions and stratification over unimodal and molecular 

methods alone.  
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Few multimodal models include radiologic imaging. However, a model to 

diagnose breast cancer using digital mammography and diffusion contrast-

enhanced MRI achieved an AUROC of 0.87, higher than the respective unimodal 

AUROC values of 0.74 and 0.78 85. Another study found that the combination of 

deep features from histologic imaging and engineered features from MRI 

outperformed unimodal classifiers for stratification of brain tumor subtypes 86. 

MRI radiomic features also refine survival stratification beyond IDH1 mutational 

status and WHO classifications alone, demonstrating the potential of multi-scale 

information to improve stratification 87. Multiple kernel learning has been used on 

small, noisy datasets to integrate clinical factors with MRI- and PET-derived 

imaging features 88,89. PET imaging is a particularly promising area for 

multimodal integration, providing spatial profiles of metabolic activity 90. Similarly, 

MRI sequences such as dynamic contrast enhanced images depicting 

vasculature and diffusion weighted images, whose voxel intensities are 

influenced by cellularity, provide rich physical profiles with potentially 

complementary prognostic information.  
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Figure 3. Active learning reduces data annotation burden. In active (“human 
in the loop”) learning, a pathologist first annotates small training areas 
representing tissue areas (e.g., tumor, stroma, lymphocytes).  Next, a machine 
learning classifier is trained from these expert annotations. Finally, the resulting 
labeled sample can be examined for misclassified regions, and the pathologist 
adds targeted additional training areas. This process is repeated until the 
classification is accurate and can be applied to multiple samples. 

 

Promising methodologic frontiers for multimodal integration 

 Multimodal ML in the medical setting is most limited by the tension 

between data availability and amount of data needed to fit multimodal models. 

Hence, many methodologic frontiers involve increasing robustness to overfitting 

and dealing rationally with missingness. For example, transfer learning in 

unimodal models involves pre-training a model on a large, tangentially related 

dataset and then fine-tuned on the actual dataset of interest, which is typically 

small. Some example datasets used are ImageNet 91, a database of more than 

14 million labeled images used to train image classification algorithms for two-

dimensional CNNs, and Kinetics, a curated collection of approximately 650,000 

YouTube videos depicting human actions for three-dimensional CNNs 92.  
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However, recent evidence shows that small models without pretraining 

can perform comparably to pre-trained large models, such as ResNet-50, for 

small medical imaging datasets 63. This is consistent with the hypothesis that the 

benefits of pretraining for small medical imaging datasets are related to low-level 

feature reuse and feature-independent weight scaling 63. It remains an open 

question whether pretraining multimodal fusion models can combat overfitting 

through similar weight scaling of the parameters involved in fusing unimodal 

representations. Both prospective clinical trials and highly curated retrospective 

cohorts often have low numbers of patients, highlighting the importance of 

studying how to use DL techniques appropriately to discover patient strata in the 

very small data regime. 

 One of the root causes of data scarcity is the need for extensive 

annotation: tumors need to be localized on CT scans or H&E images, and 

survival outcomes typically require manual review of medical records. 

Harnessing data at scale requires reducing this burden of annotation, especially 

in multimodal studies. Automated annotation approaches could provide solutions. 

For example, RetinaNet, an object detection CNN, has been used to localize lung 

nodules on CT, enabling use of 42,290 CT cases for training 93. Analogously, an 

ML-based model to automatically delineate representative tumor tissue from 

colorectal carcinoma histology slides enabled training on 6,406 specimens 35.  

Weakly supervised learning (WSL) also helps reduce the burden of 

annotation by using informative-yet-imperfect labels for the training dataset. 

While weak labels may be incomplete, inexact, or inaccurate 94, WSL 



 16 

applications in computational pathology have resulted in robust models to infer 

genomic alterations 31 and diagnose cancer on WSIs 95. Weaknesses of this 

approach include the absence of a ground-truth dataset for model evaluation 

when all labels are inexact or inaccurate and its dependence on large dataset 

sizes. 

Active learning solicits strong labels for targeted instances, selected using 

either informativeness or representativeness of an instance 94. For example, it 

can be used to prioritize expert annotations in real time for pathology tissue-type 

labeling (Figure 3). These strategies are essential in clinical contexts, where 

most data elements possess only weak labels, and are a leading strategy to 

learn robust models from large, information-poor datasets. Therefore, WSL is a 

useful strategy to augment annotations, dramatically increasing the size and 

robustness of usable multimodal datasets for clinical oncology. 

 As more such datasets become annotated and integrated, oncology will 

benefit from multimodal recommender systems, analogous to inferring cancer 

drug response based on unimodal gene expression data 96. Retrospective 

observational studies contain no matched controls, which biases training data 

and requires methods such as counterfactual ML to learn accurate 

recommendation policies from logged interventions and resultant outcomes 97. In 

oncology, a counterfactual recommender system (Figure 4) would learn policies 

to recommend future therapies for new patients based on historical patient 

records of administered treatments, patient contexts (e.g. a pre-treatment CT 

scan and H&E-stained biopsy), and survival outcomes 97. In general, this is not 
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currently possible because patient data are not accessible and annotated at the 

scale required, but such methods have great potential as datasets are 

assembled and prospective data collection methods improve. 

Finally, unsupervised learning [Appendix 2] continues to develop in 

general, with potential to both facilitate discovery of new cancer phenotypes and 

probe multimodal associations. For example, deep probabilistic canonical 

correlation analysis jointly learns parameters for two DNNs and a transformation 

to embed them in the same information space, all with Bayesian inference 

suitable for small datasets 98. This method is especially well suited for probing the 

mutual information to generate hypotheses for experimental biology, such as 

genomic drivers of cellular morphological heterogeneity. At the patient level, an 

unsupervised Bayesian topic model has been applied to learn multimodal topics 

that stratify patients by risk of mortality 99 and in deriving mutational process 

activities in genomic datasets 56. Surprisingly, progress in this area demonstrates 

statistical power across feature spaces from data measuring signals at vastly 

disparate scales (e.g., histologic-genomic, or radiomic-molecular). We therefore 

anticipate that generative methods have potential to discover new phenotypes 

and to generate hypotheses to guide experimental biology.  
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Figure 4. Multimodal recommender systems applied to clinical oncology. 
Logged healthcare data comprises multimodal patient contexts x, interventions y 
based on the standard of care, and feedback δ based on the outcome of the 
intervention. Learning from such data is challenging because of the lack of two-
arm design and the biased data based on the changing standard of care. 
Counterfactual recommender systems learn theoretically guaranteed unbiased 
policies from these data. Then, the validated policy π can be applied 
prospectively to support physicians’ management decisions. 

 

 

Challenges in multimodal data integration and analysis 

The challenges in multimodal integration of clinical cancer data fall into 

three broad categories: data engineering and curation, ML methods, and data 

access and governance provisions. These challenges extend to both 

retrospective studies seeking to discover biomarkers from standard-of-care data 

and prospective studies focused on bespoke or advanced data types. The field at 

large also shares some challenges with unimodal ML studies in medicine, such 

as interpreting results and ensuring their reproducibility. Here, we describe some 

of these challenges along with potential solutions to address them.  
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Data silos 

Medical data storage systems are designed for computational research, 

especially multimodal research. Archived data reside in disparate data silos, 

often in formats unsuited for computing, and lack well-structured metadata. The 

limitations of conducting research using data from the electronic medical record, 

for example, are widely discussed 100. Chart review, or manually reviewing 

patient records to extract specific features into spreadsheets, is error prone and 

variable, and repeated review is often required to capture new clinical events 

101,102. Efforts are underway to add structured ontologies and computationally 

interpret the healthcare record, but a true reform of the healthcare record 

structure is required to make data accessible for research 103. Other data 

modalities face similar challenges: radiologic images are typically stored in the 

picture archiving and communication system (PACS) with limited clinical 

annotation. Similarly, stained tissue specimens are not typically digitized and 

must be located manually and scanned. Furthermore, any available tissue 

imaging is often stored by researchers on their own file systems or in digital 

pathology file systems with limited metadata. Integrating data for multimodal 

studies results in disjoint patient identifier spaces, complicating alignment and 

analysis. 

The data lake approach, which organizes original data and tracks their use 

during subsequent analysis, is an appealing solution for integrating and 

presenting data in a research-ready format 104. Data lake technologies such as 

Delta Lake present a scalable solution to bring together siloed data into a single 
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home for structured, semi-structured, and unstructured data, accommodating 

both known and unforeseen file types. Ideally, these data for research use should 

be stripped of protected health information (PHI) to protect patient privacy and 

facilitate inter-institutional sharing. However, data lakes alone do not address the 

lack of structured data in the medical record. Some existing solutions involve 

adding research-friendly structure to certain clinical notes, hiring full-time data 

curators to extract data post hoc, or building models to codify information 

automatically from the archive. An additional complication in multimodal research 

is relating extracted data points spatially, which is especially important in studies 

of biological correlation among modalities. For example, the logistical challenges 

of colocalizing transcriptomics or H&E imaging from matched specimens limit 

studies of intratumoral heterogeneity and clonal evolution. 

Another challenge is co-registering tissue specimens with corresponding 

lesions on radiology: image-guided biopsies or 3D-printed molds based on tumor 

morphology 105,106 are possible solutions, but scaling these approaches for 

prospective research is far from realized. All these solutions are ultimately 

insufficient stopgap measures, and presenting data generated during the course 

of care in truly research-ready forms with mappings across modalities remains 

elusive. Data infrastructures to automatically detect and annotate lesions, track 

them over time in the radiologic workflow and then integrate them in other clinical 

workflows are aspirational solutions. 

To promote benchmarking and collaboration among institutions, standard 

multi-institutional data sharing models are required. Platforms such as the 
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database of Genotypes and Phenotypes (dbGaP), the European Genome-

phenome Archive (EGA), The Cancer Imaging Archive (TCIA), the Genomic Data 

Commons (GDC), and other resources in the NCI Cancer Research Data 

Commons have been indispensable for inter-institutional benchmarking and 

reproducibility. MIMIC-III is another example, providing critical care data for more 

than 50,000 admissions in a research-ready format 107. However, beyond 

matched genomic data and H&E WSIs of TCGA and METABRIC, public 

resources contain only small patient cohorts with multiple data modalities. 

Observational Health Data Sciences and Informatics (OHDSI), a common 

data model supporting observational studies and integrating controlled 

vocabularies to standardize data infrastructure 108 will help to enable cross-

institutional resources. The American Association for Cancer Research project 

Genomics Evidence Neoplasia Information Exchange (AACR project GENIE) is 

another model to integrate inter-institutional sets of matched genomic 

sequencing and clinical outcomes toward advancing precision oncology: further 

efforts are needed to extend such architectures to incorporate additional data 

modalities 1. However, given the logistical challenges of anonymizing data, such 

as DICOM headers for radiology containing PHI, and institutional policies 

hindering data sharing, federated learning is a potential solution 109. Federated 

learning shares the model to be trained among institutions rather than centrally 

amalgamating multi-institutional data 110. Depending on the choice of model, 

federated learning can require novel training approaches 111 but enables training 

on multi-institutional cohorts without data having to leave local networks. 
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Data integration and analysis 

As integrated datasets mature, challenges will shift to data analysis. 

