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ABSTRACT

The intestinal microbiota, which refers to a community of bacteria, fungi, viruses,
and protozoa that lives in the gastrointestinal tracts, plays an important role in human health
and disease. Particularly in the context of allogeneic hematopoietic cell transplantation
(allo-HCT), preclinical and clinical studies have demonstrated that the intestinal
microbiota is an important predictor of clinical outcomes. Allo-HCT is a potentially
curative treatment for a variety of hematological malignancies. However, transplant-
associated complications such as acute graft-versus-host disease (GVHD) can compromise
patient long-term survival after allo-HCT. Perturbations to the intestinal microbiota during
allo-HCT may result in a decline of biomass diversity and an increase in domination by
bacteria in the genus Enterococcus, which have been associated with an increased risk of
GVHD-related mortality. These data highlight the potential clinical importance of
preserving the intestinal microbiome to maximize patient outcomes post-allo-HCT. In
addition, mechanistic understandings of the interactions between gut microbes and the
immune system, specifically focusing on microbial modulation of antigen-presenting cells
and T cells, are crucial to develop microbiome-based therapeutics to enhance the efficacy
and alleviate the toxicity of allo-HCT.

In this thesis, we investigated the association between pharmacological exposures
and the intestinal microbiome. We developed a novel computational method, termed
PARADIGM (PARameters Associated with Dynamlcs of Gut Microbiota), and applied it
to a large data set of longitudinal fecal microbiome profiles and detailed medication-

administration records from allo-HCT patients. We observed that several non-antibiotic
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medications, including laxatives, antiemetics, and opioids, are associated with decreased
intestinal bacterial diversity and increased Enterococcus relative abundance. We integrated
drug-microbiome associations to predict clinical outcomes in two validation cohorts on the
basis of drug exposures alone, suggesting that this approach can generate biologically and
clinically relevant insights on how pharmacological exposures can perturb or preserve
microbiota composition.

Next, we turned to mouse models of allo-HCT to understand the immunological
mechanism by which Enterococcus, a genus of Gram-positive facultative bacteria,
aggravates GVHD. We observed that endogenous Enterococcus relative abundance is
associated with increased mortality and MHC-II expression by the intestinal epithelial cells
(IECs) of GVHD mice. Monocolonization of gnotobiotic mice with Enterococcus is
sufficient to induce MHC-II expression by colonic IECs at non-transplanted steady state.
These observations suggest an enhanced capacity of IECs to present antigens and activate
donor T cells, thereby initiating the inflammatory GVHD cascade. We also explored a
potential interventional approach to improve GVHD survival using a strain of Blautia
producta that confers colonization resistance against Enterococcus through lantibiotic
production. Altogether, these findings highlight the regulation of gut epithelium antigen
presentation by the intestinal microbiota as a potential therapeutic target to prevent and

ameliorate GVHD pathophysiology.
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CHAPTER ONE

INTRODUCTION*

The digestive tract harbors the largest microbial community of the mammalian
body. These microorganisms have a significant capacity to interact with and influence their
host through direct contact with both parenchymal and hematopoietic cell populations and
production of circulating metabolites. Advances in sequencing technologies in recent years
have facilitated the rapid progress in clinical associative studies. In turn, these studies have
served as valuable hypothesis-generating tools for mechanistic studies in preclinical animal

models.

* Nguyen, C.L., Docampo, M.D., van den Brink, M.R., Markey, K.A. (2021). The role of
the intestinal microbiota in allogeneic HCT: clinical associations and preclinical

mechanisms. Curr Opin Genet Dev 66, 25-35.



Allo-HCT is a curative-intent treatment for patients with hematological
malignancies. However, it is a high-risk therapy, as overall post-transplant mortality
remains in the order of 50%, most commonly due to disease progression or relapse,
infection and GVHD (D’ Souza A, 2019). Acute GVHD (aGVHD) is a systemic,
potentially fatal condition that occurs following allo-HCT, in which donor-derived T cells
recognize host antigens as foreign, resulting in cytotoxic tissue damage to predominantly
the skin, the liver and the gastrointestinal tract (Ferrara et al., 1999). This introductory
section outlines our current understanding of the role of the intestinal microbiota in allo-

HCT and GVHD from both clinical and preclinical studies (Figure 1.1).
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Figure 1.1. Intestinal microbiota dysbiosis and patient outcomes following allo-HCT.
Allo-HCT patients are exposed to various environmental conditions including cytotoxic
conditioning regimens, antibiotics, and dietary changes that might contribute to alterations
in the intestinal microbiota. These injuries to the intestinal microbiota, in turn, are
associated with transplant outcomes such as infections, immune reconstitution, GVHD and
relapse through various different immunological mechanisms involving different



hematopoietic and non-hematopoietic cell populations. Strategies to restore the intestinal
microbiota health include fecal microbiota transplantation, de-escalated antibiotic
exposures and enteral diets that promote the growth of beneficial bacteria. VRE,
vancomycin-resistant Enterococcus; MAIT, mucosal-associated invariant T cell; ILC,
innate lymphoid cell; APC, antigen-presenting cell; Th, T helper.
Environmental exposures and intestinal microbiome dynamics

Microbial diversity, a summary measurement of the richness and evenness of
unique bacterial taxa, is a useful measure of intestinal microbiota health. Several groups
have observed a decline in intestinal microbial diversity manifesting early in the course of
allo-HCT, and this injury to the intestinal microbiota is associated with lower overall
survival after allo-HCT (Peled et al., 2020; Ying Taur, 2014). Exposures to broad-spectrum
antibiotics are associated with a decrease in the intestinal microbiota biodiversity during
allo-HCT, although other factors such as dietary changes, conditioning regimens and other

medications are likely to influence the post-HCT intestinal microbiota dynamics (Table

1.1) (Stoma et al., 2020; Taur et al., 2014).

Table 1.1. Potential modulators of the intestinal microbiota during allo-HCT

Factors ‘ Impacts ‘ References
Antibiotics
Broad-spectrum antibiotics ([3- Broad-spectrum antibiotics (Shono et al., 2016;
lactam, metronidazole, target obligate anaerobes Stoma et al., 2020)
meropenem) which are typically

producers of short-chain
fatty acids in the gut and
allows the expansion of
opportunistic pathogens

Imipenem-cilastatin Imipenem-cilastatin (Shono et al.,2016)
treatment in mice leads to
expansion of the mucus-
degrading bacteria
Akkermansia




Fluoroquinolones

Prophylactic
fluoroquinolones lead to a
decreased risk of intestinal
domination by Gram-
negative bacteria

(Taur et al., 2012)

Transplant-associated factors

Conditioning chemotherapy:
carmustine, etoposide, aracytin
and melphalan

After conditioning, the
intestinal microbiota
diversity declined,
accompanied by a decrease
in Faecalibacterium
abundance and an increase
in Escherichia abundance

(Montassier et al.,
2014)

Conditioning intensity

Patients receiving non-
myeloablative conditioning
regimens have higher
intestinal diversity at
engraftment time compared
to patients receiving
myeloablative conditioning
regimens

(Taur et al., 2014)

Total body radiation

Total body radiation in mice
leads to reduction in the
intestinal microbiota
diversity and a shift in the
overall microbial
compositions compared to
controls

(Zhao et al., 2019)

Immuno-suppressive
medications (methotrexate,
cyclosporine A)

In a high-throughput in vitro
drug screen, some human-
target drugs show
antibacterial activities to
some commensal bacterial
strains often found in the
human gut

(Maier et al., 2018)

Diet

Total parenteral nutrition (TPN)

Use of long-term TPN (=10
days) is associated with a
loss of Blautia

(Jeng et al., 2015)

Western diet/Fiber-free diet

Mice fed on a prolonged
fiber-free diet experience
decreased intestinal
microbiota diversity, a
decrease in Bifidobacteria
and an increase in mucus-
degrading Akkermansia

(Desai et al., 2016;
Schroeder et al., 2018)




Dietary fiber inulin Inulin supplementation (Zou et al., 2018)
supplementation restores mucus functions in
mice fed on a Western diet
and restore microbiota loads

High-fiber (pectin, cellulose) High-fiber diets containing (Lewis et al., 2019)
diet cellulose and pectin lead to
increased cecal and
systemic levels of short-
chain fatty acids such as
acetate, propionate and

butyrate
Host genetics
rs4988235 SNP conferring C/C SNP is associated with (Stein-Thoeringer et
lactase expression and lactose non-absorbers of lactose and al., 2019)
intolerance in European increased risk of
populations Enterococcus domination

after allo-HCT
Paneth cell a-defensin-5 gene rs4415345G is associated (Rashidi et al., 2020)
SNPs with a higher abundance of

a butyrogenic obligate
anaerobe, Odoribacter
splanchnicus, which is
associated with a reduced
risk of acute GHVD

NLRP6 deficiency NLRP6 deficiency in the (Levy etal., 2015)
intestinal epithelial cells
leads downregulation of IL-
18 and alters the AMP
production to a profile that
favors intestinal microbiota
dysbiosis

One of the first indications that the intestinal microbiota could play a role in
transplant outcome came from the observation that transplanted germ-free mice had
improved survival compared to specific-pathogen free (SPF) mice with intact microbiota
(van Bekkum et al., 1974). Since then, clinical strategies aimed at “decontaminating” the
gut have been an area of active investigation, although these clinical trials have produced
conflicting results, suggesting the need for mechanistic studies using preclinical models to

fully identify important taxonomic groups and their interactions with the host during allo-




HCT (Fredricks, 2019). Several clinical studies have reported associations between
specific features of the intestinal microbiota and transplant outcomes, some favorable and
some unfavorable (Golob et al., 2017; Holler et al., 2014; Jenq et al., 2015; Peled et al.,
2017; Peled et al., 2020; Simms-Waldrip et al., 2017; Taur et al., 2012). Many currently
active clinical trials employ therapeutic strategies that aim to eliminate microbiome
features associated with adverse transplant outcomes, while preserving features associated

with desirable outcomes (Taur et al., 2018).

Interactions between the intestinal microbiome and the mammalian host

The mechanisms by which the gut commensals influence local and systemic
immunity include both direct interactions with immune cells, and indirect interactions via
secreted microbial metabolites, such as short-chain fatty acids (SCFAs), secondary bile
acids and other small molecules (Belkaid and Harrison, 2017) (Figure 1.2).

Short-chain fatty acids (SCFAs), such as butyrate, propionate and acetate, are
produced as a result of the fermentation of dietary fiber by the intestinal microbiota.
Butyrate (and to a lesser extent propionate) acts as a histone deacetylase inhibitor to
promote the differentiation of colonic FoxP3* regulatory T cells (Tregs) in mice (Arpaia et
al., 2013; Furusawa et al., 2013). Propionate and acetate also induce anti-inflammatory
responses and improve intestinal epithelial barrier integrity (Fukuda et al.,2011; Trompette
etal.,2014). Secondary bile acids, which are produced as a result of microbial metabolism
of primary bile acids excreted by the liver, can also induce differentiation of peripheral
Tregs (Campbell et al., 2020; Hang et al., 2019). Microbe-derived indole derivatives from

tryptophan metabolism confer a protective effect against epithelial barrier damage after



total body irradiation (TBI) and in a chemically induced colitis model (Shimada et al.,
2013; Swimm et al., 2018). Moreover, the intestinal microbiota also produces many
metabolites that act as ligands for the aryl hydrocarbon receptors (AhR), which are
expressed by many cell types, and can play an important role in the induction and
development of immune-mediated diseases (Lee et al., 2011; Manfredo Vieira et al., 2018;
Zelante et al., 2013) (Figure 1.2).

The intestinal microbiota contributes to the maintenance and degradation of the
mucus layer in the gastrointestinal tract, which forms a protective barrier between microbes
and IECs. However, the outgrowth of bacteria with mucus-degrading activities can
potentially lead to impaired intestinal barrier integrity in mice (Desai et al., 2016;
Schroeder et al., 2018; Sovran et al., 2019). In addition, the intestinal microbiota also
modulates antimicrobial peptide (AMP) production by IECs, such that disruption of the
endogenous microbiota can affect AMP expression to favor the expansion of pathogenic
bacteria in mice (Levy et al., 2015) (Figure 1.2). Alternatively, host genetics can also
modulate the intestinal microbiota compositions: NLRP6 deficiency in mice leads to
aberrant AMP production that favors intestinal microbiota dysbiosis (Table 1.1) (Levy et
al., 2015). Gut commensals can also directly induce the expression of critical innate
immune effectors and AMPs to maintain intestinal mucosal integrity and prevent

colonization by opportunistic pathogens (Cash et al., 2006; Fan et al., 2015).
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Figure 1.2. Interactions between the intestinal microbiota and the mammalian host.
Within the gut lumen and intestinal epithelial environment, the intestinal microbiota
promotes mucus production from goblet cells, as well as AMP production from Paneth
cells to maintain gut homeostasis. AMPs, in turn, regulate the intestinal microbial
compositions. Signals from the intestinal microbiota also activate APCs such as
macrophages and dendritic cells, leading to downstream production of cytokines that
promote context-specific inflammation or tolerance. Dendritic cells can also migrate to
lymphoid organs to present antigens and activate T cells, and microbially derived
metabolites such as SCFAs and secondary bile acids could mediate this process by
influencing T cell activation and differentiation. Other microbially derived products such
as AhR ligands, bacterial DNA and bacterial components can also translocate across the
intestinal epithelial barrier into systemic circulation, reaching distal organs such as the
liver, the lung and the bone marrow and modulate the generation, activation and
differentiation of different cell subsets at these sites. SCFA, short-chain fatty acid; AhR,
aryl-hydrocarbon receptor; AMP, anti-microbial peptide; IL, interleukin.



Intestinal microbiota and graft-versus-host disease (GVHD)

Several studies have reported that increased microbial diversity during the peri-
neutrophil engraftment period is associated with a decreased risk of GVHD-related
mortality (Golob et al.,2017; Holler et al.,2014; Peled et al., 2020; Simms-Waldrip et al.,
2017; Taur et al., 2014). The intestinal microbial diversity during allo-HCT is most
commonly determined through 16S ribosomal RNA sequencing of fecal samples that
identify unique bacterial taxa and their relative abundance. Indoxyl sulfate, a product of
the tryptophan metabolism by the intestinal microbiota, is a potential biomarker of
intestinal biodiversity which can be measured in urine and has been studied in a pilot study
of 31 allo-HCT patients (Holler et al., 2014). Decreased concentrations of these indole-
derived metabolites were observed in allo-HCT patients with active GVHD compared to
patients without GVHD (Michonneau et al., 2019).

Several specific members of the intestinal microbial community have been
associated with either increased or decreased GVHD risks. SCFA-producing members of
the families Lachnospiraceae and Ruminococcaceae, such as Blautia, Clostridium and
Lachnoclostridium, are associated with protection against acute GVHD-related mortality
and chronic GVHD development (Jenq et al., 2015; Markey et al., 2020). The absence of
these beneficial bacteria, attributed to broad-spectrum antibiotic exposures, is correlated
with an increased risk of GVHD development, specifically of the gastrointestinal tract (Han
et al., 2018; Lee et al., 2019b). High relative abundance of Lachnospiraceae and
Ruminococcaceae has also been correlated with an increased ratio of Treg/Th17 cells,
potentially maintaining the balance of anti-inflammatory and pro-inflammatory responses

during GVHD (Han et al.,2018; Han et al., 2019).



In addition, some bacterial taxa have been associated with increased GVHD
severity. Enterococcus domination post-allo-HCT is associated with an increased risk of
severe GVHD and GVHD-related mortality in allo-HCT patients and in mice (Holler et al.,
2014; Stein-Thoeringer et al., 2019). Furthermore, Enterococcus requires lactose as a
source of nutrition for maximal growth, and patients with the single-nucleotide
polymorphism associated with lactose intolerance (thus retention of lactose in the gut
lumen) also saw an increased risk of Enterococcus domination following allo-HCT (Stein-
Thoeringer et al., 2019). Akkermansia expansion, which is associated with exposures to
piperacillin/tazobactam and imipenem during transplant, is also correlated with an
increased risk of GVHD-related mortality in both humans and mice (Desai et al., 2016;
Shono et al., 2016). Moreover, this genus has been associated with an increased risk of
chronic GVHD (Markey et al., 2020).

The intestinal microbiota potentially contributes to the development of GVHD
through multiple mechanisms. Tissue damage caused by conditioning regimens allow
translocation of pathogen-associated molecular patterns such as lipopolysaccharide (LPS)
across the intestinal barrier, which can activate the innate immune system and is thought
to be key for initiation of GVHD (Cooke et al., 2001; Zhao et al., 2013). Exposure to
imipenem leads to decreased gut barrier integrity, resulting in more severe GVHD in mice,
potentially due to the resultant increase in relative abundance of Akkermansia (Shono et
al., 2016). Treatment with indole-3-carboxaldehyde, an indole derivative, limits gut
epithelial damage and prevents the initial cascade of inflammatory responses triggered by
TBI in a mouse model of GVHD (Swimm et al., 2018). Other indole derivatives can also

activate aryl hydrocarbon receptor (AhR) on innate lymphoid cells (ILCs) and induce IL-
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22 expression, which promotes epithelial regeneration after radiation and improves GVHD
survival in mice (Lee ef al., 2011; Lindemans et al., 2015; Zelante et al., 2013).

In addition, propionate, and to a lesser extent butyrate, has been shown to promote
the activation of the NLPR3 inflammasome in non-hematopoietic cells to ameliorate
GVHD (Fujiwara et al., 2018). Furthermore, oral dosing of mice with 17 butyrate-
producing Clostridium strains after allo-HCT restores the intestinal butyrate levels and
improves intestinal epithelial integrity, thereby reducing GVHD severity (Mathewson et
al., 2016). Oral administration of butyrate in a mouse model of allo-HCT also mitigates
GVHD through enhancing epithelial cell barrier functions, reducing apoptosis, and
increasing expression of tight junction proteins (Mathewson et al., 2016).

Bacteria signal through toll-like receptors (TLRs) to recruit neutrophils into the
ileum after allo-HCT, where they generate reactive oxygen species that further amplify
radiation-induced damages in the gastrointestinal tract of recipient mice (Schwab et al.,
2014). Neutrophil migration from the ileum to the mesenteric lymph nodes also depends
on the intestinal microbiota, promoting alloantigen presentation to donor T cells
(Hulsdunker et al., 2018). The intestinal microbiota also promotes MHC-II expression on
IECs in a MyD88/TRIF-dependent manner, following the cues of inflammatory cytokines
IFNy and IL-12 (Koyama et al., 2019). In addition, professional donor-derived APCs such
as CD103+ DCs migrate from the lamina propria to the mesenteric lymph nodes, where
they promote the activation and proliferation of donor T cells through antigen presentation,
and release inflammatory cytokines IL-6 and IL-12 in a MyD88/TRIF-dependent manner,
suggesting the involvement of the intestinal microbiota in the activation and migration of

APCs in GVHD pathophysiology (Koyama et al., 2015). Pre-transplant Enterococcus
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colonization led to increased GVHD severity and mortality in a germ-free mouse model of
GVHD. Feeding experimental mice a lactose-free diet prevented Enterococcus growth
while preserving other members of the gut commensals, leading to improvement in GVHD-
related survival in a mouse model of allo-HCT (Stein-Thoeringer et al.,2019). The specific
mechanism by which Enterococcus modulates immune function during GVHD remains
unclear and requires further investigation.

Not unsurprisingly, the influence of the complex intestinal bacterial community on
GVHD outcome is complex, with some bacterial taxa appearing to be protective and others
pathogenic. This highlights the need for novel therapeutic approaches to enhance the

protective taxa while eliminating or decreasing the pathogenic taxa.

Introduction to the thesis

Clinical investigations have described relationships between the intestinal
microbiota during allo-HCT and GVHD. Preclinical studies have complemented these
clinical findings by elucidating some key mechanisms, specifically focusing on APC
activation and antigen-presenting functions, effector functions of T cells and key mediating
cytokines such as IL-6, IL-12 and IFNy. In addition, studies into the potential modulators
of the intestinal microbiota, including pharmacological exposures, dietary intakes, and host
genetics, have provided additional insights regarding strategies to prevent and reverse
microbiome perturbations. However, knowledge gaps persist that could potentially limit
the clinical application of these findings.

In my thesis, I have combined computational analysis of human data with

preclinical mechanistic studies using mouse models to further elucidate the interactions
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between the environment, the intestinal microbiota, and the immune system during allo-
HCT. Chapter two expands on our understanding of how non-antibiotic drug exposures are
associated with the intestinal microbiome dynamics through the development of a novel
computational method. Chapter three describes a mechanism by which a specific bacteria
genus, Enterococcus, could aggravate GVHD through its influence on the intestinal
epithelium antigen presentation. Altogether, these findings demonstrate a multi-pronged
approach to preserve the health of the intestinal microbiota and its interaction with host

immunity to maximize cancer treatment efficacy and safety.
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CHAPTER TWO
HIGH-RESOLUTION ANALYSES OF ASSOCIATIONS BETWEEN
MEDICATIONS, MICROBIOME AND MORTALITY IN

CANCER PATIENTS*

Introduction

Gut microbiota perturbations have been associated with various diseases and
frequently linked to environmental exposures including antibiotic use and nutritional
deficiencies (Johnson et al., 2019; Korpela et al., 2016). Non-antibiotic drugs can also
contribute to intestinal microbiota changes (Maier et al., 2018), but their effects in humans
are less well-understood and challenging to study due to a lack of reliable drug exposure
data (e.g. recall-based surveys of habitual use of chronic medications) (Korpela ez al.,2016;
Vieira-Silva et al., 2020), and the absence of densely-collected longitudinal fecal samples
(Falony et al., 2016; Vich Vila et al., 2020). Moreover, several pioneering studies of
medication exposures and microbiome composition focused on volunteers at relatively

healthy steady states (Falony et al., 2016; Vieira-Silva et al., 2020).

* Nguyen, C.L., Markey, K.A., Miltiadous, O., Dai, A., Waters, N., Sadeghi, K., et al.
(2023). High-resolution analyses of associations between medications, microbiome, and

mortality in cancer patients. Cell 186(12): 2705-2718 el7.
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Patients undergoing allo-HCT exhibit major perturbations of fecal microbiome
composition that have been associated with increased risk of mortality (Holler et al., 2014;
Peled et al., 2020; Stein-Thoeringer et al., 2019). These patients are exposed to a variety
of drugs upon prolonged hospitalizations, during which a wealth of data is routinely
gathered as part of their electronic health records. As such, this patient population, from
which we have assembled a large bank of fecal specimens, presents a unique opportunity
to investigate intestinal microbial responses to drug exposures in vivo.

Previous studies in these patients have largely focused on the effect of antibiotics
on the intestinal microbiota (Morjaria et al., 2019; Peled ef al., 2020; Taur et al., 2012), yet
many non-antibiotic drugs routinely administered during allo-HCT have demonstrated
anti-bacterial activities in virro (Maier et al., 2018). Furthermore, the microbiome
perturbations in allo-HCT patients are observed prior to broad-spectrum antibiotic
administration, suggesting a potential influence of transplant-associated medications
(Shouval et al., 2022). Here, we inferred relationships between medications, microbiome
composition, and clinical outcomes by developing, applying, and validating a new
computational method named PARADIGM (PARameters Associated with Dynamlcs of
Gut Microbiota) to a large dataset of 16S rRNA and shotgun metagenomic sequencing

profiles of serially collected fecal samples from allo-HCT patients.

Results
Clustering captures the intestinal microbiome temporal dynamics during allo-HCT
The dataset consists of 9,167 fecal samples from 1,201 allo-HCT patients at

Memorial Sloan Kettering Cancer Center (MSKCC; Figure 2.1 and Table 2.1). We
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divided the MSKCC cohort into discovery (7,454 samples; 778 patients) and validation

(1,713 samples; 423 patients) cohorts (Figure 2.1 and Table 2.2). We computed the

compositional differences among discovery-cohort samples using Bray-Curtis B-diversity

dissimilarity indices at the genus level for 16S rRNA-sequenced samples, or at the species

level for shotgun metagenomic sequenced samples and visualized the high-dimensional

stool composition data via t-stochastic neighbor embedding (tSNE; Figures 2.2A-B).

Table 2.1. Patient and sample cohorts from MSKCC and Duke cohorts.

drug exposures data

MSKCC MSKCC Duke

Discovery Validation Validation
Number of patients 778 423 142
Number of patients with 778 405 138
16S-sequenced samples
Number of 16S-sequenced samples 7454 1,713 473
Number of 16S-sequenced samples per 73 -14) 3(2-5) 2(1-95)
patient, median (first-third quartile)
Number of patients with at least one 454 - -
pair of daily 16S-sequenced samples
between day -14 and 14 relative to
HCT
Number of pairs of daily 16S- 2,039 - -
sequenced samples between day -14
and 14 relative to HCT
Number of pairs of daily 16S- 3(1-17) - -
sequenced samples per patient, median
(first-third quartile)
Number of patients with shotgun 340 142 -
metagenomic samples
Number of shotgun metagenomic 980 200 -
samples
Number of patients with 775 423 142
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MSKCC cohort:
Patients receiving first allo-HCT
between 2009 - 2018

Duke cohort:
Patients receiving first allo-HCT
between 2009 - 2018

Exclude: 142 patients
1. Patients without any daily collected sample pair

between day -14 to 14 relative to HCT

1,201 patients
9,167 samples

2. Patients who died before day 14 relative to HCT l
3. Patients in the treatment arm of FMT trial
4. Patients received PBSC T-cell depleted graft

o|[MSKCC validation cohort:|| Duke validation cohort:
423 patients 142 patients

Discovery cohort
(168 amplicon sequencing):
778 patients
7,454 samples

k-means clustering
— classification

Prediction of microbiome changes
and clinical outcomes
based solely on drug exposure profiles

Shotgun metagenomic cohort:
340 patients
980 samples

Patients with at least
one daily sample pair collected
between day -14 to 14
relative to HCT
454 patients
2,980 samples

PARADIGM input:
drug exposures
— associated with
cluster transitions

Figure 2.1. Patient selection criteria for the discovery and validation cohorts. The
MSKCC discovery cohort was included in the clustering of sequencing data and
PARADIGM algorithm training set. The validation cohorts were included in the analysis
of clinical outcomes. FMT, fecal microbiota transplantation; PBSC, peripheral blood stem
cell.

We observed patterns of microbiome injuries, including loss of alpha-diversity and

enrichment of potentially pathogenic bacteria such as Enterococcus and
Enterobacteriaceae (Figures 2.2A-B). As has been well-described in allo-HCT patients,
these domination events can be profound, to the point of a single taxon comprising >90%
of the relative abundance of a fecal sample (Peled et al., 2020; Taur et al., 2012), and are
predictive of specific deleterious clinical outcomes such as bloodstream infections, GVHD
and mortality (Stein-Thoeringer et al.,2019; Stoma et al., 2021; Taur et al.,2012). A subset

of 980 samples with shotgun metagenomic profiling also showed similar patterns of

microbiome injuries during allo-HCT (Figure 2.2B). Specifically, we observed a cluster
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of samples whose most abundant organisms were various strict anaerobes such as
Ruminococcus gnavus or Erysipelatoclostridium ramosum, as well as distinct clusters
enriched for potentially pathogenic facultative species including Enterococcus faecium,
Klebsiella pneumoniae, and Escherichia coli.
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Figure 2.2. The intestinal microbiota of allo-HCT patients is highly dynamic. A, B,
Compositional space of the intestinal microbiota in the MSKCC discovery cohort
visualized by tSNE projection. Each point represents a sample, colored according to the
taxon of highest relative abundance based on (A) 16S rRNA (7,454 samples; 778 patients)
or (B) shotgun metagenomic sequencing profiles (980 samples; 340 patients) (p: phylum;
f: family; o: order; g: genus). Samples were collected between day -30 and 2,205 relative
to HCT. ¢, Ten clusters of intestinal microbiome compositions are assigned by k-means
unsupervised clustering. D, E, Relative abundance of the top 20 most observed (D) genera
in the 16S rRNA profiles and (E) species in the shotgun metagenomic profiles in the

18



MSKCC discovery cohort. Each column is one sample, each row is one genus or species.
Rows are clustered by hierarchical clustering. F, Cluster alpha-diversity (reciprocal
Simpson index). The horizontal dashed line represents the median alpha-diversity of the
MSKCC discovery cohort. G, Cluster relative frequency over time relative to HCT. H,
Network map depicting the transitions among the ten intestinal microbiota clusters over
time (5,482 pairs of subsequent samples; 677 patients; collection between day -16 and
1,084 relative to HCT). The thickness of the line is proportional to transition frequency,
while the node size is proportional to the number of samples per cluster.

The reproducibly observed microbiome perturbations in allo-HCT patients offer a
unique opportunity to understand dynamics and evolution of relatively distinct perturbed
microbiome compositions or states under environmental exposures, in contrast to the more
fluid and non-discrete microbiota in healthy populations (Costea et al., 2018; DiGiulio et
al., 2015; Human Microbiome Project, 2012; Munoz et al., 2021; Stewart et al., 2018).
Given the mathematical challenge of reducing dimensionality complexity while preserving
bacterial community structure, we performed unsupervised k-means clustering on the
Bray-Curtis B-diversity matrix of samples in the discovery set and identified ten distinct
microbiota clusters (Figure 2.2C). We also explored other clustering approaches including
hierarchical clustering (Figures 2.3A-C) and Dirichlet Multinomial Mixtures (Figures

2.3D-F) (Holmes et al., 2012). Since k-means clustering partitioned samples more evenly

(Figure 2.3G), we utilized k-means clusters for our subsequent analyses.
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Figure 2.3. Clusters of intestinal microbiota during allo-HCT were identified by other
unsupervised clustering methods. A, D, Compositional space of the intestinal microbiota
visualized by tSNE projection in the MSKCC discovery cohort. Each dot represents a
sample, colored according to clusters assigned by (A) hierarchical clustering or (D)
Dirichlet Multinomial Mixture (DMM) model. B, E, Alpha-diversity per cluster identified
by (B) hierarchical clustering or (E) DMM. The horizontal dashed line represents the
median alpha-diversity of samples in the MSKCC discovery cohort. C, F, Compositional
characteristics per cluster identified by (C) hierarchical clustering or (F) DMM. Samples
in which the relative abundance of the most common taxon is > 30% are color-coded by

the most common taxon. Non-dominated samples are colored in white. (p: phylum; f:
family; o: order; g: genus). G, Distribution of samples across 10 clusters identified by three
unsupervised clustering methods. H, Optimal number of k-means clusters was estimated
from the curve of within-cluster sum of square distances from each point to its cluster
centroid. I, Optimal number of clusters identified by DMM was estimated by the smallest
Laplace approximation metric. J, Correlation between cluster stability and alpha-diversity.
Cluster stability was measured by self-transition probability. Alpha-diversity is defined as
the cluster median reciprocal Simpson diversity. K, Co-exclusionary and inclusionary
relationships associated with the stability of Enterococcus-high cluster 10.
Lachnospiraceae and Clostridiales, which constitute major commensal taxa
present in the healthy human gut, were commonly observed in clusters 1-3, which were
also characterized by high alpha-diversity (when compared to the median diversity of the
discovery cohort) (Figures 2.2D-F) (Qin et al., 2010). Clusters 7-10 represented low-
diversity “dysbiotic” states (Figures 2.2D-F). Intestinal domination by a single bacterial
organism (= 30% relative abundance) is a hallmark of severe intestinal dysbiosis (Taur et
al., 2012). Lactobacillus, Proteobacteria and Streptococcus were highly enriched in
samples in clusters 5, 8 and 9. Clusters 7 and 10 consisted of Enterococcus-dominated
samples, with cluster 10 specifically enriched for E. faecium (Figure 2.2D-E). These
compositional clusters also captured the temporal dynamics of the intestinal microbiota
during allo-HCT: high-diversity clusters 1-3 were common pre-allo-HCT, while low-

diversity states, particularly clusters 7-10, were more prevalent after allo-HCT (Figure

2.2G).
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Table 2.2. Patient characteristics from MSKCC and Duke cohorts. IQR, interquartile
range; sd, standard deviation; AML, acute myeloid leukemia; BM, bone marrow; PBSC,
peripheral blood stem cell; PBSC T-cell depletion was performed by ex vivo CD34-
selection of the graft.