Complete data on all patients of a study of interest is rare, and this missingness 

complicates multimodal data integration. Most traditional multivariate models, 

such as Cox Models, cannot handle this directly and thus require either exclusion 

of patients without all data modalities or overly simplistic interpolation (e.g., by 

median). Both of these strategies fail to harness all available data to train 

effective models. To circumvent this, one simple solution is to use late fusion 

(Figure 2b), where each unimodal model can be trained separately to infer the 

outcome of interest, which can then be integrated.  Bayesian approaches 112 also 

offer analytical solutions for missingness.  

Data modeling will also be complicated by institution-specific biases in the 

data, such as staining and scanning particularities in histopathology 113–115, 

scanner parameters in MRI, and differing ontologies in clinical data. 

Preprocessing techniques in MRI 116 and H&E 117,118 address this heterogeneity, 

and with large cohorts, DL is somewhat robust to noise 28,119, but such 

heterogeneity is a major reason that AI systems fail when trialed in the clinic 120. 

An additional complexity in multimodal studies is that unimodal biases are likely 

to be correlated. For example, biasing factors such as MRI manufacturers and 

H&E staining artifacts likely differ more between institutions than within an 

institution. This will make it more challenging to model general intermodal 

relationships, motivating greater cross-institutional data representation and 

potentially motivating methods that explicitly model these multimodal biases, 
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and/or normalize against them. Different modalities with different levels of 

heterogeneity may require different training dataset sizes—in this case, training 

the overall model may involve pre-training the unimodal sub-model using the 

enlarged unimodal cohort.  

Another analytical challenge is overfitting. Multimodal ML is more prone to 

overfitting because, in most cases, multimodal datasets are smaller and 

multimodal models have more parameters to fit. Traditional ML models enable 

investigators to calculate the necessary dataset size for a tolerable generalization 

error before analysis. Black box models such as DNNs do not offer such 

analytical forms. Instead, target dataset size is decided empirically by comparing 

performance when the model is trained on different proportions of the full data 

set 35,95. Some evidence suggests that early fusion strategies can perform 

comparably to unimodal results using less training data 121, but in general, highly 

parameterized fusion models are likely to require more training data to fit the 

additional parameters. 

 Hence, in many settings, multimodal approaches cannot yet fully harness 

the performance benefits of deep learning. The most important response to this 

is to advance clinical data collection to assemble large datasets and better 

support methods development and benchmarking (see Data Silos). Meanwhile, 

smaller datasets curated at single institutions require less complex models to 

avoid spurious results due to overfitting. Each unimodal model can thus be 

formulated using ML on engineered features, such as radiomic features from MRI 

and nuclear morphology features from H&E. One major drawback is the need for 
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laborious annotation, such as segmentation on MRI and tissue type delineation 

on H&E, which can be reduced using weakly supervised and active learning (see 

Promising methodologic frontiers). For all model types, cross-validation and 

external testing cohorts are critical to demonstrate generalizability. 

Infrastructurally, multimodal analytic workflows present hardware and 

software challenges. Centralized data lakes and workflow management tools 

minimize duplicated computation, such as image pre-processing, among multiple 

investigators’ workflows. Computational needs also differ during different parts of 

the workflow, with a much higher demand during model training than during 

cohort curation. This is especially true for multimodal models such as TFNs, 

which generate intermodal representations that scale exponentially with the 

number of data modalities. Elastic cloud computing resources and the distributed 

data parallelism of modern DL-based frameworks handle these computational 

bursts appropriately, but the use of off-premises cloud computing requires robust 

de-identification of patient data, data security certifications, and measures to 

control data ingestion and egress costs. 

 

Reproducibility 

Reproducibility and benchmarking are major challenges in AI, with many 

published biomedical AI studies failing to provide source code, test data, or both 

122. Several recent seminal works do not provide source code, claiming that 

internal code dependencies prevent code sharing and that textual descriptions 

are sufficient to reproduce the results 93,123,124. However, a recent investigation of 
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one of these studies124 found that significant information needed to actually 

reproduce the study was missing, greatly reducing the impact and ability of the 

field at large to scrutinize 125 and improve upon it. To foster transparency, 

scientific reproducibility, and measurable progress, investigators should be 

encouraged to deposit new multimodal architectures and preprocessing 

regimens in standardized repositories such as modelhub.ai 126. Furthermore, to 

promote benchmarking and multicenter validation, journals should require 

investigators to make available published deidentified datasets on platforms such 

as the dbGaP, EGA, GDC, and TCIA. Beyond center-specific confounders, the 

clinical environment has unpredictable effects on model performance, often 

leading to substantial performance decrements 127. 

Hence, prospective clinical validation is the most relevant measure of a 

model’s performance 128. This is because directly comparing clinical outcomes 

with and without the AI system, where both arms are exposed to the inherent 

noise such as varying image quality and user error, provides an objective, 

quantitative assessment of a model’s value. SPIRIT-AI and CONSORT-AI are 

consensus guidelines for clinical trial protocols and reports, respectively, that 

extend the SPIRIT and CONSORT guidelines for randomized clinical trials 128–130. 

In broad terms, these guidelines improve reporting transparency and ensure that 

readers can evaluate practical factors that may impact AI system performance in 

clinical contexts, such as required training, error handling, and output data 

format. 
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Balancing the need for interpretability with empiric efficacy 

The nature of DL architectures creates a limiting paradox. While often 

outperforming standard, interpretable models, users are left to explain improved 

results without the benefit of drawing from model assumptions encoded in more 

traditional approaches such as hierarchical Bayes. We argue that investigators 

should seek to understand learned models from biological and clinical 

perspectives in order to realize rational multi-modal implementation. Depending 

on the goals of a study, understanding a model is arguably as important as 

improving its predictive capacity and will lead to greater mechanistic insight and 

testable hypotheses. For example, post-hoc explanation methods, which seek to 

interpret model predictions in terms of input feature values, have been applied to 

probe medical algorithms 131. However, post-hoc explanations are prone to 

misinterpretation and cannot supplant true interpretability 132 to elucidate a 

mechanism or generate hypotheses for experimental biology. 

Yet when the main purpose of an algorithm is to improve patient 

outcomes, understanding models mechanistically at the expense of denying 

patients empirically improved quality of life is unethical. Many empirically 

beneficial medical interventions, such as general anesthesia, have incompletely 

understood mechanisms 133. Hence, the most important threshold for using these 

models in the clinic is the same as for a drug: robust, prospective, multi-center 

empiric evidence of benefit for patients and an understanding of cases in which 

the model fails. Given our limited understanding of black-box models, pilot 
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studies must demonstrate that the model is effective and equitable for all patient 

subpopulations it will encounter before deployment at scale 134.  

 

 

Figure 5. Class activation maps provide some interpretability. Breast MRI 
images (a) before neoadjuvant chemotherapy with region of interest circled by a 
radiologist, (b) after neoadjuvant chemotherapy with circled region of interest by 
a radiologist, and (c) before neoadjuvant chemotherapy with class activation 
mapping by a neural network trained to predict response to therapy. Warmer 
colors indicate higher saliency. Images from 135,136 

 

Truly causal models are a frontier of AI research, and in the future such 

models will be highly valuable in this field 137. Less challenging than 

interpretability, explicability is also useful for black-box models. For example, 

class activation maps (CAM) 138 (Figure 5) depicts which parts of the image are 

most important for the model to arrive at its decision. The saliency, or 

dependence of the output on a specific region, is shown for prediction of 

response to chemotherapy in Figure 5c. This technique is limited by seeking 

explicability rather than interpretability 132, but it can be useful to rule out 

obviously spurious determinants of model output. For example, if the CAM in 

Figure 5c showed highest saliency in the area outside the breast, it would raise 

serious concern about the validity of the model. Lucid is another method for 
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explicability which uses the learned model to generate example images for each 

class 139. For example, it has been applied to visualize what a CNN is looking for 

in breast H&E images to distinguish tumor from benign tissue 140. For DNNs with 

definable input variables, layer-wise relevance propagation is widely used and 

has been applied to clinical data 131. However, these methods were developed 

for unimodal ML, and interpreting multimodal ML is more challenging. 

Future work must quantify the relative contribution of each modality and 

their interactions. Uninformative feature counterfactuals also have been used to 

probe feature importance with guaranteed false discovery rates 141, and such a 

method might similarly quantify the performance of a modality in a late fusion 

architecture, for example. Yet feature importance is only an early step toward 

interpretability: probing a model with potentially informative data counterfactuals 

(e.g. “How would the inferred genomic subtype change if the tumor texture were 

more coarsely heterogeneous on CT?”) would further our understanding of black-

box multimodal models 137,141.  

Data governance and data stewardship 

Progress will require appropriate data governance and 

stewardship.  Patient consent lies at the core of appropriate use of data and 

dictates terms of use as stipulated by institutional review boards. Beyond patient 

consent, high quality, curated and annotated datasets require the expertise and 

domain knowledge of clinician scientists or clinical fellows. As such, terms of use 

for these valuable datasets are likely to be set by those who invested the 

expertise and time required for curation. Success will therefore depend heavily 
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on collaborative models coupling expert clinical annotations with the expertise of 

data scientists for advanced analyses 142.  Furthermore, cross-departmental 

coordination, access provisions, and governance structures will be required to 

achieve large scale multimodal data integration. 

We argue that open data models are the most productive approaches to 

fully leverage data for discovery and promote reproducibility.  This has been 

demonstrated in the cancer genomics community with TCGA, and community 

data standards promoting multi-institutional clinical data integration, such as 

AACR Project GENIE, are now gaining traction 143. Moreover, as the clinical 

journey for a cancer patient plays out over time, technology systems and 

governance structures to capture relevant events and new data in real-time will 

enhance efforts for data integration and computational discovery.  Effective 

stewardship plans, including accuracy of data, collaborative access provisions, 

imposition of data standards, and longitudinal data updates, are therefore critical 

to managing and deploying appropriate use of data for large scale multimodal 

data integration.    

Regulatory challenges 

 During model development, the main legal challenges surround protection 

of patient privacy by limiting access to protected health information (PHI). Per 

HIPAA, researchers must have the minimum amount of access necessary to 

conduct the research, which often is greater for data-driven projects than for 

hypothesis-driven projects given the unspecified amount and types of data 

required to discover new patterns. Deidentifying data promotes compliance with 
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the minimum access stipulation of HIPAA. This also enables multi-institutional 

collaboration, wherein data must be deidentified prior to transmission. However, 

this process presents a data engineering challenge. In radiology, DICOM image 

headers contain PHI that can be removed electronically, but the process often 

includes a manual validation step for liability reasons. This is infeasible at the 

large scales required for modern machine learning, and medical centers will need 

to invest in developing and validating more reliable automatic anonymization 

software. In pathology, slides can include disparate markings or labels containing 

PHI, which can be solved with conservatively calibrated automatic exclusion 

tools, then followed by manual review. For the healthcare record, schemata such 

as REDCap already exist to present anonymized data 144. For analysis, if cloud 

computing is used for data containing PHI, the Health Insurance Portability and 

Accountability Act of 1996 requires that the cloud computing providers enter into 

both business associate and service level agreements with the medical center 

145. Stripping training data of PHI protects patient privacy, thereby reducing these 

regulatory burdens during model training and validation. 

After the model is trained and robustly validated, investigators may look to 

deploy the model for clinical use. The current FDA regulations for software as a 

medical device (SaMD) are insufficient for AI models in precision oncology, which 

inherently learn and adapt after initial deployment. In a 2020 workshop, the FDA 

proposed amending SaMD regulations to account for this inherent strength while 

managing its associated risk 146. The key elements of this proposed total product 

lifecycle approach are an algorithm change protocol and SaMD pre-specifications 



 31 

(SPS). The algorithm change protocol would delineate plans for managing data, 

iteratively training the model, evaluating performance, and deploying updates, 

and the SPS would draw a “region of potential changes” around the original 

specifications and uses of the algorithm 146. Further precautions to reduce risk 

would include a pre-review of organizational software quality and culture. 

Updates such as these would control risks while enabling AI algorithms to 

iteratively improve after deployment. 

After deployment to clinical care in the medical center, another concern 

arises: legal culpability. Current liability in medicine is established by tort 

doctrines, wherein civilians claim compensation from physicians, healthcare 

organizations, or manufacturers 147. AI models will likely initially be used in 

concert with other clinical tests, and the final decision on treatment will continue 

to rest with physicians. Hence, physician liability is currently established based 

on the standard of care, an AI model’s recommendation for or against the 

standard of care, and a physician’s adherence to or rejection of the 

recommendation 148. Interpretable models are thus highly advantageous in the 

current regulatory framework. However, it is not clear that this paradigm focused 

on physician gatekeeping will be sufficient as algorithms that demonstrably 

outperform clinicians advocate for an intervention that subsequently causes 

harm. Yet in these cases of harm, patients must have mechanisms for 

recompense. Potential directions for legal reform include treating the AI model 

itself as a culpable independent entity to be insured similar to the no-fault 

compensation for vaccine injuries 148, or a common enterprise liability, wherein 
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the model itself is viewed as faultless and all developers and non-patient users of 

the algorithm jointly share liability 147.  

 

Perspectives 

Multimodal cancer biomarker discovery occurs at the interface of clinical 

oncology, ML research, and data engineering, which typically operate separately. 

To advance the field, collaborative research programs must unify and promote 

clear communication among these stakeholders through platform design, model 

development, and the publication lifecycle 149. These programs will enable clinical 

investigators to ask questions centering on patient stratification and ultimately 

produce predictive models by integrating multimodal data. A team science 

approach with appropriately shared attribution of credit and agreed-upon data 

stewardship provisions is essential for progress. 

The main roadblock to progress in this field is the lack of usable data. 

Advances in multimodal ML methods have been impressive in other fields, such 

as sentiment analysis 60,150–155 , with large benchmark datasets, but the largest 

multimodal oncologic dataset, the TCGA, contains limited data modalities and 

only a few hundred patients per cancer type. This data scarcity largely prevents 

investigators from using advanced data-hungry models and, critically, hampers 

benchmarking of new methods in the field, required for rational development of 

multi-model biomarkers. 

Institutional datasets must be assembled and shared, but current data 

infrastructure typically necessitates months of laborious extraction and 
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annotation before analysis begins. This is perhaps the most well-known issue of 

conducting ML research for healthcare applications, and a general solution is not 

imminent. To address this in specific cases, imposed structures on certain notes 

and full-time data curators have hastened chart review. Automatic annotation 

strategies relying on weakly supervised and active learning conserve scarce 

expert annotations and have begun to reduce annotation burdens for large 

imaging cohorts. 

Until these fundamental challenges are addressed, multimodal ML models 

must often operate in the very small data regime. Simple ML models should be 

used in place of DL methods for small cohorts. DL models should be used 

judiciously for tasks with large statistical sample size and with strategies to 

combat overfitting, such as gradient blending, early stopping, data augmentation, 

and weight decay. Investigators must be wary of spurious results due to 

institutional biases and small sample sizes, with cross-validation, retrospective 

external validation, prospective validation, and clinical trials serving as key 

measures to assess algorithm effectiveness. 

Ultimately, as biomedical data infrastructures develop, the goal of this line 

of inquiry is to refine cancer prognosis and rational management by integrating 

multiple data modalities. Genomic biomarkers have improved upon traditional 

staging and have begun to implement personalized cancer care, promoting 

targeted therapies. We predict new classes of multimodal biomarkers will further 

harness information content from various sources, thereby leading to improved 

predictive models for therapeutic response.  Validated models will be deployed to 
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the electronic medical record, providing near-real-time risk stratification and 

recommendations for individual patients for clinicians to integrate with other 

factors to inform management. 

While we focused on genomics, histology, radiomic and clinical outcomes 

in our discussion, we expect additional measurements such as microbiome, 

metabolic analytes, longitudinal cell free DNA analysis, and deep immune 

profiling will become integrated as informative determinants of clinical 

trajectories. In summary, we project that as data access challenges are 

overcome, multimodal computational techniques will play important roles in 

clinicians’ decisions around disease management. Developing multimodal ML 

methods, usefully logging and annotating patient data, and advancing data 

engineering infrastructures are outstanding hurdles that remain in the field. As 

these challenges are met, the field is poised for a reimagined class of rational, 

multimodal biomarkers and predictive tools to refine evidence-based cancer care 

and precision oncology.  

 

Risk stratification in high-grade serous ovarian cancer 

High-grade serous ovarian cancer (HGSOC) is the most common cause of 

death from gynecologic malignancies, with a five-year survival rate of less than 

30% for metastatic disease156. Initial clinical management relies on either primary 

debulking surgery (PDS) or neoadjuvant chemotherapy followed by delayed 

primary surgery (NACT-DPS). Endogenous mutational processes are an 

established determinant of clinical course, with improved response of 
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homologous recombination deficient (HRD) disease to platinum-based 

chemotherapy and poly-ADP ribose polymerase (PARP) inhibitors 157–159. More 

nuanced genomic analyses integrating point mutation and structural variation 

patterns further refine this stratification into four biologically and prognostically 

meaningful subtypes 55,160 including distinct sub-groups of HRD, foldback 

inversion enriched tumors and those with distinctive accrual of large tandem 

duplications. 

Beyond genomic factors, clinical indicators such as patient age, pathologic 

stage, and residual disease (RD) status after debulking are also prognostic 161. 

However, these clinico-genomic factors alone fail to adequately account for the 

heterogeneity of outcomes. Identifying patients at risk of poor response to 

standard chemotherapy remains a critical unmet need, and improved risk 

stratification models to identify such patients will aid medical oncologists in 

planning monitoring frequency and administration of maintenance therapy and 

may help patients in considering clinical trials of investigative agents.  

Beyond clinico-genomic features, multi-scale clinical imaging is routinely 

acquired during the course of care, including contrast-enhanced computed 

tomography (CE-CT) at the mesoscopic scale and hematoxylin and eosin (H&E)-

stained slides of diagnostic biopsies at the microscopic scale. Digital forms of 

these diagnostics present opportunities to develop computationally driven 

quantitative models for improved risk-stratification. Accordingly, we tested 

whether integrated multi-modal data from quantitative imaging, genomics and 

clinical data could improve identification of risk groups for HGSOC. 
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At the mesoscopic scale, recent radiologic studies have uncovered 

quantitative CE-CT features that are predictive of early progression, time to 

recurrence, and overall survival in HGSOC 19,162,163. Most studies to date have 

analyzed the prognostic information captured within adnexal lesions 162,164,165 or 

the whole burden of disease 166–168. Deep learning-based radiologic models 165 

have the potential for higher performance than engineered features, but given 

that they are even more challenging to interpret and prone to overfitting in the 

typical clinical data regime of hundreds of examples, radiomic features from the 

Imaging Biomarker Standardization Initiative 17 . Furthermore, we opted to 

develop and validate a radiomic prognostic model based on omental lesions 

because, in comparison to adnexal lesions, omental implants are easier to 

delineate and are very common in advanced stage HGSOC. They also constitute 

only a portion of the total burden of disease and thus require less time and 

experience to outline than the whole tumor volume. 

At the microscopic scale, H&E-stained tissue biopsies enable pathologic 

diagnosis and are routinely acquired before the start of therapy. A quantitative 

histopathologic study of HGSOC identified patterns of immune infiltration on H&E 

slides that correlate with mutational subtypes 160. In other cancer types, studies 

of whole slide images (WSIs) have advanced our ability to quantify the 

histopathologic architecture of tumors using deep 30,123 and interpretable 169 

features. Apart from stage, HGSOC lacks independent pre-treatment pathologic 

factors by which to stratify patients 161, and as such quantitative approaches 

present an opportunity to systematically search for them at scale beyond 
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qualitative human interpretation. Interpretable features are less prone to 

overfitting in small cohorts and can be more easily interrogated by human 

pathologists 132,169, and thus, we opt for this strategy in our analysis. 

Multimodal machine learning models integrating information from distinct 

measurements of a system have empirically outperformed unimodal approaches 

in fields as diverse as sentiment analysis 60,62 and multi-omic molecular models 

to stratify cancer patients 73,74. Initial results demonstrate that multimodal models 

that include clinical imaging can outperform their unimodal constituents. For 

example, a tensor fusion network integrating H&E-based features with features 

derived from RNA-seq and whole-exome sequencing stratifies glioma patients 

better than models based on genomics or histology alone 84. In the pan-cancer 

context, jointly embedding histopathologic imaging representations with clinical 

covariates and features from miRNA and mRNA-seq improves stratification 

beyond these molecular characterizations 79. Conceptually, disaggregated 

genomic sequencing omits spatial context, and we thus hypothesize that 

multiscale imaging contains complementary prognostic information, rather than 

merely recapitulating genomic prognostic information. 
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Figure 6.  Schematic outline of the study. (a) As patients proceed through 
diagnosis and therapy, treating clinicians acquire multiple data modalities to 
inform management. This study generates prognostic models based on (b) pre-
treatment abdominal/pelvic contrast-enhanced CT studies, (c) pre-treatment 
H&E-stained diagnostic biopsies, and (d) HRD status inferred from hybridization-
capture based targeted sequencing or clinical HRD-DDR gene panels. (e) We 
integrated these unimodal features to stratify patients by progression-free 
survival and compare with pathologic chemotherapy response score. Please 
refer to list of abbreviations as needed. 