MSKCC MSKCC Duke
Discovery Validation Validation

Number of patients 778 423 142
Mean age at HCT, year (sd) 55 (13) 53 (13) 51 (13)
Year of HCT (%)

2009 - 2015 374 (48) 331 (78) 33 (23)

2016 - 2019 404 (52) 92 (22) 109 (77)
Sex (%)

Female 312 (40) 166 (39) 43 (30)

Male 466 (60) 257 (61) 99 (70)
Disease (%)

AML 278 (36) 144 (34) 42 (30)

Others 500 (64) 279 (66) 100 (70)
Conditioning intensity (%)

Nonmyeloablative 46 (6) 89 (21) 13 (9)

Reduced intensity 171 (22) 245 (58) 64)

Ablative 561 (72) 89 (21) 123 (87)
Median follow-up, months 46 49 11
Graft type (%)

Cord blood 62 (8) 131 (31) 19 (13)

BM unmodified 78 (10) 30 (7) 13 (9)

PBSC unmodified 176 (23) 262 (62) 110 (78)

PBSC T-cell depleted 462 (59) - -

This classification of samples into discrete microbiome states enabled us to model
the complex changes in microbial communities as cluster transition probabilities. We
observed the transition frequencies of consecutive samples collected at most 7 days apart
between day -16 and day 1,084 relative to HCT. Patients remained in the same cluster over
two consecutive samples in 2,987 (54.5%) pairs of samples (Figure 2.2H). Patients were
less likely to remain in high-diversity clusters 1-3 among consecutive samples (mean
frequency 46.4%; SD 5.0%), compared with dominated clusters such as 8-10 which are

highly stable (mean frequency 65.1%; SD 14.1%). We observed a significant and negative
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association between cluster alpha-diversity and self-transition probabilities, suggesting that
high-diversity clusters are less stable compared to low-diversity clusters (Figure 2.2]J).
Transitions from one cluster to another were observed in 2,495 pairs of samples (45.5%).
We observed a particularly strong stability of the Enterococcus-high cluster 10,
which is of interest due to the association of this genus with poor clinical outcomes
following HCT (Holler et al., 2014; Stein-Thoeringer et al., 2019; Taur et al., 2012). To
investigate potential drivers of Enterococcus domination stability, we developed a logistic
regression model with lasso penalty analyzing cluster 10 stability as a function of
parameters including antibiotic exposure, time of sample collection, alpha-diversity, and
relative abundance of top 20 most abundant genera in cluster 10. We applied this model to
a dataset of daily sample pairs collected between day -14 and 100 relative to HCT and
found that higher relative abundances of Staphylococcus and Erysipelatoclostridium were
associated with decreased cluster 10 stability (Figure 2.3K). On the other hand, higher
relative abundance of Enterococcus was associated with increased cluster 10 stability,
indicating that Enterococcus domination leads to a positive feedback loop that support its
own stability. As expected, antibiotic exposure was associated with increased cluster 10
stability. Here, using real-world data, we showed that both environmental factors such as
medication exposures, and ecological relationships between bacteria, contribute to

microbiota community stability, specifically regarding Enterococcus domination.
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Non-antibiotic exposures during allo-HCT are associated with changes in the intestinal
microbiome compositions

To investigate the associations between drug exposures and microbiome cluster
transitions, we developed PARADIGM, a computational tool based on a logistic regression
model integrated with first-order Markov-chain transitions. Markov-chain models have
been utilized to investigate microbiome dynamics previously, but the associations between
Markov transitions and environmental factors have not been extensively studied (Brooks
et al., 2017; Cerdo et al., 2022; DiGiulio ef al., 2015; Jin et al., 2017; Lee et al., 2019a).
The model takes advantage of the high resolution daily 16S rRNA-sequenced fecal samples
(2,039 sample pairs; 454 patients; Table 2.3) to infer associations between drug exposures
and cluster transitions. For each cluster, we defined two transition types: self transitions
(patients stay in the same cluster) and attractor transitions (patients move to a given
cluster). The naming of “self transition” and “attractor transition” is motivated due to the
intuitive connotation they convey about our cluster dynamics. Self transition describes the
probability of a given cluster preserving its current state, and attractor transition describes
the probability of a given cluster receiving transitions from any clusters other than itself,

in a pair of daily collected samples (Figure 2.4A).
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PARADIGM algorithm schematic
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Figure 2.4. PARADIGM predicts changes in microbiome features such as genus
relative abundance and alpha-diversity following drug exposures. A, Schematic
representation of PARADIGM which takes advantage of daily sampling 16S rRNA-
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sequenced samples and cluster transitions to infer how drug exposures are associated with
microbial dynamics. Bacteria response scores translate drug-cluster associations into drug-
genus associations. B, Pearson’s correlation between Enterococcus response scores and
alpha-diversity response scores. Each point represents an individual drug. C, Pearson’s
correlation between bacteria response scores and measurements of in vitro inhibition
(Maier et al., 2018). Each point represents the association between a unique drug-species
pair. D, Predicted bacteria response scores by in vitro inhibition. Two-sided Wilcoxon’s
rank-sum test.

Table 2.3. Patient characteristics of the MSKCC sub-cohort included in PARADIGM
training set of daily collected fecal samples. IQR, interquartile range; sd, standard
deviation; AML, acute myeloid leukemia; BM, bone marrow; PBSC, peripheral blood stem
cell; PBSC T-cell depletion was performed by ex vivo CD34-selection of the graft.

MSKCC
Number of patients 454
Number of daily sample pairs 2,039
Number of pairs of samples per 3(1-7)
patient, median (first-third quartile)
Mean age at HCT, year (sd) 56 (13)
Sex (%)
Female 183 (40)
Male 271 (60)
Disease (%)
AML 159 (35)
Others 295 (65)
Conditioning intensity (%)
Nonmyeloablative 40 (9)
Reduced intensity 162 (36)
Ablative 252 (55)
Graft type (%)
Cord blood 56 (12)
BM unmodified 76 (17)
PBSC unmodified 166 (37)
PBSC T-cell depleted 156 (34)

We focused on 62 drugs to which patients in the discovery set were commonly
exposed. To determine the contribution of each drug to the likelihood of self and attractor
transitions, we utilized elastic-net logistic regression, where the resulting coefficients for
each drug indicate both the direction and magnitude of the association between the drug

and daily cluster transitions. Microbiome injury patterns in allo-HCT are strongly linked
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with time relative to allo-HCT (Peled et al., 2020; Taur et al., 2018; Taur et al., 2012).
Therefore, we included time as a co-variable to address the temporal patterns of drug
exposures and attenuate time-dependent variability in microbiome cluster dynamics
(Figure 2.5). To account for unequal patient contribution of data points to the training set
(Table 2.3), we pre-specified the 10-fold cross-validation partitions in our training cohort
such that samples of the same patient are always in the same partition.

We identified several associations between drug exposures and cluster self and
attractor transitions (Figure 2.6). As expected, several antibiotics used to empirically treat
neutropenic fever were associated with profound changes in the intestinal microbiota.
Exposures to meropenem (2.5-fold increase), and metronidazole (3.4-fold increase) were
associated with increased transitions to the Enterococcus-high cluster 10, consistent with
previous reports (Soares et al., 2017; Taur et al., 2012). Several non-antibiotic medications
were also associated with specific cluster dynamics. Exposure to aprepitant, a tachykinin
receptor antagonist used for chemotherapy-induced nausea, was associated with a 2.8-fold
increase in transition frequency to the Enterococcus-high cluster 10 (Figure 2.6).
Similarly, exposure to the opioid analgesic fentanyl was associated with a 1.9-fold increase
in transition frequency to the Enterococcus-high cluster 10. Other medications such as
labetalol and insulin, which are not known to target intestinal bacteria, were associated
with decreased stability of the Enterococcus-high cluster 10 (Figure 2.6). Altogether,
PARADIGM identified the association between several non-antibiotic drugs and changes

in the intestinal microbiome.
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Figure 2.5. Time courses of drug exposures between day -14 to 14 relative to allo-
HCT. Red dashed lines indicate day 0 which is the day of stem cell infusion.

Previous studies have identified specific bacteria that have either beneficial or
deleterious associations with clinical outcomes following allo-HCT(Golob et al., 2017,
Jenq et al., 2015; Simms-Waldrip et al., 2017). As such, we translated drug-cluster

associations into drug-taxon associations by calculating bacteria response scores to identify
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associations between drug exposure and changes in specific taxonomic groups of clinical
interests (Figure 2.7). In our model, bacteria response scores estimate the association
between a drug exposure and a microbiome feature, namely relative abundance of taxa or
alpha diversity, where positive scores indicate association with higher relative abundances
or diversity values (Figure 2.4A). We focused on four microbiome features previously
associated with allo-HCT patient outcomes, namely relative abundance of Enterococcus,
Blautia, Erysipelatoclostridium, and alpha-diversity (Golob et al., 2017; Holler et al.,
2014; Jenq et al., 2015; Peled et al., 2020; Stein-Thoeringer et al., 2019).

Most antibiotics used in this cohort as empiric or pathogen-directed treatments
(metronidazole, meropenem, aztreonam, and cefepime) were associated with increased
relative abundance of Enterococcus as well as decreased alpha-diversity, consistent with
previous studies (Figures 2.7) (Lee et al., 2019b; Shono et al., 2016; Taur et al., 2012).
Our observation that cefepime exposure was associated with Enterococcus expansion is
consistent with our previous report (Shono et al., 2016), and may be partly explained by
the poor activity of cefepime and other cephalosporins against enterococci. Piperacillin-
tazobactam exposures were associated with decreased Enterococcus relative abundance, as
well as decreased relative abundance of intestinal commensals such as Blautia and
Erysipelatoclostridium to a greater extent compared to other empiric antibiotics (Figure
2.7). We also observed that drugs most strongly associated with Enterococcus expansion
were the non-antibiotic drugs including opioids such as fentanyl and hydromorphone,

hormones such as levothyroxine, and anticonvulsants such as gabapentin (Figure 2.7).
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Figure 2.6. Associations between drug exposures and cluster self and attractor
transitions. Self coefficients indicate whether drug exposure increases (positive
coefficients, red shades) or decreases (negative coefficients, blue shades) the log-odds of
cluster stability. Attractor coefficients indicate whether drug exposure increases (positive
coefficients, red shades) or decreases (negative coefficients, blue shades) the log-odds of
transition to a given cluster. #pts indicates the number of patients exposed to each drug,
#dps indicates the number of sample pairs collected on the day of each drug exposure.
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Figure 2.7. Bacteria response scores for four microbiome features of interest. Bacteria
response scores predict the association between a given drug exposure and changes in
genus relative abundance or alpha-diversity. Positive response scores (red shades) indicate
that drug exposures are associated with increased genus relative abundance or alpha-
diversity. Negative response scores (blue shades) indicate that drug exposures are
associated with decreased genus relative abundance or alpha-diversity.

Opioid exposures have been previously associated with decreased relative
abundance of Blautia in ICU patients who did not receive antibiotics (Pettigrew et al.,
2019), an observation we also reported here for fentanyl and hydromorphone (Figure 2.6).
In contrast, laxatives such as docusate and polyethylene glycol were strongly associated
with decreased Enterococcus relative abundance (Figure 2.7). Previous experimental
studies have demonstrated that polyethylene glycol induces global changes in bacterial
compositions in mice, either through modulation of intestinal osmolality or through direct
anti-bacterial inhibition (Nalawade et al., 2015; Tropini et al., 2018). Overall, drug

exposures associated with alpha-diversity preservation were correlated with decreased

Enterococcus expansion, and vice versa (Figure 2.4B).

Validation of in silico findings from real-world patient dataset against an independent
in vitro dataset

We tested the predictive power of PARADIGM by comparing the in silico results
described here using ‘real-world data’ from cancer patients with an independent published
in vitro dataset (Maier et al., 2018) (Figures 2.4C-D). The in vitro screen and the present
study share in common 19 bacterial species and 34 drugs. We observed an enrichment of
drug-species pairs that showed in vitro inhibition (for both antibiotics and non-antibiotics)

in the lower left quadrant of the plot, which corresponds to negative response scores in
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silico (Fisher’s Exact Test: odd ratio = 0.60, p-value = 0.01). Furthermore, drug-species
pairs that showed in vitro inhibition had significantly lower response scores in the patient
dataset when compared to those that did not show inhibition in vitro (Figure 2.4D).
Altogether, these results suggest that PARADIGM can accurately predict in vitro anti-
bacterial activity of both antibiotics and non-antibiotics and distinguish direct interactions
of drugs with bacteria species from the potential confounding influence of the clinical

symptoms prompting these drug exposures.