 

Objectives of the thesis 

In this work, we set out to study the complementary prognostic information 

of multimodal features derived from clinical, genomic, histopathologic, and 

radiologic data obtained during the routine diagnostic workup of HGSOC patients 

(Figure 6a). We developed a radiomic model based on CE-CT-derived 

quantitative omental features (Figure 6b) and a histopathologic model based on 

pre-treatment biopsies to risk stratify patients (Figure 6c). The models were 

validated on an internal test cohort and an external TCGA test cohort and were 

integrated with clinical and genomic information (Figure 6d) using a late fusion 
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multimodal statistical framework (Figure 6e). Our results revealed the empirical 

advantages of cross-modality integration and demonstrate the ability of 

multimodal machine learning models to improve risk-stratification of HGSOC 

patients.  
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CHAPTER TWO: Multimodal machine learning strengthens inference of 

high-grade serous ovarian cancer patients 

 

Summary 

Patients with high-grade serous ovarian cancer demonstrate poor prognosis and 

variable response to treatment. Homologous recombination deficiency status, 

patient age, pathologic stage, and residual disease status after cytoreductive 

surgery are important prognostic factors, with recent work also highlighting 

prognostic information captured in computed tomography and histopathologic 

specimens. However, little is known about the capacity of combined features to 

discriminate between patients and explain clinical outcomes. In this work, we 

developed and integrated histopathologic, radiologic, and clinico-genomic 

machine learning models to determine their combined impact on risk 

stratification. We assembled a multimodal dataset of 409 high-grade serous 

ovarian cancer patients and showed that human-interpretable features, such as 

necrosis on H&E and omental textural complexity on CT, are associated with 

worse prognosis. We then integrated these models and demonstrated that the 

imaging models contain complementary—rather than purely mutual—prognostic 

information to clinico-genomic prognostic factors, as evidenced by improved risk 

stratification and stronger association with pathological chemotherapy response 

score than unimodal models. This work empirically supports multimodal machine 

learning approaches as a promising path toward improved risk stratification of 

cancer patients. 
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Cohort characteristics 

We analyzed 409 patients, 262 HGSOC internal cases at MSKCC for 

discovery (222 for training, 40 for internal testing) and 147 TCGA cases for 

external testing (Figure 7a). The 40 internal test cases were randomly sampled 

from the discovery cohort before analysis. The entire discovery cohort contained 

143 Stage IV, 115 Stage III, 3 Stage II, and 1 Stage I patients, while the external 

test cohort contained 31 Stage IV, 103 Stage III, 7 Stage II, and 6 Stage I 

patients (Figure 7b) 170. Median age at diagnosis was 65 years [IQR 58-72] for 

discovery and 60 years [IQR 51-68] for external test sets (Figure 7c). In the 

discovery cohort, 188 patients received neoadjuvant chemotherapy followed by 

delayed primary surgery, and the remaining 74 underwent primary debulking 

surgery. Treatment regimens are not annotated for TCGA patients. Median PFS 

was 15.9 months [IQR 12-22] for discovery patients and 14.9 months [IQR 9-25] 

for TCGA testing patients. 86 discovery patients and 37 testing patients had 

censored PFS outcomes (Table 1). 

The discovery cohort was composed of H&E WSIs from 142 patients, 

combined with adnexal and omental lesions on CT from 192 and 216 patients 

(Figure 8a). All 40 patients in the internal test cohort had omental lesions, H&E, 

and available sequencing by construction (Figure 8b). The TGCA test cohort 

was composed of H&E WSIs from 84 patients, combined with 62 patients with at 

least one adnexal lesion on CT, and 54 had with an omental implant on CT 

(Figure 8c). Three radiologists segmented adnexal lesions and representative  
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Figure 7. Age and stage distributions of discovery and test cohorts. (a) We 
analyzed 262 discovery patients and 147 external TCGA patients. (b) The age 
distributions are similar for the discovery and test cohorts, with the discovery 
cohort being slightly older. (c) The stage distributions are similar for the discovery 
and test cohorts, with both cohorts containing primarily advanced disease, and 
the discovery cohort containing proportionally more stage IV disease. 
Visualization by Samantha Leung; used with permission. 

 

omental lesions in three dimensions (Figure 9a). The discovery and testing data 

were obtained with similar CT scanners (Figure 9b).  

We used clinical sequencing to infer HRD status, in particular variants in 

genes associated with HRD DNA damage response (DDR) 171,172 such as 

BRCA1 and BRCA2, and those specific to disjoint tandem duplicator- and 
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Discovery Test 

Patients included 262 (222 training, 40 test) 147 (all test) 

Median age at diagnosis 65 years [IQR 58-72] 60 years [IQR 51-68] 

Stage 
  

    I 1 (0%) 6 (4%) 

    II 3 (1%) 7 (5%) 

    III 115 (44%) 103 (70%) 

    IV 143 (55%) 31 (21%) 

Treatment 
  

    NACT-DPS 188 (72%) -- 

        Complete gross resect. 126/188 (67%) -- 

        Number of NACT cycles 4 cycles [IQR 3-5] -- 

        Received neoadj. PARPi 11/188 (6%) -- 

    PDS 74 (28%) -- 

    Unknown 0 147 (100%) 

Progression-free survival 
  

    Duration 15.9 months [IQR 12-22] 14.9 months [IQR 9-25] 

    Censored 86 (33%) 37 (25%) 

Overall survival 
  

    Duration 24.5 months [IQR 17-36] 34.8 months [IQR 19-54] 

    Censored 115 (44%) 53 (36%) 
Table 1. Clinical characteristics of cohorts. Continuous values are described 
by the median. Censored durations are also included in survival descriptions. 
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Figure 8. Overview of cohorts and data types acquired. We assembled 
outcomes, multi-scale imaging data, and HRD status from 409 patients, divided 
into (a) training, (b) internal test, and (c) TCGA test splits. Patients with available 
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sequencing but conflicting evidence for HRD status are counted as not having 
known HRD status in both Venn diagrams. (d) HRD status in the discovery 
cohort was inferred using primarily MSK-IMPACT sequencing to identify 
OncoKB-annotated variants of known significance in HRD-DDR-associated 
genes 171 and HRP-associated gene CDK12, along with copy number 
amplifications in CCNE1 56, LSTs 173 and Signature 3 activity. (e) For the TCGA 
test cohort, WES was used to infer HRD status using the same methodology, 
except with an expanded list of HRD-DDR-associated genes 172. We excluded 
any cases without sequencing or with conflicting evidence from both training and 
testing. Only genes with five or more variants in the discovery cohort are shown 
in this figure. Gray represents tested genes without the aberrations shown, and 
white represents an untested gene. 

 

 
Figure 9. Segmenting radiologist and CT vendor in discovery and test 
cohorts. (a) The same three expert radiologists segmented the discovery and 
test cases. (b) The most common scanner vendors were General Electric and 
Siemens for both cohorts, with other vendors being less represented. Only the 
discovery cohort contained scans acquired on Toshiba hardware, and the test 
cohort contained one scan acquired on an Imatron device. 

foldback inversion-enriched mutational subtypes (CDK12 and CCNE1 56,160 

respectively, Figure 6d, Figure 8d-e). We also examined the genomes of 184 

discovery patients for direct evidence of homologous recombination deficiency, 

namely double stranded breaks in the form of large-scale state transitions 

(LSTs), the median number of subchromosomal regions with allelic imbalance 

extending to the telomere (NtAI), and COSMIC single base substitution (SBS) 

signature 3, which is associated with defective HRD-DDR. The median number 
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Figure 10. Genomic features and stratification of the discovery and test 
cohorts. (a) The distribution of large-scale state transitions in the discovery 
cohort is depicted. We set the threshold for LSThigh versus LSTlow at 6 LSTs, 
which is lower than previously reported thresholds for whole-exome sequencing 
174. This is because MSK-IMPACT is a targeted gene panel, and LSTs occurring 
at the same rate will measure lower on targeted panels compared to more 
comprehensive sequencing. (b) Signature three was detected by SigMA as the 
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dominant signature with high confidence (HC) and low confidence (LC) in a 
significant number of cases, and the next most prevalent was the clock signature. 
(c) The COSMIC SBS3 frequencies for all TCGA-OV cases with sequencing from 
175 are shown, and the distribution is clearly bimodal but imbalanced. This was 
not used for HRD status assessment due to poor prognostic association in our 
cohort. (d, e, f) Patients with HRD-type disease have longer PFS than those with 
HRD-type disease in the training, internal test, and TCGA test cohorts. In (d), 
only the subset of patients associated with an H&E slide or CT with omental 
lesion are included. (g) Using BRCA2 SNVs, BRCA1 SNVs, CCNE1 CNAs, and 
CDK12 SNVs, we categorized a subset of patients into the following mutational 
subtypes: HRD-Deletion (HRD-DEL), HRD-Duplication (HRD-DUP), Foldback 
Inversion (FBI), and Tandem Duplications (TD), respectively. The patients stratify 
as expected, with HRP-type patients suffering earlier progression of disease (p 
value for log-rank test between aggregated HRD patients and aggregated HRP 
patients). 
 

 

of LSTs 173 was 3 [IQR 1-4; max 12] (Figure 10a), and NtAI 176 was 5 [IQR 2-7; 

max 14]. Signature 3 was detected by SigMA 177 in the discovery cohort for 74 

cases (45 high confidence and 29 low confidence); it was found not to be the 

dominant signature in 49 cases (Figure 10b). In the TCGA test set, nine patients 

had COSMIC SBS signature three with a frequency greater than 15%, and 89 

were measured that did not (Figure 10c) 175. Patients without sequencing were 

excluded from all multimodal analyses involving HRD status: no interpolation was 

used. Patients with conflicting points of evidence were also excluded from these 

analyses. In total, the discovery cohort had 107 HRD, 131 HRP, and 24 missing 

or ambiguous cases (Figure 8d). No patients in the internal test set within the 

discovery cohort were of ambiguous status: 16 were HRD, and 24 were HRP. 

The TCGA test cohort had 20 HRD, 72 HRP, and 55 missing or ambiguous 

cases (Figure 8e). HRD status alone (excluding ambiguous) stratified patients 
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with a c-Index of 0.62 in the training cohort, 0.61 in the internal test set, and 0.54 

in the TCGA test set (Figure 10d-f). Aberrations specific to distinct endogenous 

mutational processes also stratified patients as expected: that is, patients with 

HRP disease had worse outcomes than those with HRD disease (p=7e-3; Figure 

10g).  

 

CT imaging feature selection and stratification 

We began by studying the prognostic relevance of features derived from 

radiology scans. Pre-treatment CE-CT scans (Figure 11a), were segmented by 

 

Figure 11. High-density omental zones are associated with shorter 
progression-free survival. (a) Expert radiologists segmented omental lesions in 
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3D on CT. (b) The logarithm of the univariate hazard ratio is depicted for each 
radiomic feature, with the gray level variance derived from the gray level size 
zone matrix for the Laplacian of Gaussian-filtered 3D image highlighted as an 
example prognostic feature. (c) A late fusion radiologic-genomic model stratifies 
patients in the internal test set. (d) The model also stratifies patients in the TCGA 
test set. 

 

fellowship-trained radiologists, focusing on omental implants and adnexal lesions 

(Figure 6b, 11a). Using the training cohort, we identified omental (Figure 11b) 

and ovarian (Figure 12) radiomic features associated with progression-free 

survival using univariate Cox proportional hazards models 162 with bootstrapping 

of the training cohort 162. From the top 25 (of 750) omental features, we reduced 

multicollinearity by iteratively removing features 19. This yielded a five-feature 

radiomic signature based on features derived from the 

 

 

 
 
Figure 12. Radiologic ovarian feature discovery. The logarithm of the 
univariate hazard ratio is depicted for each radiomic feature, with the maximal 
correlation coefficient derived from the gray level size zone matrix for the Coif 
wavelet-filtered 3D image highlighted as an example prognostic feature. 
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gray level size zone 178, gray level run length 179, and gray level dependence 180 

matrices calculated on Coif wavelet-transformed 181 images and from the  gray 

level size zone matrix of the Laplacian of Gaussian-transformed image. We 

found that radiomics features derived from omental implants stratified patients 

better than ovarian lesions (Figure 13) and thus, going forward, we only 

considered the omental lesions. 

 
 
Figure 13. Ovarian radiologic features do not stratify TCGA test set by PFS. 
(a) Ovarian features selected using the training set stratify the training set as 
expected. (b) However, they do not stratify the TCGA test set by PFS. 

 

This five-dimensional signature was invariant to CT scanner 

manufacturers and segmenting radiologists (Figure 14). One feature positively 

correlated with higher-density voxel zones (in Hounsfield units) was associated 

with higher risk, while another feature describing large lower-density zones 

corresponded to lower risk (Table 2).  Unimodal radiomics achieved a training c-

index of 0.55, an internal test c-index of 0.55, and a TCGA test c-index of 0.61 

(Figure 15a-b). The small size of the test sets should be taken into  
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Figure 14. Radiomic embeddings by segmenting radiologist, CT scanner 
manufacturer, and acquisition site. The radiomic embeddings for the signature 
we identified in the discovery cohort do not appear significantly confounded in 
UMAP space by (a) segmenting radiologist, (b) CT vendor, or (c) whether the 
scan was acquired at our institution (MSKCC) or elsewhere. 
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consideration, particularly for the test c-index higher than the training c-index. 

Kaplan-Meier analysis of the high risk, intermediate risk, and low risk groups (as 

determined by inferred partial hazard) showed correct ordering and separation of 

the groups in the TCGA test set (p=0.14).  

Variable Coef. 

wavelet-LHH_glrlm_LongRunHighGrayLevelEmphasis 0.33 

wavelet-LHL_gldm_LargeDependenceLowGrayLevelEmphasis -0.54 

log-sigma-1-0-mm-
3D_glszm_SizeZoneNonUniformityNormalized 

-0.49 

wavelet-LLH_glszm_ZonePercentage -0.58 

wavelet-LHL_glszm_GrayLevelVariance 0.45 
Table 2. Omental radiomic Cox model parameters. 

 

Combining this radiomic model with HRD status using a late fusion 

strategy yielded a good stratification in the internal test set, with a c-Index of 0.63 

(p=0.014) and correct ordering of the highest-, intermediate-, and lowest-risk 

groups with modest separation (Kaplan-Meier analysis, p=0.16, (Figure 11c). 

Median PFS was 12.8, 15.7, and 19.4 months for the highest, intermediate, and 

lowest risk groups, respectively, in the internal test set, compared to the HRD-

based risk groups of 14.3 and 19.1 months (p=0.23). In the TCGA test set, the 

combined model achieved a higher training c-index of 0.65, and the test set 

performance increased slightly to c=0.62 (p=0.030; Figure 15e-f). The highest-

risk group separated well from the intermediate- and lowest-risk groups, whereas 

the intermediate and low risk groups were similar (median PFS 19.2, 20.2, and  
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Figure 15. Additional KM analyses of radiologic-genomic models on the 
training cohort and the TCGA test cohort. (a, b) The unimodal radiologic 
model stratifies the training cohort used for feature selection and withheld TCGA 
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test cohort. (c, d) HRD status alone stratifies the discovery cohort well but does 
not stratify this subset of patients with omental lesions within the testing cohort 
well, perhaps due to the low numbers of HRD patients represented. (e, f) 
Combining HRD status and the radiomic model improves stratification of the 
training cohort and the TCGA test set. (g, h) The inferred score (here, expected 
PFS times) for uncensored patients are displayed. In the test cohort, the radiomic 
score improves stratification for HRP patients with a good prognosis, effectively 
softening the categorical distinction. However, a group of patients designated as 
HRD are given a high score (expected PFS time), whereas they actually suffer 
worse outcomes, which explains the low-risk group curve crossing over the 
intermediate risk curve in panel (f). 
 

10.7 months; p=0.086). Separating the patients into two risk groups based on 

multimodal risk scores (Figure 11d) revealed median PFS of 10.8 months and 

21.2 months (log-rank p=0.086), which is substantially greater separation than 

with either the HRD status alone (median PFS 19.0 for HRP, 19.2 months for 

HRD) or the radiomic features alone (13.4 and 19.9 months). In this subgroup of 

the TCGA test set, where HRD status-based stratification achieved only c=0.52, 

the radiomic score corrected the ordering for HRD-designated patients with poor 

outcomes and also identified HRP patients with better outcomes (Figure 15h). In 

the training set, HRD status-based stratification was stronger than in the TCGA 

test set, and the radiomic score stratified patients within each mutational 

subgroup (Figure 15g). The same radiomic-genomic model also stratified the 

TCGA test cohort by overall survival with c=0.60 (high- and low-risk median PFS 

44.5 and 57.1 months; Figure 16). A clinical submodel trained on patient age 

and pathologic stage (unimodal train c-Index 0.53, TCGA test c-index 0.49) did 

not improve stratification beyond the radiologic-genomic model (trimodal train c-

index 0.64, test c-index 0.59). 
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Figure 16. TCGA test performance of radiologic-genomic model using 
overall survival. The same radiologic-genomic model, with parameters 
estimated using PFS in the discovery cohort, also stratifies test patients by 
overall survival (c=0.60). The times to median overall survival are 45 and 57 
months. 
 

Histopathologic tissue type classifier for interpretable features  

We next trained a tissue type classifier from histology images using a weakly 

supervised approach. We annotated tissue types on 65 H&E WSIs, yielding more 

than 1.4 million partially overlapping tiles, each containing 4096 µm2 of tissue 

(Figure 17a) and trained a ResNet-18 convolutional neural network pretrained on 

ImageNet using these data (Figure 17b). We evaluated performance by four-fold 

slide-wise cross-validation. The model achieved a balanced classification 

accuracy of 0.81 ± 0.05 on pathologist-annotated areas labeled as fat, stroma, 

necrosis, and tumor (Figure 17c). Moreover, the model correctly identified small 

stromal regions at the edge of the fat and necrotic regions within the tumor, 

supporting the suitability of weakly supervised deep learning for this task and 

refining annotations into more granular classifications. 
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Figure 17. Weakly supervised deep learning accurately infers HGSOC 
tissue type on H&E. (a) A training dataset of labeled tiles was generated with 
50% overlap from coarse labels by experienced gynecologic pathologists. (b) 
Annotated regions were tiled, and a ResNet-18 model was trained using weak 
supervision with the labels. (c) The model recapitulates histological structures: it 
correctly identifies necrosis within a tumor-labeled region, stroma at the edges of 
fat-labeled regions, and an island of stroma within a tumor-labeled region despite 
noise in the training data. (d) The confusion matrix aggregated across folds of 
cross validation shows high accuracy but confusion particularly between necrosis 
and tumor. Consider the region shown in (e). The pathologist labels this region 
as necrosis (f), and the model’s prediction on cross validation is mainly necrosis, 
with the vasculature and surrounding intact cells labeled as tumor within (g). This 
is closer to correct than the ground truth but counted as incorrect in the confusion 
matrix. This supports the efficacy of weakly supervised deep learning for this 
task.  
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The cross-validation confusion matrix integrated across folds showed 

good performance (Figure 17d), with the most significant confusion being 

necrotic tiles predicted to be tumor and stroma tiles predicted to be fat. However, 

one disadvantage of weakly supervised learning is that neither the training data 

nor the validation data are exactly labeled: hence, the cross-validation metrics 

are not computed against the exact truth. Visual inspection of the predictions 

revealed excellent qualitative performance (Figure 17c). For example, in a 

necrotic region with vessels and perivascular cellularity (Figure 17e), the 

pathologists labeled the entire region as necrosis (Figure 17f), while the 

classifier assigned labels of necrosis to most tiles, but classified vessels and their 

surrounding intact cells as tumor (Figure 17g). Those tiles classified as tumor 

were counted as incorrect in the confusion matrix given the coarseness of the 

labels; the prediction in this case was more accurate than the label. 

 

Histopathologic stratification 

We applied the tissue type classifier to our 141 H&E WSIs of soft tissue lesions 

from pretreatment biopsies (Figure 6c). We combined these inferred tissue type 

maps with detected cellular nuclei, yielding labeled nuclei (Figure 18a). 

Subsequently, we extracted cell-type features from these nuclei and tissue-type 

features from the tissue-type maps based on the methods of Diao et al. 169. We  
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Figure 18. Interpretable histopathologic features stratify HGSOC patients 
by PFS. (a) For each H&E slide, the tissue map is generated and combined with 
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StarDist nuclear detections to yield both tissue-type features and cell-type 
features, examples of which are shown. (b) A late fusion pathologic-genomic 
model stratifies patients in the internal test cohort. (c) The model also stratifies 
patients in the TCGA test dataset. (d) One prognostic feature is the ratio of 
necrotic area to stromal area for a slide. Patients with higher values of this 
feature have shorter PFS. Censored patients are not plotted; truncated at 2 std. 
dev. for visualization. (e) This slide was inferred to have a low necrotic to stromal 
area ratio: note stroma amidst tumor but no prominent necrosis. (f) This slide was 
inferred to have a high necrotic to stromal area ratio, as verified by the pink 
soupy material with total loss of cellular architecture adjacent to the serous 
carcinoma cells. 

 

next selected features using univariate Cox models on features derived from 

slides in the training cohort (Figure 19). Several tissue-type features, such as 

overall necrotic area, were partially determined by specimen sizes, and we thus 

controlled for this during selection. Using cross-validation (Figure 20), we chose 

to use the top four most significant features associated with PFS for the model: 

the ratio of necrotic area to stromal area, the perimeter-to-area ratio of the largest 

tumor component, the whole-slide skew of maximal hematoxylin of tumor nuclei, 

and the whole-slide kurtosis of median eosin of tumor nuclei (Table 3).  

 
Figure 19. Histopathologic feature discovery. The logarithm of the univariate 
hazard ratio is depicted for each histopathologic feature, with the skew of the 
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maximal hematoxylin values of each tumor nucleus highlighted as an example 
prognostic feature. 

 

This histopathologic signature was not significantly confounded by specimen size 

(Figure 21). The training c-Index was 0.63, the TCGA test c-index was 0.54, and 

the internal test c-index was 0.54 (Figure 22a-b). For comparison, the HRD 

status-based model achieved a unimodal train c-Index of 0.59 and test c-Index of 

0.53 (Figure 22c-d). 
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Figure 20. Histopathologic feature selection hyperparameters and resultant 
cross-validation performance. (a) For feature selection, we varied k, the 
number of top prognostic features to consider, and VIF, the variance inflation 
factor at which iterative feature removal halts. We chose k=4 (either tested value 
of VIF yields the same signature) because the model has comparable 
performance to the other models and none of the top four features are yet 
collinear with the VIF thresholds we used. (b) The numbers of resultant features 
after iterative feature removal are shown. 

 

Variable Coefficient 

ratio_necrosis_to_stroma 0.17 

Tumor_largest_component_PA_ratio 0.21 

Tumor_Other_skew_nuclear_hematoxylin_max -0.23 

Tumor_Other_kurtosis_nuclear_eosin_median 0.14 
Table 3. Histopathologic Cox model parameters. 