Antibiotic exposure is a strong predictor of subspecies dynamics

Several experimental studies have demonstrated that the bactericidal spectra of
several drugs are species- and strain-specific even within the same genus (Maier et al.,
2021; Maier et al.,2018). We therefore explored the associations between drug exposures
and changes in relative abundances of species within genera of clinical importance in allo-
HCT, using a subset of 980 specimens from 340 patients in the MSKCC discovery cohort
with available shotgun metagenomic sequencing profiles (Figure 2.8). By applying a linear
mixed-effects regression model, we identified associations between drug exposures and
changes in bacterial species relative abundance. Again, we detected that several drug
exposures spanning different drug classes (antibiotics, laxatives, anti-diarrhea, and opioids)
were associated with changes in relative abundance of Blautia coccoides, Blautia producta,
Enterococcus faecalis, Enterococcus faecium and Erysipelatoclostridium ramosum,

although these associations were not statistically significant.
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Figure 2.8. Associations between drug exposures and changes in species relative
abundance from samples with shotgun metagenomic sequencing. Log changes in
species relative abundance between subsequently collected samples were analyzed as a
function of individual drug exposure in a linear mixed-effects regression model, with time
of sample collection binned into weekly intervals as a random effect variable. Positive
coefficient values (red shades) indicate that drug exposures are associated with increased
species relative abundance. Negative coefficient values (blue shades) indicate that drug
exposures are associated with decreased species relative abundance. A white box indicates
that there is insufficient datapoint to fit the regression model for a given drug-species pair.
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Figure 2.9. Antibiotics are strong predictors of strain genetic convergence during allo-
HCT. A, Strain convergence over time relative to HCT (middle row), or by species relative
abundance (bottom row). Each point represents the tree-based phylogenetic distance
between the dominant strains of a given species in a pair of subsequently collected samples.
Higher phylogenetic distance suggests genetic dissimilarity, while lower phylogenetic
distance suggests strain genetic similarity. B, C, Antibiotic exposure (B), but not non-
antibiotic exposure (C) is associated with increased E. faecium dominant strain
convergence. Each point represents the phylogenetic distance between E. faecium
dominant strains in a pair of subsequently collected samples, stratified by drug exposures
during the time gap of sample pair collection. Two-sided Wilcoxon’s rank-sum test.
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Within human intestinal microbiome communities, most species are represented by
a single dominant strain (Truong et al., 2017), although we have previously observed
complex strain dynamics during episodes of domination by E. faecium in allo-HCT patients
(Dubin et al., 2019). For five species within three genera of interest, we identified the
sequence signatures of the dominant strains on the basis of marker gene polymorphisms
using the StrainPhlAn algorithm (Truong et al., 2017) and calculated tree-based
phylogenetic distances between dominant strains in consecutive patient samples (Figure
29A). Small phylogenetic distances between strains in consecutive samples indicate
dominant-strain convergence, while large distances suggest dominant-strain divergence
over time. For most species, and particularly E. faecium, the phylogenetic distance between
consecutive samples declined over time (Figure 2.9B). This temporal pattern suggests
reduction of within-species genetic variability across multiple species over time and the
rise of a dominant subtype. Furthermore, subtype variability was inversely associated with
species relative abundance (Figure 2.9B). This correlation might be a consequence of so-
called “selective sweeps” (Bendall et al., 2016; Diaz Caballero et al., 2015) by
comparatively better-fit strains or loss of variability due to a population bottleneck that
may occur during allo-HCT (Ghalayini et al., 2018). Subspecies diversification following
a parabolic fitness landscape has been observed in vancomycin-resistant E. faecium
isolated from longitudinal stool sampling of allo-HCT patients (Dubin ef al., 2019), which
this method of strain classification focusing on dominant strains might fail to capture. We
observed that antibiotic exposure was a significant predictor of dominant strain genetic
convergence within species E. faecium, while non-antibiotic exposure was not (Figures

29C-D).
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Figure 2.10. Drug exposure profiles are predictive of future microbiome trajectories
and allo-HCT patient outcomes in two distinct validation cohorts. A, Schematic of the
patient-specific bacteria response score calculation. B, Patients-specific Enterococcus
response scores in the validation cohort were derived based solely on drug exposure
profiles (between day -14 to 14 relative to HCT) and bacteria response scores presented in
Figure 2.6C. A negative score indicates that the drug exposure profile is associated with
an Enterococcus-inhibiting effect, while a positive score indicates that the drug exposure
profile is associated with an Enterococcus-promoting effect. C, Pearson’s correlation
between patient-specific bacteria response scores and observed genus relative abundance
or alpha-diversity in samples collected between day 14 and 45 relative to HCT in the
MSKCC validation cohort (423 patients) and Duke cohort (142 patients). Adjusted p-
values by Benjamini-Hochberg’s correction. D, Patient-specific bacteria response scores
are predictive of overall and cause-specific mortality in the MSKCC and Duke validation
cohorts, in each respective multivariate Cox proportional hazard or Fine-Gray model,
controlled for age, sex, conditioning intensity, graft source and underlying disease.
Adjusted p-values by Benjamini-Hochberg’s correction.
Drug-microbiome associations are predictive of future microbiome trajectories and
clinical outcomes following allo-HCT

Having demonstrated that drug exposures are associated with microbiota changes,
and in light of previous reports associating fecal microbial composition with allo-HCT
clinical outcomes, we next asked whether patterns of drug exposure alone could predict
mortality independent of microbiome data. Using drug-exposure data from a separate
MSKCC validation cohort, we defined patient-specific response scores as metrics that
quantify the net response of microbiome features to drug-exposure profiles (Figure 2.10A).
For example, the patient-specific Enterococcus response scores translated patient drug
exposure profiles into relative risk of Enterococcus expansion (Figure 2.10B). We tested
these patient-specific bacteria response scores against the outcomes of all-cause and
specific-cause mortality in two independent validation cohorts: a subset of 423 MSKCC

patients who were not included in the PARADIGM training cohort, as well as 142 patients

from an independent cohort from Duke University Medical Center. All 62 drug exposures
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were considered for the MSKCC validation cohort, while only antibiotic exposures were
evaluated in the Duke validation cohort. Patient characteristics in these two cohorts are
outlined in Table 2.2.

We observed that patient-specific bacteria response scores based on drug exposures
between day -14 to 14 relative to HCT were significantly and positively correlated with
observed taxa relative abundance and alpha-diversity, respectively, from samples collected
between day 14 and 45 relative to HCT in both the MSKCC and Duke validation cohorts
(Figure 2.10C). Furthermore, patients whose drug exposure profiles predicted higher
Enterococcus expansion were at an increased risk of all-cause and transplant-related
mortality following allo-HCT in the MSKCC and Duke validation cohorts. Specifically, in
the MSKCC validation cohort, patient-specific Enterococcus response scores were also
significantly associated with an increased risk of GVHD-related mortality (Figure 2.10D).
Conversely, patients whose drug exposure profiles predicted Eryispelatoclostridium,
Blautia or alpha-diversity preservation had a decreased risk of all-cause mortality in both
the MSKCC discovery and validation cohorts (Figure 2.10). Overall, we demonstrated that
drug-microbiome associations are predictive of subsequent changes in the intestinal
microbiome compositions post-exposure, and of clinical outcomes in allo-HCT patients.

The framework for this analysis is a hypothesis that drug exposures affect the
intestinal microbiota, which in turn shapes clinical outcomes. In some scenarios, however,
patients at high risk for adverse outcomes (for a variety of reasons unrelated to the
microbiome) might have received drugs that affect the intestinal bacteria. To explore these
possibilities, we focused on Enterococcus and compared the hazard ratios of Enterococcus

relative abundance with the corresponding patient-specific response scores in a Cox
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proportional hazard ratio model. We reported a significant association between
Enterococcus abundance and mortality risk, which was stronger than the association
between patient-specific Enterococcus response scores and overall mortality, specifically
in the MSKCC validation cohort (Figure 2.11). However, we also observed that patient-
specific response score remained a statistically significant predictor of mortality risk when
controlled for intestinal microbiome compositions (Figure 2.11). Altogether, these results
suggest that association between drug exposures and clinical outcomes is partially

dependent on drug interactions with the intestinal microbiota.

Comparison of effect strengths between response scores and
microbiome feature metrics in predicting overall mortality
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Figure 2.11. Investigation of causal relationship between drug exposures, microbiome
and mortality. Microbiome feature metrics (taxa relative abundance or alpha-diversity)
and corresponding response scores were compared in terms of their associations with
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overall mortality risk. Measurements were fit into either an independent (which consider
either microbiome metrics and response scores)or a competing (which considers
microbiome metrics and response scores together) multivariate Cox proportional hazard
model.

Discussion

We developed PARADIGM, a computational method that identifies the
associations between drug exposures and intestinal microbial dynamics in humans. At its
core, PARADIGM analyzes how discrete states of intestinal microbial compositions
respond to both antibiotic and non-antibiotic drugs. While other computational methods
have largely focused on antibiotics (Kanjilal et al., 2020; Vatanen et al., 2018), our
approach further reveals the associations between many non-antibiotic drugs and microbial
dynamics in high resolution by analyzing a large dataset of daily stool samples from allo-
HCT patients.

Our method was able to infer meaningful associations between drug exposures and
microbiome despite the various confounding parameters such as the clinical symptoms
prompting these drug exposures, which is particularly important when analyzing
medications used to treat gut toxicity. We validated our findings by comparing bacterial
response scores derived from this real-world patient study with published in vitro
observations (Maier et al.,2018) and found that our estimates were significantly correlated
with the reported data. Furthermore, the bacterial response scores, calculated based solely
on patient drug exposures, allowed us to predict future microbial changes and patient
outcomes in two independent validation cohorts, particularly for Enterococcus responses.

These results demonstrate that PARADIGM can generate hypotheses with both biological

and clinical relevance.
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In conclusion, we provide insights into the associations between pharmacological
exposures and changes in intestinal microbial composition at the early stage of transplant.
The algorithm we have developed, PARADIGM, identifies biologically meaningful and
clinically relevant associations between drug exposures and intestinal microbial dynamics
in humans. PARADIGM facilitates the integration of drug exposures from many classes of
xenobiotic agents, microbiome dynamics, and clinical outcomes to understand the
determinants of microbiome health. This computational framework is well-suited for
longitudinal data and may be built upon in the future to investigate other environmental
parameters of interest, such as dietary intake or other components of the “exposome”, or
applied to other disease settings in which drug-microbiome interactions are of clinical

importance (Vermeulen et al., 2020).

Materials and Methods

Study population of human subjects

The patient and fecal sample cohort in this study has been described in previous
studies(Liao et al., 2021; Peled et al., 2020; Stein-Thoeringer et al., 2019). Stool samples
were collected at two different transplant centers, Memorial Sloan Kettering Cancer Center
(MSKCC) from April 2009 to September 2019, and Duke University Medical Center from
July 2012 to April 2018. Participants in the observational cohorts at both MSKCC and
Duke provided written informed consent for the use of their stool samples and clinical data.
The use and analysis of these specimens for this study was approved by Institutional
Research Boards at both institutions (MSKCC: #16-834; Duke: PRO0006268 and

Pro00050975). Stool samples collected after day -30 relative to a first allo-HCT, and before
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day -10 relative to a second allogeneic transplant (if applicable) were included in the
analysis. A subset of patients from MSKCC participated in a randomized clinical trial of
fecal microbiota transplantation (FMT; NCT02269150) (Taur et al., 2018). Stool samples
from patients in the control arm, as well as from patients in the FMT arm collected pre-

FMT were included for analysis. Post-FMT stool samples were excluded.

Stool collection and storage

As DNA extraction procedures, sample-handling environment, sequencing and
bioinformatics pipelines are important sources of variability in microbiome data, we
minimized bias and institutional batch effects by collecting and freezing samples at each
center following the same protocol. All stool samples were collected, aliquoted and frozen
at their respective clinical centers; extraction, sequencing, and analyses were performed
centrally at MSKCC.

Fecal samples were collected in both inpatient and outpatient settings. At MSKCC,
inpatient samples were collected by nursing staff from toilet inverted “hats” into ~100 ml-
sized containers at the bedside, promptly delivered to the laboratory via pneumatic tube,
and refrigerated at 4°C until aliquoted for long term storage at -80°C. Outpatient stools
were collected in the patients’ homes using a commode specimen collection system, after
which the entire collection bin was capped, placed inside a biohazard zip lock bag to
prevent leakage, and deposited inside a 8 x 6 x 4.25” foam container along with pre-chilled
freezer packs. Samples were either brought by the patient to a clinic appointment or shipped

directly from the patient’s home to the laboratory via courier.
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Upon receipt by the Molecular Microbiology Facility Laboratory at MSKCC, each
sample was given a unique ID and recorded into the fecal biobank database. Approximately
0.5 ml of whole stool was aliquoted without any preservative solution into four 2 ml
cryovials using a clean disposable spatula and transferred into a -80°C freezer until thawed
for DNA processing. Duke samples were aliquoted similarly at Duke, batch-shipped frozen
to MSKCC, and extracted and sequenced in the same way as the MSK samples at the

Molecular Microbiology Facility Laboratory.

DNA extraction

Bacterial DNA was extracted using an optimized phenol-chloroform protocol to
recover nucleic acids from tough microbes commonly present in stool samples, as
previously described(Peled et al., 2020; Rolling et al., 2021). Briefly, 200-300 mg of solid
or 200-300 pl of liquid stool were aliquoted and the respective wet weight was recorded.
Fecal samples were resuspended in 500 ul of extraction buffer (i.e., 0.2 M NaCl, 0.2 M
Tris-HCI, pH 8.0, and 20 mM ethylenediaminetetraacetic acid, prepared fresh). The
mixture was combined with 0.1 mm zirconia/silica beads (approximately 500 ul), 200 ul
of sodium dodecyl sulfate, and 500 pl of phenol-chloroform-isoamyl alcohol (25:24:1
solution). The bacterial cells were lysed by mechanical disruption using a bead-beater for
2 minutes at over than 3000 rpm. Detritus was spun down at 16,000g at 4°C for 5 minutes.
The upper aqueous layer was transferred to a clean 1.7 ml tube and mixed with 100 pl of
extraction buffer as described above, and 500 pl of phenol-chloroform-isoamyl alcohol
(25:24:1). The solutions were homogenized by inversion and spun down again at 16,000g

for 5 minutes at 4°C. The upper aqueous layer was recovered, and this process was repeated
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for a total of three times. After the final round of phenol-chloroform-isoamyl alcohol was
completed, 400 pl of the top aqueous layer was combined with 40 pl of sodium acetate and
880 ul of cold 100% ethanol. The mixture was vortexed and then frozen for at least 20
minutes, preferably overnight. After the ethanol freeze incubation period, samples were
spun down at 16,000g for 20 minutes at 4°C to pellet the DNA. The upper aqueous layer
was aspirated, and the visible DNA pellet was resuspended in 200 ul of TE buffer
containing 100 mg/mL of RNase solution, followed by an incubation at 50°C for 20
minutes. The genomic DNA was further purified using the QIAamp DNA mini kit (Qiagen)
following the manufacturer instructions. The purified DNA was eluted in 100 pl of
ultrapure water and stored at -80°C prior to quantification of DNA yield and subsequent

PCR amplification.

Sequencing

16S rRNA V4-V5 barcoded amplification and multiplexing: The amplification,
multiplexing and sequencing of 16S rRNA from extracted DNA has been previously
reported(Taur et al., 2018). Briefly, genomic purified DNA was diluted if necessary and
50 ng was used as template during PCR amplification. The V4-V5 region of the 16S rRNA
gene was amplified with the primers 563F (5'-nnnnnnnn-NNNNNNNNNNNN-
AYTGGGYDTAAAGNG-3’) and  926Rb (5"-nnnnnnnn-NNNNNNNNNNNN-
CCGTCAATTYHTTTRAGT-3), where ‘N’s represent unique 12-base pair Golay
barcodes and ‘n’s represent additional nucleotides to offset the sequencing of the
primers(Caporaso et al., 2012). Duplicate PCR reactions were performed for each sample

with 2.5 U of Platinum Taq DNA polymerase and 0.5 mM of forward and reverse primers
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at 94°C for 3 minutes, followed by 27 cycles of 94°C for 50 seconds, 51°C for 30 seconds
and 72°C for 1 minute and a final elongation step at 72°C for 5 minutes. Amplicons were
purified using the Qiaquick PCR Purification Kit (Qiagen) after pooling the sample
replicates. The purified PCR products were quantified using Agilent Technologies 4200
TapeStation and multiplexed at equimolar amounts. The obtained pools of barcoded 16S
amplicons went to further processing for library preparation and sequencing on an [llumina
MiSeq platform at paired-end 250 base pair (bp) at the MSKCC Integrated Genomics
Operation sequencing core. Extraction blanks were included in each extraction batch as
negative controls. These blanks were PCR-amplified but did not show PCR products and
were subsequently removed from demultiplexing and sequencing.

Shotgun metagenomic sequencing: Shotgun metagenomic sequencing was
conducted as previously described(Dubin et al., 2019). Extracted DNA was sheared to a
target size of 650 bps using a Covaris ultrasonicator. DNA was then prepared for
sequencing using the Illumina TruSeq DNA library preparation kit and sequenced using
the Illumina platform targeting approximately 10-20 million reads per sample with 100-

bp paired-end reads.

Sequencing bioinformatics pipeline

16S rRNA gene sequencing: Reads were quality-filtered, deduplicated, denoised
and amplicon sequence variants (ASVs) were inferred following the DADA?2 pipeline
(Divisive Amplicon Denoising Algorithm) (Callahan et al., 2016). Reads were truncated at
a length of 180 bp for forward and reverse reads to ensure sufficient quality and length to

use overlapping paired end reads. Default values were used for filtering and trimming reads
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prior to inferring sequence variants through function filterAndtrim() (maxN=0, maxEE=2,
trunQ=2). Reads per sample were capped at 100,000 prior to sequence variance inference.
Samples with more than 100,000 reads were sub-sampled. Each sequencing run was
analyzed separately before merging the ASV counts across multiple runs.