 

 Integrating genomic and histopathologic (GH) models increased the c-

indices (0.65, 0.64, and 0.56 for training, internal test, and TCGA test sets, 

respectively (Figure 18b, Figure 22e, f) (permutation p = 0.020, 0.12). On 

multivariate regression, the histopathologic and HRD status-based sub-models 

were both significant (HRD p=0.02, H&E p=0.01). Kaplan-Meier analysis of the 

highest, mid and lowest risk quartiles yielded correct ordering but statistically 

insignificant separation in both the internal test and TCGA test cohorts (p=0.48, 

0.35; Figure 22f). Median score-based dichotomization yielded significant 

separation in the TCGA test cohort (p=0.02; Figure 18c). The median time to 

progression for the risk halves were 18.9 and 13.7 months, slightly less than the 

genomic HRD and HRP risk groups with 24.0 and 14.8 months (p=0.13). 
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However, the multimodal model achieved statistically significant separation while 

the genomic model did not. In addition, stratification was refined, resulting in 

nearly double the number of patients at low risk while maintaining this clear 

separation of curves, and expanding the low-risk group from 14 HRD patients to 

25 patients with a low multimodal risk score. In both the training and TCGA test  

 

 
 
Figure 21. Histopathologic embeddings do not vary by specimen size. The 
embeddings in UMAP space of the four-feature histopathologic signature do not 
appear influenced by the relative specimen size (here depicted as the quantile of 
the number of foreground tiles detected). The larger specimens appear relatively 
evenly distributed. 

 

sets, the histopathologic model identified HRP patients with a better prognosis 

and adjusted prognostication accordingly (Figure 22g, h). Using overall survival, 

the genomic-pathologic model also stratified patients with c-index of 0.63 (high- 

and low-risk median OS 33.3, 49.1 months; Figure 23). Integrating a clinical sub-

model based on patient age and pathologic stage did not improve stratification by  
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Figure 22. Additional KM analyses of histopathologic-genomic models on 
training cohort and TCGA test cohort. (a) The unimodal histopathologic model 
stratifies the training set used for feature discovery well as expected. (b) On the 
TCGA test set, the model stratifies patients with c=0.54 but does not delineate 
distinct risk groups on KM analysis. (c, d) HRD status alone stratifies these 
subsets of the training and TCGA test cohort. (e) Combining HRD status and the 
histopathologic model improves stratification of patient risk groups in the training 
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cohort. (f) The histopathologic-genomic model stratifies the test cohort: note that 
the high-risk curve is determined by the HRD status in (d). The high-risk curve 
has a steeper slope than the HRP curve in (d), but the intermediate and high-risk 
groups are very similar. An adaptive threshold would likely improve the 
separation. (g, h) The inferred expected PFS times for uncensored patients are 
displayed. In the discovery cohort, HRP patients with better prognosis and HRD 
patients with worse prognosis are shunted away from the dichotomous genomic 
risk groups. In the test cohort, the histopathologic score primarily stratifies HRP 
disease, adjusting genomic prognostication correctly. 

 

PFS (train c-Index of 0.65, test c-Index of 0.55) but was significant on 

multivariate regression (p=0.04) and helped slightly separate the low and 

intermediate risk groups (Figure 24). To probe the interpretability of the 

histopathologic features, we investigated the necrosis-to-stroma area ratio 

(Figure 18d). We show examples of low (Figure 18e) and high (Figure 18f) 

values, respectively, associated with better and worse prognosis. 

 
Figure 23. TCGA test performance of histopathologic-genomic model using 
overall survival. The same histopathologic-genomic model, with parameters 
estimated using PFS in the discovery cohort, also stratifies test patients by 
overall survival (c=0.63). The times to median survival are 33 and 49 months. 
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Figure 24. Adding a clinical sub-model slightly improves separation of low- 
and intermediate-risk groups. The clinical sub-model does not appreciably 
improve the concordance but does slightly increase separation between the 
intermediate- and low-risk groups. 
 

Multimodal prognostication 

We then integrated histopathologic, radiologic, genomic, and clinical data 

into a single model (Figure 6e), finding that in the internal test set, the model 

performance rose and significantly outperformed the HRD status-based model, 

clinical model, and individual imaging models. Kaplan-Meier analysis of the HRD 

status-based model stratified patients into two separate risk groups with median 

PFS of 14.3 and 19.1 months (log-rank p=0.23; Figure 10e). The same risk 

stratification using the multimodal model showed the potential value of 

multimodal stratification, with median PFS of 12.8 months, 15.7 months, and 19.4 

months (log-rank p=0.21). The histopathologic-radiologic-genomic (GHR) model 

had a concordance index of 0.70 on the training set (Figure 25a) and 0.66 

(Figure 25b; permutation p=6.0e-3) on the internal test set, superior to 0.54, 

0.55, and 0.61 achieved by unimodal histopathologic, radiologic, and genomic 
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models, respectively. The GHR model also outperformed the histopathologic-

genomic and radiologic-genomic models (Figure 25c; c=0.64 and 0.63, 

respectively). A clinical model including patient age, pathologic stage, residual 

disease status after cytoreductive surgery, and number of NACT cycles (Table 4) 

achieved a unimodal c=0.47 and did not improve stratification for any model. 

The mean absolute Kendall rank correlation coefficient values were low 

between individual modalities (<0.25) (Figure 25d), demonstrating that the 

radiologic and histopathologic models use distinct information to stratify patients, 

as compared to both the genomic model and to one another. The GHR model 

ordered patients in partial accordance with all included modalities, and excluding 

either imaging modality reduced the correlation and performance as expected. 

Individual imaging modalities achieve similar unimodal c-indices but identify 

distinct patient subgroups with good prognosis (Figure 25e). That is, the 

modalities in effect tempered one another: some patients with good outcomes 

were identified as high risk by the radiologic sub-model but correctly assigned a 

lower risk score by the histopathologic sub-model, and vice versa. Patients with 

HRD and HRP disease were distributed relatively evenly, agnostic to unimodal 

imaging risk scores. Finally, the GHR-estimated partial hazard associated with 

pathologic chemotherapy response score (Figure 25f) with increased 

discriminatory power over the clinico-genomic risk score (Figure 25g): patients 

demonstrating worse chemotherapy response scores received higher risk scores. 

This was also true for the GHRC, R, and GRC models, but not for the G, H, C, 

GR, GC, GH, HR, and GHC models.  
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Figure 25.  Multimodal integration identifies clinically significant subgroups 
and improves stratification by response to therapy in the internal test 
cohort. (a, b) Fusing histopathologic and radiologic models with HRD status 
improves the overall training and testing stratification to c=0.70 and c=0.66, 
respectively. (c) The best performing model integrates both imaging modalities 
with HRD status. (d) The Kendall rank correlation coefficient of the risk quantile is 
near-zero between any two of the individual modalities, demonstrating low 
mutual ordering information between individual modalities. (e) Corroborating this, 
unique patients at risk of early progression are identified by radiologic, 
histopathologic, and genomic modalities. Many patients with longer PFS (in blue) 
are categorized as higher risk by one imaging model but correctly identified as 
lower risk by the other. Only patients with uncensored outcomes are shown. (f) 
Higher inferred multimodal risk is associated with a worse chemotherapy 
response score (p<0.05 by the Mann-Whitney U Test). (g) The clinico-genomic 
score alone does not associate significantly with chemotherapy response score. 
Boxes denote interquartile range, and whiskers denote the entire distribution 
excluding any outliers. Significance assessed by one-sided Mann-Whitney U test. 

 

Variable Coefficient 

dps_cgr [1=True] -0.36 

parp_nact [1=True] -0.31 

patient_age 0.39 

pathologic_stage [0=III; 1=IV] -0.09 

cycles_nact 0.06 
Table 4. Clinical Cox model parameters. 
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CHAPTER THREE: Discussion 

Machine learning in cancer prognostics is a growing field with great 

potential, but how multimodal integration across common diagnostic modalities 

can contribute to risk stratification is still poorly understood. In this work, we have 

presented two new unimodal models to stratify HGSOC patients using routine 

clinical imaging, validated these models on two separate test sets, and studied 

the relative contributions of each modality to risk-stratifying HGSOC patients. For 

radiologic imaging, we developed a simple model based on omental implants. 

Patients with more heterogeneous omental implants as indicated by large higher-

density zones in Hounsfield Units on CE-CT had worse outcomes. We focused 

on the omentum over the adnexa because it is the most common site of tropism 

in HGSOC 182, omental implants are generally easier to identify and delineate by 

observers with variable levels of experience, and models of omental CT features 

outperformed those based on ovarian features. Thus, our model may be useful 

when ovarian masses are not present (as in primary peritoneal high-grade 

serous cancer) or challenging to delineate due to adjacent structures, such as 

the uterus. To our knowledge, prior HGSOC radiomic models have not explored 

the prognostic information captured within omental implants, relying instead on 

more demanding segmentations of adnexal lesions or the entire tumor burden. 

 For histopathologic imaging, we developed an H&E WSI-based model to 

stratify HGSOC patients. We discovered histopathologic features that are 

associated with PFS in HGSOC, namely the ratio of necrotic area to stromal 

area, the perimeter-to-area ratio for the largest island of tumor, and features 
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describing nuclear staining. This result validated on two test sets and supports 

the presence of pathologic prognostic factors beyond the pathologic stage in 

HGSOC. Necrosis is associated with rapidly growing, aggressive tumors that 

outpace their vasculature 183. The perimeter-to-area ratio is difficult to interpret for 

a two-dimensional slice of tissue but may reflect distinct patterns of disease 

infiltration into surrounding stroma. It is also challenging to interpret nuclear 

staining distributions at 20x magnification, but future studies could be conducted 

at 40x magnification to establish whether differences in chromatin conformation 

or nucleolar activity 184 are correlated. We included the trained weights for our 

HGSOC model and the source code for extension to other cancer types. 

 Integrating clinical imaging data with HRD status improved stratification 

beyond clinico-genomic models and any unimodal model, with the best model 

incorporating histopathologic, radiologic, and genomic information. These results, 

in addition to the low correlation between individual modalities, support that 

clinical imaging contains complementary prognostic information rather than 

merely recapitulating clinico-genomic information. Histopathologic and radiologic 

imaging characterize the tumor architecture at microscopic and mesoscopic 

scales, respectively. Therefore, it stands to reason that these data complement 

HRD status, which is derived from spatially agnostic sequencing. In the 

radiologic-genomic model applied to the TCGA cohort, data integration only 

slightly improved stratification. This may signal that multimodality is not a 

universal guarantee of improved performance 185. In this case, the most likely 

reason is that the HRD stratification was weaker than the radiology stratification 
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(perhaps due to imperfect HRD status assessment). With larger datasets, 

mechanisms such as attention can be explored to adaptively adjust unimodal 

contributions.  

 Though our results demonstrate the empiric benefits of multimodal 

analysis, our concordance indices remained well below 1.0. This is consistent 

with metrics from other HGSOC studies, where c-Indices are between 0.60 and 

0.70 for various OS models including miRNA-seq and mRNA-seq 79, and 

approximately 0.6 for H&E WSI-based models 30. A previously published adnexal 

radiomic model for overall survival yielded a c-Index of 0.68 162. Ultimately, larger 

multi-institutional cohorts and homogeneous outcomes definitions will help 

reduce overfitting and improve stratification. 

 This lack of usable large datasets is one of the main challenges for 

multimodal machine learning in oncology. We have made our dataset of 409 

HGSOC patients available to enable future work toward improving upon the 

models presented here. Though relatively sizable by clinical standards, the 

dataset remains in the very small data regime for machine learning 186. This limits 

the utility of highly flexible machine learning techniques such as deep learning, 

which are likely to overfit with so few independent samples. It also makes 

handling missingness especially pertinent: we used a late fusion strategy to train 

each unimodal submodel on all available data and estimated integrative 

parameters only on patients with all available modalities. As larger multi-

institutional cohorts coalesce, deep models and more advanced intermediate 
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fusion strategies 60 offer potential performance improvements and ought to be 

explored. 

We intentionally mined data that are routinely available from the standard 

of care. This has the advantage of drastically reducing adoption costs in the 

clinical workflow for any potential resultant models, but the data were not 

collected specifically with computational modeling in mind. A study readable by a 

diagnostic radiologist for clinical purposes is not necessarily suitable for 

quantitative feature extraction, and we excluded many studies due to quality 

issues. Similarly, many candidate H&E slides contained only a few serous 

carcinoma slides, which may be enough for a pathologist to register suspicion for 

HGSOC but insufficient for quantitative analysis. We made every effort to include 

imperfect data to improve the generalizability of our results. Similarly, we 

included some patients in our discovery cohort with only germline panels of HRD-

DDR genes, a clinically relevant but biologically imperfect measure of HRD 

status. Our test cohort included only patients with WES, and the advent of clinical 

whole-genome sequencing will enable more nuanced retrospective genomic 

analyses.  

In summary, we have assembled a multimodal dataset in HGSOC patients 

and used this to develop and integrate combined radiologic, histopathologic 

model, and clinico-genomic models to risk-stratify patients. We show that these 

modalities are demonstrably orthogonal, and their computational integration 

improves stratification beyond previously known clinico-genomic factors in two 

test cohorts. Our results motivate further large-scale studies driven by multimodal 
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machine learning to stratify cancer patients, both in HGSOC and other cancer 

subtypes.
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CHAPTER FOUR: Methods 

Discovery cohort curation 

with Kara Long Roche, Ying Liu, Dmitriy Zamarin, Emily Aherne, and Yulia 
Lakhman 
Most of the discovery cohort was sourced from a retrospective clinical database 

of patients who underwent diagnostic workup and NACT-DPS at our institution. 

We reviewed the EHR to find associated pathology cases with intraperitoneal soft 

tissue lesions (primarily omental), and expert pathologists reviewed the slides to 

select high-quality specimens for digitization. To expand the cohort, we also 

searched the institutional data warehouse for patients with MSK-IMPACT 

sequencing and available CT studies, then filtered these patients to those with 

unambiguous mutational subtype based on annotated variants. We subsequently 

reviewed the associated CE-CT scans and excluded patients with poor quality 

studies (artifacts, low signal-to-noise ratio, or poor intravenous contrast bolus 

timing). We extracted cytoreductive status, number of cycles of chemotherapy, 

pathologic stage, diagnostic biopsy accession numbers, and patient age at 

diagnosis from the electronic medical record. We reviewed the institutional data 

repository for scanned slides associated with the diagnostic biopsy and included 

those containing tumors. Pathologic stage was recorded for all except three 

patients for whom it was unavailable: for these patents, clinical stage was used 

instead. Cytoreductive status was unknown for one patient who underwent 

external debulking surgery: this patient was treated as not having undergone a 

complete gross resection. It could not be definitively determined from the medical 

record whether three patients received neoadjuvant PARP inhibitors: since no 
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mention was made of them and these patients did not undergo any HRD-DDR 

sequencing, these patients were assumed not to have received PARP inhibitors. 

We only included histopathologic specimens and clinical covariates for patients 

receiving neoadjuvant chemotherapy. Only patients receiving neoadjuvant 

chemotherapy were included in the internal test set, which was sampled at 

random from the internal cohort patients with known HRD status, omental lesion 

on CT, and H&E specimen.  

TCGA Test cohort selection 

From the TCGA-OV project 187, we selected patients with clinical data annotated 

in the TCGA Clinical Data Resource 170 and pathologic grade 3 and at least one 

of either a diagnostic FFPE H&E WSIs or contrast-enhanced abdominal/pelvic 

CT study in the TCIA 188. Patients with scans judged to be of low-quality by 

radiologists were excluded before analysis. Only diagnostic WSIs of formalin-

fixed, paraffin-embedded H&E-stained specimens from the TCGA-OV project 

were included.  

Inferring HRD status 

with Pier Selenica  

In the discovery cohort, we used MSK-IMPACT clinical sequencing 189, when 

available, to infer HRD status. Variant calling for these genes and copy number 

analysis of CCNE1 was performed using the standard MSK-IMPACT clinical 

pipeline (https://github.com/mskcc/Innovation-IMPACT-Pipeline). We also 

inferred COSMIC SBS3 activity using SigMA (for cases with at least five 

mutations across all 505 genes) 177 and searched for large-scale state transitions 
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173 using our own pipeline (https://github.com/jrflab/modules/) 174. We used 

OncoKB and Hotspot annotations for variant significance 190–192. variants of 

significance in genes involved in HRD-DDR to assign patients to the HRD 

subtype. Patients with high-confidence dominant signature 3 or with six or more 

LSTs were assigned to the HRD group in all cases. Patients with low-confidence 

dominant signature 3 or at least one significant variant in the HRD-DDR genes 

171 were assigned to the HRD subtype, except when there was evidence that 

patients belonged to the foldback inversion-  or tandem duplicator-enriched 

subgroups (via CCNE1 amplification or CDK12 SNVs, specifically) 56,160: these 

patients with conflicting evidence were assigned to the ambiguous subtype. 

Patients with available results from clinical HRD-DDR panels (n=47) or BRCA1/2 

sendout panels (n=2) were assigned HRP unless there were variants of known 

significance (as determined by the test provider) in at least one reported gene. 

 In the test cohort, we downloaded SNV data from the TCGA-OV project on 

cBioPortal for an expanded set of genes implicated in HRD-DDR 172 (because 

these genes are profiled in WES) and CCNE1 amplifications, again filtering to 

variants deemed significant by OncoKB Using these criteria, patients with at least 

one SNV in HRD-DDR genes or SBS3 frequency greater than 15% were 

assigned the HRD subtype. Patients without aberrations in these HRD-DDR-

associated genes were assigned the HRP subtype. Patients with an SNV in 

CDK12 or CNA in CCNE1 and also with an SNV in at least one of the HRD-DDR 

genes or SBS3 frequency greater than 15% were assigned the ambiguous 

subtype.  Patients without available SNV and CNA data in cBioPortal were 
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assigned to the ambiguous subtype and excluded. We also downloaded 

COSMIC SBS3 frequencies 175 from Synapse (syn11801889), which is clearly 

bimodal (S. Fig. 3c), but we found that only 9 patients in our imaging-associated 

cohort were in the SBS3-high group, and 89 patients were found to be in the 

SBS3-low group. This distribution was more unbalanced than expected, and 

stratification based on SBS3 status was weak (PFS c=0.52, OS c=0.51). Hence, 

SBS3 activity was not used for HRD status assignment. 

 

Adnexal and omental lesions segmentation 

by Yulia Lakhman, Emily Aherne, and Ines Nikolovski 

Three expert radiologists manually segmented ovarian lesions and 

representative omental implants on each pretreatment CE-CT for all patients in 

the internal discovery and in the external TCGA test cohorts. Using the Insight 

Segmentation and Registration Toolkit–SNAP version 3.8.0 software, each 

radiologist traced the outer contour of ovarian and omental lesions on every 

tumor-containing axial slice. All questions that arose during segmentation were 

resolved via joint review and consensus. 

Radiologic feature extraction and selection 

We converted all DICOM series to volumetric images in Hounsfield Units and 

applied an abdominal window (level 50, width 400). Using PyRadiomics 193, we 

resampled images to isotropic 1mm3 voxels using the Simple ITK B-spline 

interpolator and binned images with bin size of 25 HU. We extracted features in 

3D from Coif wavelet- and Laplacian of Gaussian (with standard deviations of 1 
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and 3)-transformed images. We extracted features from the gray level size zone 

178, neighboring gray tone difference 194, gray level run length 179, gray level 

dependence 180, and gray level co-occurrence 195 matrices, yielding a 750-

dimensional representation of each study’s representative omental lesion(s). For 

each feature, we fit a univariate Cox Proportional Hazards model to the full 

discovery cohort using the Python Lifelines package without regularization, and 

we plotted the univariate coefficient and significance confidence. For features 

whose model failed to converge, we re-attempted fitting with L2 regularization 

C=0.2, and any model still failing to converge was assigned a log Hazard Ratio of 

0 and p value of 1. Given the goal of identifying top features associated with PFS 

in the cohort for a prognostic model (to be tested) rather than making claims 

about confidence intervals for individual features from the discovery cohort, no 

correction for multiple testing was used. We repeated this process ten times 

using bootstrapping (95% of the training set) to reduce the impact of uncommon 

patient phenotypes. We next chose the top 35 (of 750) features based on these 

average univariate log hazard ratios and calculated the variance inflation factor 

(VIF), iteratively removing the feature with the highest-valued VIF until no VIF 

exceeded 3, yielding a radiomic signature with low multicollinearity. 

Histopathologic annotation  

by Lora Ellenson and Rob Soslow 

Expert pathologists partially annotated 65 H&E WSIs using the MSK Slide Viewer 

196. The approach was to label example regions of necrosis, lymphocyte-rich 

tumor, lymphocyte-poor tumor, lymphocyte-rich stroma, lymphocyte-poor stroma, 
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veins, arteries, and fat with reasonable but imperfect accuracy. We exported 

these annotations as bitmaps and converted them to GeoJSON objects. We 

amalgamated lymphocyte-rich/poor tumor labels and lymphocyte-rich/poor 

stroma labels for training and omitted vessels from the training data for the 

models presented in this work. We next used these annotations to generate 

tissue-type tiles. 

Training the histopathologic tissue type classifier 

We generated tiles measuring 64µm x 64µm with 50% overlap, using the 

annotations to delineate regions to be tiled. Putative tile squares within an 

annotation but with <20% foreground as assessed by Otsu’s method were not 

tiled. No computational stain normalization was used. We trained a ResNet-18 

model (pretrained on ImageNet) for 30 epochs with a learning rate of 5e-4, 1e-4 

L2 regularization, and the Adam optimizer. The objective function was class-

balanced cross entropy, and we used mini batches of 96 tiles on a single NVIDIA 

Tesla V100 GPU. We used four-fold, slide-wise cross-validation for model 

evaluation and hyperparameter tuning. We selected the number of epochs to 

train the final model using the epoch with the highest lower 95% C.I. bound 

estimated using the mean and standard deviation of the cross-validation F1 

scores. We trained the model on tiles from all 65 slides for 18 epochs. 