Samples with poor sequencing quality were filtered out using the following criteria:

1. Less than 30% reads remaining after filtering and trimming

2. Less than 1,000 reads remaining after filtering and trimming

3. More than 5% adapter contamination

Taxonomic classification was annotated according to the NCBI 16S rRNA
sequence database. Alpha-diversity was calculated using the reciprocal Simpson index at
the ASV level, which is the metric used for all alpha-diversity measures in this study. Beta-
diversity was computed according to the Bray-Curtis distances at the genus level using the
beta_diversity.py script in the QIIME bioinformatic pipeline (Caporaso et al., 2010). We
performed t-distributed stochastic neighbor embedding (tSNE) dimensionality reduction
for visualization of the intestinal microbiota compositions using a Bray-Curtis B-diversity
matrix at the genus level with R package Rtsne (max_iter = 10,000; perplexity = 75; theta
=0.2).

Shotgun metagenomic sequencing: The right and left side of a read in a pair was
trimmed to Q10 using the Phred algorithm, using the bbduk.sh script in the BBMap

package (https://www.sourceforge.net/projects/bbmap/). A pair of reads was dropped if

either read had a length shorter than 51 nucleotides after trimming. The 3’-end adapters
were trimmed using a kmer of length 31, and a shorter kmer of 9 at the other end of the

read. One mismatch was allowed in this process, and adapter trimming was based on pair
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overlap detection (which does not require known adapter sequences) using the ‘tbo’
parameter. The ‘tpe’ parameter was used to trim the pair of reads to the same length.
Removal of human contamination was done using Kneaddata with paired end reads,
employing BMTagger. The BMTagger database was built with human genome assembly
GRCh38.

Samples with poor sequencing quality were filtered out using the following criteria:

1. Less than 50% reads remaining after trimming with BBMap

2. Less than 1 million reads remaining after trimming

3. More than 5% adapter contamination

After decontamination, the paired-end reads were concatenated to a single FASTQ
file as the input for functional profiling with the HUMAnNN 3.0 pipeline (Beghini et al.,
2021). After aligning to the updated ChocoPhlAn and UniRef90 database with default
settings, the samples were renormalized by library depth to copies per million. MetaPhlAn
3.0 was used to identify taxonomic compositions with the relative abundance of the species
using parameter -t rel_ab (Beghini ez al., 2021). Similar to the 16S rRNA-sequenced data,
we performed tSNE analysis for visualization of shotgun metagenomic compositions using
a Bray-Curtis B-diversity matrix at the species level with R package Rtsne (max_iter =

3,000; perplexity = 20; theta =0.1).

Clustering of the intestinal microbiota compositions
Three unsupervised clustering methods were used to identify distinct clusters of the
intestinal microbiota compositions within the MSKCC validation cohort. Unsupervised k-

means clustering and hierarchical clustering methods were applied to the Bray-Curtis [3-
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diversity matrix. Dirichlet Multinomial Mixture (DMM) was applied to the raw count
matrix at the genus level. For all three methods, cluster size parameter from 2 to 15 clusters
was evaluated, ultimately choosing ten clusters for downstream analysis. Since k-means
clustering partitioned samples more evenly, we utilized k-means clusters for our
subsequent analyses. We determined ten clusters to be a good balance between reducing
the complexity of the 16S rRNA sequencing data while still representing the variability of

the intestinal microbiome compositions during allo-HCT.

Domination threshold

We defined sample domination by a single taxonomic units using the threshold of
> 0.3 of the 16S rRNA sequencing relative abundance (Peled et al., 2020). The taxonomic
color scheme was adapted from the R package yingtool2

(https://github.com/ying14/yingtools2) and a previous publication (Peled et al., 2020).

Derivation of a mathematical model of microbial dynamics termed PARADIGM

A biologically motivated, simplified mathematical model termed PARADIGM was
developed to model microbial dynamics while simultaneously considering the effects of
drug exposures on the intestinal microbiota. A naive model with n possible clusters in a
time interval Ar for L distinct drugs would require At e n?2% parameters, which would
quickly saturate the amount of data available in most practical applications. The following
characteristics of intestinal microbial dynamics during allo-HCT were considered to
simplify our model: (i) The microbial composition is more likely to stay in same cluster

within a day window; (ii) Drug exposures perturb clusters differently; (iii) Transitions are
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easier to occur among close clusters compared to distant clusters; and (iv) Transition events
vary over time. As such, we developed a model that include parameters for time, drug
exposures and distance between clusters.

We defined microbiota dynamics in terms of two possibilities: the rate at which the
microbiota composition stays in the same cluster (self transition) and the rate at which it
attracts transitions from other clusters (attractor transition). Formally, attractor transition is
a force, measured in terms of probability, that describes the magnitude in which a given
cluster may receive transitions from any clusters other than itself, in a pair of daily collected
samples. For example, the attractor transition to Cluster 1 is defined as the patient moves
to cluster 1 at time 7,4, ;, from any clusters between 2 to 10 at time #,. We note that, “attractor”
has a particular definition in statistical physics, which does not directly translate into the
definition outlined in this study.

Let T;; represent the transition probability from cluster i to j at a single day
resolution and wy.r and Waumacor TEpresent the parameters associated with self and attractor
transitions. The transition probabilities can be summarized as:

eWself(j)'Si,j +(1_5i,j)'(wattractor(j|i)) ( 1)

Te: =
©) Z] eWself(j)'Si,j +(1_8i,j)'(wattractor(j |1))

Where §; ; represents Kronecker delta.

The transition dynamics are simplified to a 2x2 transition matrix per cluster i that
represents self (i) and not-self (i°) states and the rates of transition between those states:

= .. (DPii DPiic ()
T(l)_(PiC,1 PiC,iC)

And the self and attractor parameters are formally represented as:
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Di,i .
IOg <p” ) = Wself(l)

i,i¢

Dici .
108( l l) = Wattractor (1)
Dic ic

Inference of drug influence on cluster dynamics via elastic net regularized regression

To investigate high-resolution cluster dynamics in response to drug exposures, we
included samples that were collected 1 day apart between day -14 and 14 relative to HCT
from patients in the MSKCC discovery cohort. The criteria for drug inclusion in this
analysis are as followed: (1) Drugs were administered via oral/IV routes; (2) Drug
exposures occurred between day -14 to 14 relative to HCT; (3) Drugs were administered
to at least 5% and no more than 90% patients in the discovery cohort; and (4) Drug
exposures occurred in at least 15 patients with single-day resolution samples.

Equations 1-3 provide a formal definition of our microbial dynamics in terms of
self and attractor transitions. In practice, we took advantage of a logistic regression fit to
solve Equation 3 by assuming a binary value for each transition to a given cluster i. We
defined the value of 1 for transitions towards cluster i and a value of O otherwise.

We used elastic net regularized regression for feature selection to estimate the
influence of drug exposures on self and attractor transitions of each cluster, using the R
package caret, e1071 and glmnet for model fitting and parameter tuning. Formally, the

coefficients that impact transition probabilities were computed as following:

Wself(i' L, X) = ﬁself,i,o + Bself,i,lt + z ﬁself,i,k ° Xk,t

k € Drug set

Wattractor(i' t, X) = ﬁattr.,i,o + ,Battr.,i,lt + ﬂattr.,i,zdi,j + z Battr.,i,k ® Xk,t

k € Drug set
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The parameters X, have a value of / in days patients were exposed to drug k and 0
otherwise. The 10-fold cross-validation partitions were pre-specified such that samples
from the same patient are always in the same partition using function trainControl() and

train() in R package caret.

Calculation of bacterial response score of drugs

The dynamic model we proposed can estimate the association between a given drug
exposure with quantitative microbiome features. The self and attractor parameters
predicted in Equation 4 can be used to construct transition probabilities according to
Equation 1. Let the probability of switching from cluster i to j in the absence of any drug
exposure be 7;_, ;(no drug), the bacterial response score of a drug d on taxon y is defined

as:

Pj(}’)
p:(y)

COI) = ) (g d) =m0 drug)) = log L2y
1)

where p,(y) represents the average relative abundance of taxon y from all samples in cluster
i. A negative score indicates an antibacterial effect of drug d on taxon y. The transition
matrix used to estimate antibacterial score was computed at time #=0.

The bacterial response scores estimated from Equation 5 were compared to
published in vitro measurements of anti-bacterial activities (Maier et al., 2018). The in
vitro measurements evaluated the effect of specific drugs using the area under the curve
(AUC) of bacterial growth. An AUC value significantly below 1 indicates that the drug
inhibited bacterial growth in vitro. We restricted our analysis to 19 bacteria species that
appeared in more than 10% of the MSKCC samples with relative abundance above 10.

We identified the relative abundance of a given species by summarizing the relative
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abundance of all ASVs mapped to that species. Our prediction was considered consistent
with in vitro measurements when bacterial response scores were negative for bacteria-drug
pairs that showed inhibition in that study. Statistical significance was evaluated using two-

sided Wilcoxon’s rank-sum test.

Defining patient-specific bacteria response scores based on drug exposure profiles

A risk score that is associated with patient outcomes can be computed from how
drug exposures are predicted to influence the microbial dynamics. We defined specific
target values,d which are features of the intestinal microbiota associated with each cluster,
and adapted Equation 5 to compute a risk score, S, for each patient by averaging the

contribution of all drug exposures that occurred within day -14 to 14 relative to HCT.

— 1j )
S Z Z (T[i_’]' (d’ t) T[i—>j(n0 drug, t)) . log( )
t € time £d € drugs Zi,j 7,(y)

For this work, we considered four target values: relative abundance of

Enterococcus, Erysipelatoclostridium, Blautia, and alpha-diversity. Patient-specific
bacteria response scores for each of the considered microbiome features were calculated
based on drug exposure profiles between day -14 and 14 and compared with observed taxa
relative abundance or alpha diversity in samples collected between day 14 to 45 relative to
HCT using Pearson’s correlation, with adjusted p-values by Benjamini-Hochberg’s

correction. The median values were taken for patients with multiple samples available.

Imputation of missing samples

The dynamic model defined in Equation 1 can be used to simulate microbial

dynamics and to impute cluster state in time points without sample collection. Equation 1
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defines transition probabilities at single day resolution and forms the fundamental unit to
predict microbial dynamics. Let X(#) be the compositional state at time t, the value T}, is
equivalent to P(X(t+1)/X(t)). Assuming first-order Markov chain, the transition probability
matrix between samples at longer time distance can be computed from its fundamental
units as following:

T(to i to + d) == T(to) * T(to + 1) * .0k T(to + d - 1)

Where 7(1,) represents transition probabilities at single day resolution between time 7, to
to+1.

The imputation of cluster states at a given time point can be performed by
considering the state at nearby time points. Interpolations can be made based on past
samples (forward interpolations), future samples (backward interpolations) or both
(forward-backward interpolations). Consider the estimation of a cluster state at time point
t from samples available at time point 7-a and 7+b. Forward interpolation imputes the data
point based on the probability P(X/ X.,), backward prediction from P(X,/ X,,,) and
backward-forward interpolation from P(X,/ X..., X..,). Forward interpolations can be
estimated from Equation 7. The backward interpolations were obtained by adapting model
described in Equation 1 to predict cluster state at time 7 based on cluster state at time 7+ /
and exposures at time ¢. The backward-forward interpolation takes advantage of both

forward and backward equations and is computed as:

P(X;|Xj1p = x5) @ P(X;|Xj_0 = %4)
P(X;)

P(X;|Xj-a) Xjup) o

A modified forward-backward interpolation was also tested in which final predictions is

obtained by either forward or backward probabilities:
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P(Xi|Xj1p = xp) if w(t) > ¢
P(Xj|Xj—a = x4) if w(®) < c

P(Xj|Xj—a) Xjsp) o {

Where w(?) indicates whether forward or backward interpolation should be used to predict
state at time ¢, and c indicates the mean of the forward-backward prediction probabilities.
The imputation accuracy for each model described above was estimated using 10-

fold cross validation, in which 90% of patients were selected as the training set and 10%
as the test set. In the training set, the logistic regression model defined in Equation 5 was

used to estimate the parameters for self and attractor weights as well as the decision

parameter for modified forward-backward prediction. In the test set, the regression

coefficients were used to reconstruct transition matrices and compute forward, backward,

forward-backward as well as modified forward-backward probabilities. The microbial state

was classified by the cluster with the maximum probability.

Linear mixed-effects model of drug-species associations using shotgun metagenomic
profiles

We defined a linear mixed-effects model to investigate the association between
drug exposures and changes at a species-level resolution. Species relative abundance was
predicted by MetaPhlAn 3.0 using shotgun metagenomic data. The model considers pairs
of samples that were collected between day -14 and 14 relative to HCT and less than five
days apart, and with a minimum species relative abundance of 10“. We assumed that
changes in species relative abundance depend on time of sample collection and drug
exposure. Formally, let a given sample pair be collected at time t; and #,, respectively. The
log difference in species relative abundance, In (Sp../ Sp.;) depends on fixed effects of drug

exposures and a random effect relative to time of sample collection, t,;, as following:
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In ( )(t1,62,X) =0+ e Xy 2 + (1]t1)

The parameter t; represents time of first sample collection in the sample pair, binned into
weekly intervals relative to HCT, as a random effect variable. X, ., represents a given drug
exposure and has the value of 1 if patients were exposed to the drug in the time interval
tyand t,. P-values from the linear mixed-effects model were adjusted for multiple
hypothesis testing using Benjamini-Hochberg’s correction. Equation 10 was solved using

R package Ime4.

Dominant strain dynamics and its association with drug exposures

StrainPhlAn 3.0 was used to profile bacterial community at the strain-level
resolution (Beghini et al., 2021; Truong et al., 2017). This algorithm identifies the most
dominant strain per species per sample by reconstructing dominant consensus sequence
variants across species-specific marker genes. We applied StrainPhlAn 3.0 to a dataset of
980 shotgun metagenomic shotgun samples in the MSKCC discovery cohort, which
returned the multiple sequence alignment of the dominant strain for a given species and the
RaxML (Randomized Axelerated Maximum Likelihood) phylogenetic tree across samples.
The phylogenetic tree was then used to calculate the dominant strain phylogenetic distance
across a pair of samples. Phylogenetic distance is defined as the branch length between two
nodes in the StrainPhlAn phylogenetic tree, normalized over the total branch length of the
tree. Branch length was calculated using R function cophenetic(). We focused on strains
from five species of interest, including Blautia coccoides, Blautia producta, Enterococcus

faecalis, Enterococcus faecium and Erysipelatoclostridium ramosum.
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For analysis of dominant strain convergence in association with antibiotic and non-
antibiotic exposures, we compared the phylogenetic distances of dominant strains within
the species E. feacium across pairs of samples that were collected less than five days apart
between day -14 and 14 relative to HCT. Exposures were considered true if patients
received the drug during sample pair collection time. Antibiotic exposure includes the
seven investigated antibiotics in this study. Non-antibiotic exposure comprises seven drugs
with the highest absolute Enterococcus-response score values, indicating strongest
associations with changes in Enterococcus relative abundance. These non-antibiotic drugs
include diphenoxylate/atropine, polyethylene glycol, levothyroxine, fentanyl,
methotrexate, anti-thymocyte globulin and cyclosporine. Statistical significance was

evaluated using two-sided Wilcoxon’s rank-sum test.