Histopathologic feature extraction and selection 

We tiled the 142 WSIs associated with the patients in this cohort without overlap, 

performing inference using mini batches of 800 across four NVIDIA Tesla V100 

GPUs. We used Macenko stain normalization for external slides because 
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staining intensity differences from our MSKCC-based training cohort confounded 

inference. We assembled tile predictions into downscaled bitmaps, which were 

then used to calculate tissue-type features in an approach based on 169. We 

included the region properties from scikit-image 197 for both the largest connected 

component and the entirety of each tissue type. We also calculated features such 

as the area ratio of one tissue type to another and the entropy of tumor and 

stroma. Using the StarDist method 198 for QuPath 199, we segmented and 

characterized individual nuclei, using nuclei with a detection probability greater 

than 0.5. We used a lymphocyte classifier trained iteratively using manual 

annotations to distinguish lymphocytes from other cells. We assigned a tissue 

parent type to each nucleus using the inferred tissue type maps and calculated 

aggregative statistics by tissue type and cell type of the QuPath-extracted 

nuclear morphologic and staining features, such as variance in eosin staining or 

circularity.  Together, these cell type features and tissue type features constitute 

the histopathologic embedding for each slide. To mitigate the effect of extreme 

outliers, we replaced feature values with a Z-score greater than five with the 

median of the respective feature. To select features, we again modeled each 

feature as for the radiomic features using Cox Proportional Hazards models, and 

we controlled for the relative specimen size by including the scaled number of 

foreground tiles per slide. We chose the top four prognostic features, based on 

good performance on cross validation in the discovery cohort. 
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Survival modeling 

We used linear Cox Proportional Hazards models with L2 regularization (C=0.5) 

and no L1 regularization for all multimodal models and for all unimodal models 

except for histopathologic, where we used no regularization. We chose a late 

fusion approach to increase unimodal sample sizes available for parameter 

estimation. Parameters for unimodal sub-models were estimated using all 

available unimodal data, and late fusion parameters were estimated for a 

multivariate Cox model integrating each unimodal sub-model’s score using only 

the intersection set of patients. Radiologic and histopathologic features were 

chosen using the discovery cohort. No sub-model was fit for the genomic 

modality: patients assigned to the HRP subtype were designated high risk (risk 

score=1.0), and patients assigned to the HRD subtype were designated low risk 

(risk score=0.0). Interaction terms were used between each imaging score and 

the genomic score for the GHR model. The clinical sub-model for the internal test 

set was fit on the binary variable representing whether complete gross resection 

was achieved during delayed primary surgery, whether neoadjuvant PARP 

inhibitors were administered, the scaled number of cycles of neoadjuvant 

chemotherapy administered, scaled patient age at diagnosis, and pathologic 

stage by encoding stage into supergroups III vs IV.  The clinical sub-model for 

testing was fit only on pathologic stage and patient age because the other 

variables were not available for the TCGA cases. We used Kaplan Meier analysis 

to determine whether each model stratified patients into clinically significant 

groups, examining both a three-group (highest risk 33%, middle risk 33%, lowest 
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risk 33%) and two-group (highest and lowest 50%) splitting strategy. P values for 

concordance indices were calculated using 1000-fold permutation tests. All p 

values for Kaplan-Meier analysis were calculated by comparing the highest risk 

group (as determined by the model’s inferred risk score) to the lowest risk group 

using the log-rank test, except in Figure 10g, where it was calculated by 

comparing the aggregated HRD curve to the aggregated HRP curve. P values for 

covariate significance in Cox Proportional Hazards models are reported for 

models fit with C=0.0. 
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APPENDICES 

Appendix 1. Glossary 

Artificial intelligence: Artificial intelligence (AI) is a broad field of computer 

science concerned with developing computational tools to carry out tasks 

historically requiring human-level intelligence.  

AUROC: The area under the receiver operating characteristic curve (AUROC) 

measures the ability of a binary classifier to separate the populations of interest. 

It describes the increase in true positive rate relative to the increase in false 

positive rate over the range of score thresholds chosen to separate the two 

classes. 

Autoencoder: An autoencoder is an unsupervised neural network architecture 

trained to represent data in a lower dimensional space. It is a form of lossy 

compression that can be used to uncover latent structure in the data or reduce 

computational needs before further analysis. 

Bayesian inference: Bayesian inference is a statistical method that refers to the 

application of Bayes’ Theorem in determining the updated probability of a 

hypothesis given new information. Bayesian inference allows the posterior 

probability to be calculated given the prior probability of a hypothesis and a 

likelihood function.  

Biomarker: A measurement which indicates a biological state. Cancer biomarkers 

can be categorized into diagnostic (disease progression), predictive (treatment 

response), and prognostic (survival). 
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C-Index: The concordance index, or c-Index, generalizes the AUROC to measure 

the ability of a model to separate censored data 200. As with the AUROC, the 

baseline value for a model with arbitrary predictions is 0.5, and the ceiling value 

for a perfect prediction model is 1.0. 

Client server model: The client server model describes a framework for computer 

network communications in which a computer system called a server provides 

requested services to more than one computer or program, called a client. These 

two components interact with each other through a unidirectional network 

connection using a given protocol. The client-server model has become the 

predominant framework for providing services like email and internet access to 

multiple clients. 

Convolutional neural networks: Convolutional neural networks (CNNs) are a form 

of DNNs typically used to analyze images. CNNs are named for their use of 

convolutions, a mathematical operation involving the input data and a smaller 

matrix known as a kernel. This parameter sharing reduces the number of 

parameters to be learned and encourages the learning of features which are 

invariant to image shifts. 

Computer vision: Computer vision is an interdisciplinary scientific field which 

attempts to find high-level representations from a series or individual digital 

images. Computer vision models often attempt to perform tasks normally 

performed by a human visual system. 

Counterfactual machine learning: Counterfactual ML is a set of techniques for 

interpretable ML.  For example, a counterfactual analysis could involve using a 
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model developed to predict a disease outcome using a set of measurements to 

predict scenarios where the input measurements are perturbed to study their 

causal relationship. This paradigm has also been harnessed to learn unbiased 

recommenders from logged data, such as user purchases on online 

marketplaces, despite changes in how products are recommended over time and 

the lack of a controlled experimental setup. 

Cox proportional hazards models: Cox proportional hazards (CPH) models are 

regression models used to associate censored temporal outcomes, such as time 

to survival, and potential predictor variables, such as age or cancer stage. It is 

the most common method to evaluate prognostic variables in cancer patient 

survival analyses. 

Deep Learning: Deep learning (DL) comprises a class of ML methods based on 

artificial neural networks (ANN), which use multiple non-linear layers to derive 

progressively higher-order features from data. 

Data lake: A data lake stores relational and non-relational data from a vast pool 

of raw data. The structure of the data or schema is not defined when data is 

captured. Different types of analytics on data like SQL queries, big data analytics, 

full text search, real-time analytics, and machine learning can be used to uncover 

insights. 

Data parallelism: Data parallelism is the approach of performing a computing 

task in parallel utilizing multiple processors. It focuses on distributing data across 

various cores and enabling simultaneous sub-computations. 
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DICOM headers: The Digital Imaging and Communications in Medicine (DICOM) 

was developed jointly by American College of Radiology (ACR) and National 

Electrical Manufacturers Association (NEMA) to aid the distribution and viewing 

of medical images, such as CT scans, MRIs, and ultrasound. A single DICOM file 

contains both a header that stores information about the patient, scan 

parameters as well as all of the image data that contain information in three 

dimensions.  

Deep neural networks: Deep neural networks (DNNs) are a form of deep 

learning, namely artificial neural networks with more than one hidden layer 

between the input and output layers. 

Graph convolutional networks: Graph convolutional networks (GCN) learn 

convolutions on data structures known as graphs. Graphs are defined as a set of 

objects (nodes) and their corresponding relationships (edges). 

K-means clustering: K-means clustering is an unsupervised machine learning 

algorithm which aims to partition data into k clusters. 

Layer-wise relevance propagation: Layer-wise Relevance Propagation (LRP) is 

one of the most prominent techniques in explainable machine learning. LRP 

decomposes the network's output score into the individual contributions of the 

input neurons using model parameters (i.e., weights) and neuron activations. 

Machine learning: Machine learning (ML) is a type of artificial intelligence which 

aims to discover patterns in data which are not explicitly programmed. ML 

models typically use a dataset for pattern discovery, known as “training”, to make 

predictions on unseen data, known as “inference”. 
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Natural language processing: Natural Language Processing (NLP) is a branch of 

artificial intelligence that deals with the analysis of natural language data. NLP 

techniques rely on machine learning algorithms to identify and extract the natural 

language rules to process unstructured language data. NLP adds useful numeric 

structure to the data for many downstream applications, such as speech 

recognition or text analytics.  

Recommender systems: Recommender systems aim to predict relevant items to 

users by building a model from past behavior. In precision medicine, 

recommender systems can be used to predict the preferred treatment for a 

disease based on multiple patient measurements. 

Recurrent neural networks: Recurrent neural networks (RNNs) are a form of 

DNNs optimized for time series data. An RNN analyzes each element of the input 

sequence in succession and updates its representation of the data based on 

previous elements. 

TRACERx: TRAcking Cancer Evolution through therapy Rx (TRACERx) is a 

prospective cohort study designed to integrate clinical and genomic data to 

assess intratumor heterogeneity (ITH) and its evolution from diagnosis through 

relapse in early-stage non-small cell lung cancer. 

Unsupervised learning: Unsupervised learning is a class of machine learning 

algorithms which aim to identify patterns in a dataset without assigning 

predefined labels or categories. 
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Voxel: A voxel, or “volume element” is the 3D equivalent of a picture element 

(pixel) in 3D space used by medical imaging modalities. Its dimensions are given 

by the pixel, together with the thickness of the slice.  
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Appendix 2. Deep learning architectures 

ML can be divided broadly into unsupervised learning and supervised 

learning. Unsupervised learning seeks to discover intrinsic patterns in data, 

sometimes without known labels for each data point, while supervised learning 

seeks to predict a label of interest from the input data.  DL is a subtype of ML that 

has the potential to learn more informative features than engineered features, but 

there is difficulty in model interpretability and performance is notoriously 

dependent on the amount of training data available 14. No ML algorithm is 

universally superior to another, but the data and targets to be related motivate 

the choice of model 201,202. With sufficient training data, DNNs have become a 

leading approach to capture salient patterns within data. DNNs are universal 

function approximators that learn a distributed representation of given data, with 

deep features often describing data better than competing human-defined 

features 203. Though these methods are limited by the need for large training 

datasets and the difficulty of interpreting their learned features, they are 

indispensable for discovering highly informative features in clinical datasets. 

Specific variants of DNNs exist for different data modalities. For example, 

CNNs learn sliding window-like kernels to detect textural patterns within images, 

often achieving or exceeding human performance in image classification. Some 

of the most popular variants, available off the shelf in modern DL frameworks, 

are ResNet, Inception, DenseNet, and SqueezeNet 204–207. For sequential data 

such as time series of lab values, RNNs can be the architecture of choice. The 

RNN uses each data point to update its understanding of the data, building an 



 90 

amalgamated representation that is then used to predict the outcome of interest, 

such as risk of disease recurrence. The most successful variants are LSTM and 

gated recurrent unit (GRU) networks 208,209. Though RNNs have not yet been 

widely applied in oncology, preliminary studies of RNNs for longitudinal medical 

event prediction have yielded promising results 76,77,210. For high-dimensional 

data such as transcriptomic profiles, the attention gating mechanisms inherent in 

deep highway networks 78 have helped identify salient features amidst potentially 

uninformative background 79. 
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