Co-inclusionary and exclusionary relationships between bacteria and cluster stability
To identify the potential microbiome influence on the stability of Enterococcus
domination in allo-HCT patients, we developed a logistic regression model with lasso
penalty. This model takes into account the relative abundance of different bacterial genera
on the stability of Enterococcus-high cluster 10. We defined cluster 10 stability as the rate
at which the microbiota compositions stay in the same cluster 10, assuming a value of 1
when patients stay in cluster 10, and a value of 0 when patients move from cluster 10 to
any other cluster among a pair of daily collected samples. We included as parameters
antibiotics exposure, day of sample collection relative to HCT, alpha-diversity and relative
abundance of top 20 most abundant genera in cluster 10. Antibiotic exposure includes

exposure to any of the seven antibiotics investigated in this study. The input dataset consists
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of pairs of daily samples collected between day -14 and 100 relative to HCT. Formally, the

coefficients of these potential drivers of cluster 10 stability were computed as following:

Wself(i' [ abx; p) = ﬁself,o + ﬁself,lt + ﬁself,zabxt + (1 1)

Bseir 3Simpson_reciprocal, + z Bseif,i ® Dit

i € Top 20 genera
In which p; , represents the relative abundance of each taxon in the top 20 most abundant
genera in cluster 10, and abx indicates if patients received any of the seven investigated
antibiotics in this study on day t. Coefficient values indicate the direction and magnitude
of association between each parameter and the stability of Enterococcus-high cluster 10,
with a negative value indicating a negative association with Enterococcus domination

stability.

Statistical analyses of survival outcomes

We used landmark analyses of survival beyond day 14 relative to HCT using R
package survival. Patients were censored at the time of last contact or at the time of second
allo-HCT (when applicable). All survivors were censored at two years of follow-up.
Patients randomized to the FMT arm of the trial were excluded from analysis of clinical
outcomes. Patient-specific bacteria response scores corresponding to a given microbiome
feature were considered as a continuous variable in a multivariate Cox proportional hazard
model, controlled for age, sex, conditioning intensity, graft source and underlying disease
as variables with R function coxph(). P-values were adjusted for multiple hypothesis testing

using Benjamini-Hochberg’s correction.
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Competing risk analyses were performed to identify the association between
patient-specific bacteria response scores and cause-specific mortality. We investigated
three competing events, namely relapse (defined here as relapse or progression of disease),
GVHD-related mortality (defined here as death due to GVHD or after GVHD onset,
without relapse), and transplant-related mortality (encompassing deaths from GVHD,
infections and organ toxicities). For each competing event, multivariate Fine-Gray
subdistribution hazard models were fit by R function crr() from R package tidycmprks.
Hazard ratios are presented with the 95% confidence interval indicated in parentheses.

To tease out the potential causal relationships between medication, microbiome and
mortality, we compared the effect sizes and statistical strengths of patient-specific bacteria
response scores and observed genus relative abundance or diversity values in predicting
all-cause mortality. To assure proper magnitude comparison, microbiome measurements
were rescaled by Z-score normalization and fit into either an independent (which consider
either microbiome metrics or response scores)or a competing (which considers
microbiome feature and response score together) multivariate Cox proportional hazard
model, controlled for age, sex, conditioning intensity, graft source and underlying disease.
The independent and competing models consider only patients with stool samples collected
between day 0 and 45 relative to HCT (MSKCC validation cohort: 340 patients; Duke
validation cohort: 108 patients). Genus abundance was calculated from stool samples
collected between day O and 45 relative to HCT, response scores were calculated using
drug exposure profiles between day -14 to 14 relative to HCT. The median values were
taken for patients with multiple samples available. P-values were adjusted for multiple

hypothesis testing by Benjamini-Hochberg’s correction.
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CHAPTER THREE
ENTEROCOCCUS INDUCES MHC-IT EXPRESSION IN THE

INTESTINAL EPITHELIUM TO AGGRAVATE GVHD

Introduction

The commensal intestinal microbiota has co-evolved with the mammalian hosts and
played an important role in maintaining local and systemic homeostasis (Artis, 2008).
Therefore, perturbations to the intestinal microbiota community could impair the
interactions between the gut microorganisms and their hosts, which in turn are associated
with various diseases including infection, autoimmunity, and cancer (Hou et al., 2022). We
and others have previously reported the frequently observed intestinal microbiota injuries
in allo-HCT patients (Golob et al.,2017; Peled et al.,2020; Taur et al., 2012). Specifically,
intestinal domination by Enterococcus, a genus of Gram-positive facultative bacteria, is
associated with an increased risk of GVHD-related mortality in allo-HCT patients and in
preclinical models (Holler et al., 2014; Stein-Thoeringer et al., 2019). However, the
immunological mechanisms underlying this association remain unclear.

Pathogenic Enterococcus strains are associated with hospital-acquired infections
and autoimmunity such as inflammatory bowel disease (Levitus et al., 2023; Seishima et
al., 2019; Zhou et al., 2016). Conversely, commensal Enterococcus strains have
demonstrated clinical benefits as probiotics and in the context of immune checkpoint
blockade (Griffin et al., 2021; Hanchi et al., 2018; Rashid et al., 2023). The dual role of
this bacteria genus highlights the need to understand the biological context underlying the

beneficial versus harmful effects of Enterococcus in human health and disease.

60



Previous literature has mostly focused on the effect of Enterococcus on innate
immunity such as DCs and macrophages (Leendertse et al., 2008; Ocvirk et al., 2015; Park
et al., 2013). Host- and donor-derived APCs play an important role in the development of
GVHD through allo-antigen presentation and donor T cell activation (Koyama et al., 2015;
Shlomchik et al., 1999). In addition, IECs could also present antigens and engage with
alloreactive T cells to initiate GVHD through the expression of major histocompatibility
complex class II (MHC-II) (Koyama et al., 2011; Koyama et al.,2019). While professional
APCs constitutively express MHC-II, non-professional APCs do not typically present
antigens through MHC-II. However, various factors such as diurnal oscillation, dietary
changes, inflammation, and alterations to the intestinal microbiota could induce MHC-II
expression in non-professional APCs such as IECs (Heuberger et al., 2023; Tuganbaev et
al., 2020). Here, we investigate the regulation of intestinal epithelium MHC-II expression

by Enterococcus as a mechanism that aggravates GVHD severity.

Results
Enterococcus abundance is associated with increased GVHD mortality

To assess the impact of Enterococcus on GVHD outcomes, we used an MHC-
disparate model of GVHD (C57BL/6J donors into BALB/cJ recipients). Lethally irradiated
BALB/cJ recipients were transplanted with C57BL/6J splenic T cells along with T-cell-
depleted bone marrow (BM+T) to trigger GVHD, with the T-cell-depleted BM (BM only)
group serving as controls (Figure 3.1A). We observed an increase in endogenous
Enterococcus relative abundance in GVHD mice on day +7 post-BMT, compared to the

BM only control group and pre-transplant naive baseline, as quantified by 16S rRNA
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sequencing of fecal samples (Figure 3.1B). This observation is consistent with previous
findings demonstrating that Enterococcus bloom occurs both in mouse models of GVHD

and in allo-HCT patients (Stein-Thoeringer et al., 2019).

A Donor: C57BL/6) (H2-k®) Recipient: BALB/cJ (H2-k?)
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Figure 3.1. Enterococcus relative abundance is associated with increased mortality in
am MHC-disparate mouse model of GVHD. A, Schematic of the MHC-disparate mouse
model of GVHD in this study. Recipient BALB/cJ mice receiving bone marrow only from
C57BL/6J donors do not develop GVHD, while recipient mice receiving bone marrow and
allogeneic T cells from MHC-mismatched donor develop lethal GVHD. B, Enterococcus
relative abundance quantified by 16S rRNA sequencing of fecal samples. C, Survival of
GVHD mice, stratified by Enterococcus relative abundance on day +7 post-BMT. All data
represent at least two independent experiments. Means + SEM are plotted. ***p < 0.001,
*H#%p < 0.0001 by Kruskal-Wallis test (B) or Cox-proportional hazard ratio (C).
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Figure 3.2. E. faecalis crude protein lysates moderately activate DCs but did not affect
allogeneic T cell activation and proliferation in vifro. A-D, BMDCs were cultured with
various stimuli and collected 24-hour post-stimulation for flow cytometry of (A) CD86 and
(B) CD80 expression on CD11c+ MHC-II+ ¢DCs, and ELISA of culture supernatant for
(C) IFNy and (D) IL-12p70. E-H, Mixed lymphocyte reaction between stimulus-activated
BMDCs (BALB/cJ-derived) and allogeneic T cells (C56BL/6J-derived). On day +5 post-
co-culture, allogeneic T cells were collected for flow cytometry. I, Reconstitution of donor
¢DCs in the spleen and mesenteric lymph nodes on day +7 and day +14 post-BMT. All
data represent at least two independent experiments. Means + SEM are plotted. *p < 0.05,
**p < 0.01, ***p <0.001, ****p < 0.0001 by one-way ANOVA test.
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Given the variation in the level of endogenous Enterococcus bloom (Figure 3.1B),
we asked whether Enterococcus relative abundance was correlated with GVHD severity.
We stratified GVHD mice into two groups, Enterococcus-high and Enterococcus-low,
based on the median Enterococcus relative abundance on day +7 post-BMT. We observed
a significant and positive correlation between Enterococcus relative abundance and GVHD
mortality, as the Enterococcus-high group had increased mortality compared to the
Enterococcus-low group (Figure 3.1C). This observation in a mouse model of GVHD
recapitulates previous studies in allo-HCT patients, where Enterococcus relative
abundance in the peri-transplant period (day O to +21) is associated with increased GVHD-

related mortality (Holler et al., 2014; Peled et al., 2020; Stein-Thoeringer et al., 2019).

Enterococcus abundance is positively correlated with MHC-II expression by colonic
IECs during GVHD

We next investigated the mechanism underlying the association between
Enterococcus and GVHD mortality. Professional APCs such as host- and donor-derived
DCs are the primary cell populations to engage with and activate donor T cells (Koyama
et al.,2015; Matte et al., 2004; Shlomchik et al., 1999). Enterococcus could activate DCs
and induce inflammatory cytokine secretion (Molina et al., 2015; Ocvirk et al., 2015). To
assess the effect of Enterococcus on DCs, we cultured bone marrow-derived DCs
(BMDC:s) in the presence of crude protein lysates from a murine-derived E. faecalis strain.
We utilized B. producta lysates as a comparison group, given the association of this genus
with improved GVHD outcomes (Jenq et al., 2015; Kim et al., 2019; Rashidi et al., 2022).

E. faecalis lysates upregulated the expression of costimulatory molecules, CD80 and
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CD86, on BMDCs in a dose-dependent manner, compared to unstimulated control,
although not statistically significant (Figures 3.2A-B). E. faecalis lysates also led to a
robust and significant increase in IL-12p70 secretion, but not IFNy, from stimulated
BMDCs (Figures 3.2C-D). On the other hand, B. producta lysates did not induce BMDC
activation and inflammatory cytokine secretion.

We next asked whether BMDC activation by E. faecalis had an impact on
alloreactive T cell in a mixed lymphocyte reaction. E. faecalis-stimulated BMDCs did not
significantly activate alloreactive T cells, compared to B. producta-stimulated and LPS-
stimulated BMDCs (Figures 3.2E-H). In addition to the in vitro experiments, we also
examined DCs in vivo during GVHD. On day +7 post-BMT, which is the timepoint that
Enterococcus bloom occurred in GVHD mice, DCs were mostly absent in the spleen and
mesenteric lymph nodes (Figure 3.2I). Altogether, our data suggest that DCs are not the

primary cell type mediating E. faecalis pathogenesis during GVHD.

Enterococcus upregulates MHC-II expression by IECs at steady state and during GVHD

Previous literature has demonstrated that non-professional APCs such as IECs
could induce GVHD through allo-antigen presentation via MHC-II (Koyama et al., 2019).
We observed that GVHD mice exhibited a significant increase in MHC-II expression by
colonic IECs on day +7 post-BMT, compared to BM only and non-transplanted naive
controls (Figure 3.3A). Furthermore, MHC-II expression by colonic IECs was
significantly and positively correlated with fecal Enterococcus relative abundance on day

+7 post-BMT (Figure 3.3B).
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Figure 3.3. Enterococcus relative abundance is associated with increased MHC-II
expression by colonic IECs in GVHD mice. A, Frequency of MHC-1I+ EpCAM+ colonic
IECs on day +7 post-BMT by flow cytometry. B, Simple linear regression between
Enterococcus relative abundance and MHC-II expression by colonic IECs on day +7 post-
BMT in GVHD mice. C, PCA of gene expression through bulk RNA-sequencing of sorted
CD45- CD31- EPCAM+ colonic IECs isolated on day +7 post-BMT. D, Heatmap of
selected genes related to innate sensing and antigen-presentation (in red) from bulk-RNA
sequencing of CD45- CD31- EPCAM+ colonic IECs. E, Gene set enrichment analysis of
upregulated pathways in BMT mice compared to BM only controls from bulk-RNA
sequencing of CD45- CD31- EPCAM+ colonic IECs. All data represent at least two
independent experiments. Means + SEM are plotted. ****p <(0.0001 by one-way ANOVA
test.

We explored other transcriptional changes in the colonic epithelium of GVHD mice
through bulk RNA-sequencing of sorted EpCAM+ IECs (Figures 3.3C-E). The

transcriptomic profiles of colonic epithelium during GVHD clustered distinctly from those
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of BM only and non-transplanted naive controls (Figure 3.3C). We confirmed the
upregulation of genes related to anti-presentation at the transcriptional level (H2-Aa, H2-
Abl, Ciita; Figure 3.3D), along with genes associated with IFNa/y inflammatory response
in the colonic epithelium during GVHD (Figure 3.3E). Altogether, these data suggests that
Enterococcus is associated with increased MHC-II expression by colonic IECs during
GVHD.

Previous studies have demonstrated that irradiation-induced inflammation is
sufficient to upregulate MHC-II expression by IECs at the early time points post-BMT
(Koyama et al., 2019). To tease out the effect of Enterococcus on the colonic epithelium
apart from irradiation-induced and GVHD-related inflammation, we monocolonized
germfree BALB/cJ mice with E. faecalis and profiled the IEC compartment at non-
transplanted steady state. As a control group, we utilized a cocktail of four bacteria, CBBP
(C. bolteae, B. sartorii, B. producta and P. distasonis), which represents a minimal flora
of potentially beneficial obligate anaerobes (Kim et al., 2019). Enterococcus-colonized
mice exhibited increased MHC-II expression by colonic IECs compared to germfree and
CBBP-colonized mice (Figure 3.4A). We did not observe a significant difference in the
small IECs among the groups (Figure 3.4B).

To validate our observations in the gnotobiotic setting, we utilized a model of
Enterococcus colonization in the SPF setting on the C57BL/6J background (Figure 3.4C).
FMT from naive Jackson Laboratory-sourced donors into antibiotic-treated recipients
served as the control group with low Enterococcus abundance. Enterococcus colonization

is sufficient to induce MHC-II expression by both colonic and small IECs compared to the
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FMT and CBBP groups, consistent with our findings in the gnotobiotic setting (Figure

34D-E).
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Figure 3.4. Enterococcus colonization is sufficient to induce MHC-II expression by
colonic IECs in non-transplanted steady state. A-B, Frequency of MHC-II+ EpCAM+
(A) colonic and (B) small IECs of gnotobiotic mice on day +14 post-colonization by oral
gavage. C, Fecal Enterococcus abundance in SPF mice treated with antibiotics (VAMN)
prior to bacteria colonization by oral gavage. Abx: antibiotics. D-E, Frequency of MHC-
[+ EpCAM+ (D) colonic and (E) small IECs of SPF mice on day +14 after the first oral
gavage for bacterial colonization (day +25 after initiation of antibiotic treatment). F, PCA
of gene expression through bulk RNA-sequencing of sorted CD45- CD31- EPCAM+
colonic IECs isolated from gnotobiotic mice on day +14 post-colonization by oral gavage.
G, Volcano plot of differentially expressed genes from bulk RNA-sequencing of sorted
CD45- CD31- EPCAM+ colonic IECs. H, A set of overlapped genes upregulated in both
GVHD mice (SPF setting; day +7 post-BM) and Enterococcus-monocolonized mice
(gnotobiotic setting; day +14 post-colonization. All data represent at least two independent
experiments. Means = SEM are plotted. ****p < (0.0001 by one-way ANOVA test.
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Having demonstrated that Enterococcus induced MHC-II expression by colonic
IECs in gnotobiotic mice at steady state, we next profiled the overall transcriptomic profiles
of sorted EpCAM+ colonic IECs upon Enterococcus monocolonization (Figures 3.4F-H).
The transcriptomes of Enterococcus-colonized colonic epithelium clustered distinctly from
those of CBBP-colonized group (Figure 3.4F). Enterococcus-colonized group exhibited
upregulation in genes associated with antigen presentation (H2-Ebl, H2-Aa, H2-Abl,
Cd74), which confirmed the flow-cytometry-based protein expression results (Figure
34A), along with genes associated with IFNy signaling response (Ifi47, ligpl; Figure
3.4G). Several genes were upregulated in both Enterococcus-colonized gnotobiotic mice
at non-transplanted steady state and in Enterococcus-dominated SPF mice with GVHD
(Figure 3.4H). These genes are associated with antigen presentation (Cd74, H2-Abl, H2-
Ebl, H2-DMb1, Ciita, Nlrc5) and with IFNYy signaling response (Ifi44, Igtp, GbpS, Gbp4,
Gbp6, Tgfbi, Ifi47). Thus, our results suggest that Enterococcus colonization is sufficient

to induce MHC-II expression by IECs in the absence of systemic inflammation.

MHC-II upregulation by colonic IECs is regulated via IFNy signaling

TLRs recognize the gut microbiota through various bacterial surface-associated and
intracellular molecules (Abreu et al., 2005; Fang et al., 2022). TLR signaling results in a
cascade of innate immune activation that maintains homeostasis or mediates responses to
pathogens (Kubinak and Round, 2012; Rakoff-Nahoum et al., 2004). To identify which
TLRs could sense Enterococcus, we screened the crude protein lysates of murine-derived
E. faecalis and human-derived vancomycin-resistant E. faecium (VRE) against a panel of

murine and human TLRs, respectively. Murine-derived E. faecalis activated murine TLR2
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and TLR13, while human VRE only activated human TLR2-TLR6 (Figures 3.5A-B). This
observation is consistent with previous studies reporting the role of TLR2 in host defense

against pathogenic Enterococcus (Leendertse et al., 2008; Park et al., 2013).
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Figure 3.5. Enterococcus-induced MHC-II upregulation by colonic IECs is
independent of TLR2 signaling. A, TLR activation screening using HEK?293 cells
expressing various mouse TLR co-cultured with crude protein lysates of murine-derived
E. faecalis. B, TLR activation screening using HEK293 cells expressing various human
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TLR co-cultured with crude protein lysates of human-derived E. faecium. C, Frequency of
MHC-II+ EpCAM+ colonic IECs in gnotobiotic mice colonized with different
Enterococcus strains by flow cytometry. D, TLR2 activation screen using HEK293 cells
expressing mouse TLR2 co-cultured with crude protein lysates of different Enterococcus
strains. E, Frequency of MHC-II+ EpCAM+ colonic IECs in TLR2 WT versus TLR2 KO
mice colonized with E. faecalis post-antibiotic decontamination by flow cytometry. F,
Absolute fecal Enterococcus abundance of TLR2 WT and KO mice colonized with E.
faecalis post-antibiotic decontamination. VAMN: vancomycin, ampicillin, metronidazole,
neomycin. All data represent at least two independent experiments. Means = SEM are

plotted. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA test.

Lipoteichoic acid (LTA) is a cell-wall compenent of Gram-posive bacteria that
serves as a ligand for TLR2 (Long et al., 2009). Given that Enterococcus species share
similar LTA structures, we investigated whether Enterococcus species are similarly
immunogenic in the context of the gut epithelium. We monocolonized germfree BALB/cJ
mice with various different Enterococcus species and profiled MHC-II expression by
colonic IECs at steady state. In this screen, E. faecalis was the only species that significanly
upregulated MHC-II expression by colonic IECs, compared to germfree controls (Figure
3.5C). E. durans also induced MHC-II expression moderately, although not statistically
signficantly. On the other hand, E. gallinarium and E. hirae did not affect MHC-II
expression by the colonic epithelium. This species-specific phenotype in vivo did not
correlate with TLR2 activation in vitro, given that MHC-II non-inducers such as B.
producta and E. gallinarium could strongly induce TLR?2 activation to a comparable level
with E. faecalis (Figure 3.5D).

To further assess whether TLR2 signaling regulates Enterococcus-induced MHC-
II expression in the colonic epithelium, we utilized TLR2-deficient mice in the SPF setting.
While high Enterococcus colonization was achieved in both TLR2-competent and deficient

mice, we observed no significant difference in MHC-II expression by colonic IECs in wild-

71



type versus TLR2-deficient mice (Figure 3.5E). Altogether, these data suggest that

Enterococcus induces MHC-II expression in the colonic epithelium in a TLR2-independent

manner.
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Figure 3.6. IFNy signaling mediates Enterococcus-induced MHC-II upregulation by
colonic IECs. A, HLA-DR expression of HT-29 cells after 5 days of stimulation with IFNy
and bacterial protein lysates. B-C, Frequency of MHC-1I+ EpCAM+ in (B) colonic and
(C) small IECs in Villin®* IFNyYR" mice at steady state. D-E, Frequency of MHC-II+
EpCAM+ in (D) colonic and (E) small IECs in mice with epithelial deficiency of IFNyR
upon colonization with E. faecalis by oral gavage for 5 days. F, Fecal absolute
Enterococcus abundance of mice with epithelial deficiency of IFNyR at steady state and
upon colonization with E. faecalis. G, Frequency of MHC-II+ EpCAM+ colonic IECs in
gnotobiotic mice 14-day post-colonization with B. producta or E. faecalis in addition to
treatment with isotype control or anti-CD4 depletion antibody. All data represent at least
two independent experiments. Means = SEM are plotted. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001 by one-way ANOVA test (A, F-G) or Student’s t-test (B-E).

Previous literature has established the role of IFNy signaling in the regulation of

MHC-II expression by non-professional APCs (Buttice et al., 2006; Koyama et al., 2019;
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Nikcevich et al., 1999). We also observed increased presence of IFNy signaling upon
Enterococcus colonization both at non-transplanted steady state and during GVHD. Thus,
we next asked whether IFNy signaling mediates the interaction between Enterococcus and
the intestinal epithelium. We co-cultured HT-29 colorectal adenocarcinoma cells with
either IFNy alone or in combination with bacterial protein lysates. IFNy treatment alone
was sufficient to significantly upregulate MHC-II expression by HT-29 cells in vitro
(Figure 3.6A). The addition of bacterial lysates from either E. faecalis or B. producta did
not affect MHC-II expression in HT-29 cells compared to IFNy treatment alone, suggesting
an indirect interaction between bacteria and IECs potentially mediated by IFNy signaling.

To further delineate the role of IFNy signaling in regulating the interactions
between Enterococcus and IECs, we utilized Villin®* IFNyYR" mice with specific deletion
of IFNYR in Villin-expressing IECs. Villin®* IFNyR™™ mice exhibited significantly
decreased MHC-II expression by small IECs, compared to Villin® IFNyR™ littermate
controls, both at baseline microbiota and upon colonization with Enterococcus (Figures
3.6B-E). The intestinal microbiome profiles based on 16S rRNA sequencing of fecal
pellets collected at the time of tissue isolation demonstrated comparable levels of
Enterococcus relative abundance between Villin®* and Villin® littermates (Figure 3.6F).
Overall, these data suggest that IFNy signaling is important for the induction of MHC-II
expression by IECs both at steady state and during Enterococcus colonization.

While many immune cell types could secrete IFNy, conventional CD4+ T cells are
the most dominant source of this inflammatory cytokine in the gastrointestinal tract
(Koyama et al., 2019). To test whether CD4+ T cells mediate the effect of Enterococcus

on the intestinal epithelium, we administered antibodies depleting CD4+ T cells to
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gnotobiotic mice monocolonized with E. faecalis or CBBP. Depletion of CD4+ T cells
significantly abrogated the upregulation of MHC-II expression by colonic IECs in the
presence of E. faecalis monocolonization (Figure 3.6G). These data support the hypothesis
that IFNy signaling from CD4+ T cells mediates the induction of antigen presentation in

the intestinal epithelium by Enterococcus.

Butyrate does not regulate antigen presentation by the colonic epithelium in the context
of Enterococcus domination

This study and others have demonstrated that only specific members of the
intestinal microbiota could induce MHC-II expression by IECs (Koyama et al., 2023;
Tuganbaev et al., 2020). Thus, we next investigated the microbial-derived factors driving
this phenotype. Histone deacetylases (HDAC) such as HDAC3 play an important role in
maintaining intestinal homeostasis and promoting barrier functions during GVHD
(Alenghat et al., 2013; Mathewson et al., 2016; Reddy et al., 2004). Deletion of HDAC3
specifically in IECs significantly abrogates MHC-II expression in this cellular
compartment, suggesting that role of HDAC3 in regulating MHC-II expression (Eshleman
et al., 2023). The intestinal microbiota could modulate HDAC3 activity through the
secretion of butyrate, a short-chain fatty acid that acts as a pan-HDAC inhibitor (Candido
et al., 1978). Thus, we next assessed whether butyrate could suppress MHC-II expression
by IECs. We induced MHC-II expression in HT-29 cells through IFNy treatment in the
presence of varying concentrations of sodium butyrate. Butyrate concentration as low as
SmM was sufficient to completely abrogate MHC-II expression by HT-29 cells, even when

combined with a high dose of IFNy (Figure 3.7A).
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We next assessed the effect of butyrate in vivo using our gnotobiotic mouse model.
Since orally supplemented butyrate is rapidly absorbed in the duodenum and therefore does
not reach the colon, we administered tributyrin, a precursor of butyrate that is slowly
converted to butyrate in the colon by pancreatic lipases, to gnotobiotic mice monocolonized
with E. faecalis or CBBP. We observed a trend, although not statically significant, that
tributyrin-treated mice exhibited decreased MHC-II expression by colonic IECs in the
presence of E. faecalis monocolonization, compared to vehicle-treated group (Figure
3.7B). Thus, butyrate could suppress MHC-II expression in vitro, but its potential in vivo

effects require further investigation.
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Figure 3.7. Butyrate suppresses MHC-II expression by colonic IECs in vitro but not
in vivo. A, HLA-DR expression of HT-29 cells after 24 hours of stimulation with varying
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concentrations of IFNy and butyrate. B, Frequency of MHC-II+ EpCAM+ colonic IECs in
gnotobiotic mice colonized with B. producta or Enterococcus strains upon treatment with
vehicle control (glycerol) or tributyrin (TB). C, IP3 concentration in supernatant of E.
faecalis culture in BHI with and without addition of phytate. D, Fecal IP3 concentration of
gnotobiotic mice colonized with B. producta or E. faecalis. E, HLA-DR expression of HT-
29 cells after 24 hours of stimulation with varying concentrations of IFNy and IP3. All data
represent at least two independent experiments. Means = SEM are plotted. ***p < 0.001,
*#*¥%p < 0.0001 by one-way ANOVA test (B, D) or two-way ANOVA test (A, E).

The intestinal microbiota could also promote HDAC activity in the gut through the
microbial-derived metabolite inositol-1,4,5-triphosphate (IP3), a byproduct of dietary
phytate metabolism (Wu et al., 2020). We hypothesized that E. faecalis stimulates MHC-
IT expression by IECs through IP3 production. We confirmed the capability of E. faecalis
to metabolize dietary phytate, as demonstrated by the detection of IP3 in the culture
supernatant upon addition of phytate to E. faecalis culture (Figure 3.7C). However, we did
not detect a significant difference in IP3 production by E. faecalis in vivo, compared to
MHC-II non-inducers such as CBBP (Figure 3.7D). In addition, treatment of HT-29 cells
with IP3, with or without IFNy, did not affect MHC-II expression (Figure 3.7E).
Altogether, these data do not support the hypothesis that E. faecalis induces MHC-II

expression by IECs through modulation of HDAC activity.

Lantibiotic-producing B. producta improves GHVD survival through suppression of
Enterococcus bloom

Having demonstrated CBBP as MHC-II non-inducers, we next assessed whether
the CBBP cocktail has a potential therapeutic effect in the setting of GVHD. We colonized
GVHD mice with either E. faecalis and CBBP on day +4 and +5 post-transplant and
observed that CBBP colonization significantly improved survival compared to E. faecalis

colonization (Figure 3.8A). Colonization with CBBP also led to a reduction in fecal
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Enterococcus burden on day +7 post-BMT, compared to PBS-treated and E. faecalis-
colonized group (Figure 3.8B).
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Figure 3.8. Colonization resistance against Enterococcus by a B. producta strain
improves GVHD survival. A, Survival of GVHD mice colonized with lantibiotic-
producing B. producta or E. faecalis. B, Fecal Enterococcus absolute abundance on day
+7 post-BMT. C, Enterococcus absolute abundance in co-culture with conditioned media
from the lantibiotic-producing B. producta strain (B.p. SCSK) and a non-producer control
strain (B.,p. KH6). D, Enterococcus absolute abundance in co-culture with purified
lantibiotic from the culture supernant of B.p. SCSK compared to vehicle control (PBS). E,
Schematic of the interaction between Enterococcus and the intestinal epithelium through
CD4+ T cells and IFNy signaling pathway, leading to increased allo-antigen presentation
by IECs that induces activation of alloreactive T cells and subsequent development of
GVHD. All data represent at least two independent experiments. Means = SEM are plotted.
*p <0.05,**p <0.01, ***p <0.001, ****p < 0.0001 by Cox-proportional hazard ratio (A),
Kruskal-Wallis test (B-C) or Mann-Whitney U-test (D).
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The CBBP cocktail contains a strain of B. producta, termed B.p. SCSK, which
could suppress VRE growth through lantibiotic production (Kim et al., 2019). We next
assessed whether B.p. SCSK strain could also suppress commensal E. faecalis growth.
Treatment with conditioned media from B.p. SCSK culture strongly suppressed E. faecalis
growth in vitro, compared to untreated control and treatment with conditioned media from
the control strain B.p. KH6 that does not produce lantibiotic (Figure 3.8C). In addition,
treatment with purified lantibiotic also led to a strong reduction in E. faecalis growth in
vitro (Figure 3.8D). Altogether, these data support the potential therapeutic effect of CBBP

in ameliorating GVHD severity through suppression of Enterococcus growth.

Discussion

In this study, we described the role of the intestinal microbiota in the regulation of
MHC-II expression by IECs (Koyama et al., 2023; Tuganbaev et al., 2020). Specifically,
we demonstrated that E. faecalis could strongly upregulate MHC-II expression by IECs
both at steady state and during GVHD. Conversely, other strains of Enterococcus and of
specific obligate anaerobes such as B. producta did not induce MHC-II expression.
Importantly, Enterococcus domination was also strongly correlated with increased MHC-
II expression by colonic IECs during GVHD, further highlighting the importance of antigen
presentation by non-professional APCs to initiate the GVHD inflammatory cascade
(Koyama et al.,2011; Koyama et al.,2019). We also reported that Enterococcus induction
of MHC-II expression by IECs was mediated by IFNy signaling. Antigen presentation by
non-professional APCs, as regulated by the intestinal microbiota, also play a crucial role

in other disease settings (Beyaz et al., 2021; Kreisel et al., 2010). Thus, targeting the
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microbiome-gut epithelium MHC class II- IFNy axis presents a window of opportunity
across many therapeutic areas (Figure 3.8E).

In addition, we identified the potentially therapeutic effect of B. producta SCSK
strain to ameliorate GVHD severity and improve survival. B. producta SCSK strain
produces lantibiotic that suppresses both commensal and pathogenic Enterococcus growth
in vitro and in vivo (Kim et al., 2019). During allo-HCT, disruptions to the gut microbial
community could lead to pathogen outgrowth and subsequent enteric and systemic
infections, which could be prevented or reversed through restoring colonization resistance
by beneficial gut commensals (Buffie and Pamer, 2013; Khan et al., 2021; Taur et al.,
2012). Here, we demonstrated that colonization resistance against Enterococcus could also
ameliorate GVHD severity. We envision the use of B. producta SCSK strain as probiotics
prior to allo-HCT to prevent Enterococcus bloom or as a treatment in response to intestinal
Enteroocccus colonization to prevent the risk of GVHD-related mortality.

In conclusion, we reported a mechanism by which Enterococcus aggravates GVHD
through the upregulation of MHC-II expression by IECs. Future preclinical and clinical
studies may further delineate the relevance of these observations in allo-HCT patients.
Despite its pathogenic impact in the context of GVHD, enhanced antigen presentation by
the gut epithelium could be beneficial in other disease settings such as enteric infections
and gastrointestinal cancer (Alenghat et al., 2013; Beyaz et al., 2021; Heuberger et al.,
2023; Kreisel et al.,2010; Tuganbaev et al.,2020). Enterococcus could also confer benefits
in boosting immune responses during infection and cancer immunotherapy (Griffin et al.,

2021; Rashid et al., 2023). Additional mechanistic insights into the microbial-derived
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factors driving the interactions between Enterococcus with the gut epithelium, therefore,

may allow more precise utilization of this bacteria in a clinical setting.

Materials and Methods
Mice

Female C57BL/6J and BALB/cJ mice were purchased from the Jackson Laboratory
and maintained in our SPF facility. Female germfree BALB/cJ mice were born and
maintained in flexible isolators at the Weill Cornell Gnotobiotic Mouse Facility, fed
autoclaved feed and water, and routinely monitored for sterility. Villin-Cre (B6.Cg-
Tg(Vill-cre)1000Gum/J), TLR2 KO (B6.129-TIr2tm1Kir/J) and IFNyR fl/fl (C57BL/6N-
Ifngritm1.1Rds/J) mice were purchased from the Jackson Laboratory. In all experiments,
sex- and age-matched littermate controls were used. Mice were 6-12 weeks of age at the
beginning of experiments. All experiments procedures were conducted in compliance with

the institutional guidelines at MSKCC.

Bone marrow transplantation and assessment of GVHD

Bone marrow transplantation were performed as previously described (Shono et al.,
2014; Tsai et al., 2018). Briefly, BALB/cJ recipients received 900-cGy split-dosed lethal
irradiation and were transplanted with T-cell-depleted bone marrow (10 x 10° cells) and
enriched T cells (1 x 10 cells) from donor C57BL/6J mice. T cells were depleted from the
bone marrow with anti-Thy-1.2 and Low-Tox-M rabbit complement (CEDARLANE

Laboratories). Donor T cells were prepared from splenocytes, enriched for CD5+ T cells
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by Miltenyi MACS purification kit (routinely >90% purity). Mice were monitored daily

for survival and weekly for GVHD clinical scores (Cooke et al., 1996).

Bacterial species

The E. faecalis strain used in this study was isolated from a BALB/cJ mouse with
GVHD on day +7 post-transplant by plating homogenized fecal pellets in sterile PBS on
Enterococcosel agar medium (Becton Dickinson). The following commercial bacteria
species and strains were sourced as follows: E. durans 23C2 (ATCC 6056), E. hirae R
(ATCC 8043) and E. gallinarum NCDO 2313 (ATCC 51559). All Enterococcus strains
and species were grown at 37°C under ambient atmosphere in autoclaved Gibco Bacto
Brain Heart Infusion medium (Fisher Scientific).

C. boltea, B. producta SCSK, B.producta KH6, B. sartorii and P. distasonis strains
were kindly provided by Eric Pamer (University of Chicago). These strains were cultured
in pre-reduced and autoclaved Brain Heart Infusion medium supplemented with yeast
extract (5 g/L) and L-cysteine (1 g/L) at 37°C under anaerobic atmosphere.

For colony-forming unit (CFU) assay, fecal samples were sterilely collected,
weighed, resuspended in sterile PBS, homogenized by douncing with sterile pestles,
serially diluted in sterile PBS, and then plated by drip assay onto selective Enterococcosel
agar plates.

Bacterial lysates were prepared by growing bacteria until log phase overnight.
Pelleted bacteria were washed twice with sterile PBS, resuspended in sterile PBS

supplemented with 250 pL/mL of MD solution. MD solution contained 0.1M MgCl, and

100 pg/mL DNase I in sterile water. Autoclaved zirconium beads (0.Imm size, 400
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mg/tube) were added to the bacterial suspension, and bacteria was disrupted using a Bead
beater (Fast-Prep24; program: 6.5 M/S; 30 seconds) for three times, with rest on ice in
between each repeat for one minute. After the last bead beating cycle, samples were rested
on ice for 5 min, centrifuged at 7500g for 5 min. Supernatant was collected, sterile filtered
and stored in -20°C. Protein concentration was quantified by Bradford assay (Thermo

Scientific).

Cell culture

The following cell lines were used and sourced as follows: HT-29 (ATCC HTB-
38) and HEK293-mTLR2 (Invivogen hkb-mtlr2). HT-29 cells were cultured at 37°C and
5% CO, in complete McCoy’s SA (ATCC 30-2007) supplemented with 10% fetal bovine
serum, 100 U/mL penicillin and 100 pg/mL streptomycin. HEK293-mTLR?2 cells were
cultured at 37°C and 5% CO, in complete DMEM (ThermoFisher) supplemented with 10%
fetal bovine serum, 100 U/mL penicillin, 100 pg/mL streptomycin and 100 pg/mL
Normocin (Invivogen). Cells were maintained at no greater than 80% confluency and
subcultured accordingly using Trypsin. Cells were routinely tested for mycoplasma.

For experiments using bacterial protein lysates, HT-29 cells were cultured in
complete media supplemented with recombinant human IFNy (15 U/mL; Peprotech), along
with bacterial crude protein lysates (15 pg/mL) or LPS (50 ng/mL; ThermoFisher) for 5
days before collecting the cells for flow cytometry analysis. For experiments using butyrate
and IP3, HT-29 cells were cultured in complete media supplemented with varying

concentrations of recombinant human IFNy and sodium butyrate (Sigma) or D-myo-
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Inositol 1, 4, 5-triphosphate trisodium salt (Sigma) for 24 hours before collecting the cells

for flow cytometry analysis.

Bone marrow-derived dendritic cell culture and mixed lymphocyte reaction

Bone marrow cells were isolated from wildtype BALB/cJ mice, cultured in
complete RPMI supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100
pg/mL streptomycin, along with recombinant GM-CSF (20ng/mL; Peprotech) and IL-4 (5
ng/mL; Preprotech) for 6 days. On day 6, BMDCs were matured with various
concentrations of bacterial lysates or with LPS (50 ng/mL; Sigma) for 24 hours. BMDCs
were collected by scraping and used for flow cytometry analysis of activation markers or
subsequent MLR. Culture supernatant was collected for cytokine analysis with
ProcartaPlex Multiplex Immunoassay per the manufacturer’s instructions (Affymetrix).
Cytokine concentration results were acquired with a Luminex 200 instrument and analyzed
with xPONENT software (Luminex Corporation).

For subsequent MLR, activated BMDCs were used as stimulators. Splenic T cells
from wildtype C57BL/6J mice were isolated using Miltenyi MACS purification of Pan T
cells (routinely >95% purity). Isolated T cells were labeled with carboxyfluorescein
succinimidyl ester (CFSE) to measure proliferation, as indicated by the percentage of
CFSElv/medum cells by flow cytometry analysis. 100,000 T cells were mixed with 10,000

stimulated BMDCs and co-cultured in a 96-well U-bottom plate for 96 hours.
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Bacterial administration

In the germfree setting, bacteria were administered through a single dose of oral
gavage. On the day of administration, frozen bacterial stocks were thawed, pelleted by
centrifugation at 4,000g for 10 min and resuspended in sterile PBS (3 x 108 CFUs/mouse).
Mice were euthanized on day +14 relative to colonization day for profiling of IECs by flow
cytometry, unless otherwise indicated.

For GVHD experiments in the SPF setting, BALB/cJ recipients were provided with
sterile-filtered drinking water supplemented with ampicillin (0.5 g/L; Sigma) and
enrofloxacin (0.25 g/L; Sigma) as previously described (Staffas et al., 2018). Antibiotic
treatment started at day -2 pre-BMT and continued until day 3 post-BMT until antibiotic
solutions were replaced with regular drinking water. On day 4 and 5, bacteria were
administered via oral gavage (3 x 108 CFUs/mouse).

For steady state experiments in the SPF setting, mice were provided with sterile-
filtered drinking water supplemented with ampicillin (1 g/L; Sigma), vancomycin (0.5 g/L;
Sigma), metronidazole (1 g/L; Sigma), neomycin (1 g/L; Sigma) and glucose (1 g/L;
Sigma) for 10 days. Bacteria were administered via oral gavage for the subsequent 3
consecutive days. On the day prior to administration, bacteria were inoculated into growth
medium and grown overnight to late logarithmic phase. The following day, overnight
cultures were pelleted by centrifugation and resuspended in sterile PBS (8 x 10
CFUs/day/mouse). FMT was carried out as fast as possible to avoid prolonged aerobic
exposure. Microbiome samples were collected from the cecal content of a healthy, naive

C57BL/6 into a Falcon tube containing 1 mL sterile PBS. Samples were homogenized,
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filtered through a 100 uM strainer and immediately administered to recipient mice pre-

treated with antibiotics.

Cell isolation and flow cytometry

Single cell suspensions from intestinal tissues were prepared as previously
described (Stein-Thoeringer et al., 2019). Briefly, intestinal tissue was excised from mice,
thoroughly rinsed with ice-cold PBS to clean out luminal content and opened
longitudinally. The tissue was then cut into pieces of 1cm length and incubated in PBS
containing ImM EDTA and 1mM DTT (Teknova) at 37°C for 30 min while shaking at 250
rpm. Epithelial cells were collected, filtered, centrifuged, and subsequently incubated with
staining buffer (PBS, 0.5% BSA, 2mM EDTA) containing anti-mouse CD16/32 blocking
agent (1:400; BD Pharmingen 553142) for 15 min on ice. Samples were protected from
light from this point forward. Samples were washed with staining buffer and then incubated
with antibody cocktail for 30 min on ice. Antibodies were procured and used as follows:
anti-CD45 (1:800; BV711, 30-F11, BioLegend 103147), anti-CD31 (1:200; BV605, 390,
BioLegend 102427), anti-CD326 (1:200; PE-Cy7, G8.8, eBioscience 25-5791-80) and
anti-I/A-I/E (1:200; APC, M5/114.15.2, eBioscience 17-5321-82). After staining, cells
were washed with staining buffer and resuspended in staining buffer containing DAPI
(1:200). Multiparameter analysis was performed on a FACS Symphony A5 (BD
Biosciences) flow cytometer and analyzed with FlowJo software (Tree Star). When
applicable, gating was determined using isotype control.

FACS sorting experiment followed a similar protocol as described above.

Antibodies were procured and used as follows: anti-CD45 (1:1600; FITC), anti-CD31

85



(1:200;) and anti-CD326 (1:200; PE-Cy7, G8.8, eBioscience 25-5791-80). Samples were

sorted on SH800S Cell Sorter (SONY) to >98% purity.

DNA extraction and 16S rRNA sequencing

DNA was extracted from mouse fecal samples using a phenol-chloroform bead
beating protocol and genomic 16S ribosomal RNA gene V4-V5 variable region was
amplified and sequenced on the Illumina MiSeq platform as previously described (Jenq et
al., 2015). Amplicon sequence variants (ASVs) were inferred following the DADA2

pipeline (Callahan et al.,2016) and classified to the genus level against the NCBI database.

RNA sequencing and analysis

CD45- CD31- EpCAM+ intestinal epithelial cells from the colon of GVHD mice
on day +7 post-BMT and from gnotobiotic mice on day +14 post-colonization were
isolated and FACS-sorted. RNA was isolated using TRIzol (Invitrogen) and phase
separation as induced with chloroform. RNA was extraction from the aqueous phase using
the miRNeasy Micro or Mini Kit (Qiagen) on the QIAcube Connect (Qiagen) according to
the maufacturer’s instructions. Smaple was eluted in RNase-free water.

After RiboGreen quantification and quality control by Agilent BioAnalyzer, total
RNA was amplified using TruSeq Stranded mRNA LT kit (Illumna) according to the
manufacturer’s instructions, with 8 cycles of PCR. Samples were barcoded and run on the
NovaSeq 6000 in a PE100 run using the NovaSeq 6000 S4 Reagent Kit (200 Cycles;

Illumina).
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TLR stimulation test

TLR stimulation is tested by assessing NF-kB activation in the TLR expressing cell
lines (InvivoGen). The activity of the test articles is tested on nine different human TLRs
(TLR1/2,2/6,2,3,4,5,7,8 and 9) and eight mouse TLRs (mTLR2,3,4,5,7,8,9 and 13)
as potential agonists. HEK-Blue hTLR?2 cells have been stably transfected with human
TLR2 and CD14. In HEK-Blue hTLR2-TLR1 cells endogenous TLR1 and TLR6 genes
have been neutralized and human TLR1, TLR2 and CD14 have been stably transfected. In
HEK-Blue hTLR2-TLR6 cells endogenous TLR1 and TLR6 genes have been neutralized
and human TLR2, TLR6 and CD14 have been stably transfected. The activity of the test
articles is tested at the concentration of 10 ng/mL and compared to control ligands.

The secreted embryonic alkaline phosphatase (SEAP) reporter is under the control
of a promoter inducible by the transcription factor NF-#B. This reporter gene allows the
monitoring of signaling through the TLR, based on the activation of NF-»B. In a 96-well
plate (200 pL total volume) containing the appropriate cells (50,000 — 75,000 cells/well),
20 pL of the test article or the positive control ligand is added to the wells. The media
added to the wells is designed for the detection of NF-»«B induced SEAP expression. After
a 24-hour incubation the optical density (OD) is read at 650 nm on a Molecular Devices

SpectraMax 340PC absorbance detector.

In vivo CD4 depletion

Monocolonized mice were treated with anti-CD4-depletion antibody (250
pg/dose/mouse; BioXCell) or isotype control (rat IgG2b; BioXCell) by intraperitoneal

injection on day -3, -1, +4 and +11 relative to colonization day.
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Tributyrin administration in gnotobiotic setting
Monocolonized mice were treated with tributyrin (150 mM; Sigma) or equimolar
glycerol vehicle control by oral gavage three times a week starting on the day of bacterial

administration.

IP3 ELISA

Fecal pellets were homogenized in 250 pL of sterile PBS then centrifuged at 1,000
g for 10 min. E. faecalis was grown in BHI overnight supplemented with phytic acid
sodium salt hydrate (1 mM; Sigma). Overnight culture was centrifuged at 4,000 RPM for
10 min Supernatants were collected and IP3 levels were determined using mouse inositol

1,4,5, -triphosphate ELISA kit (MyBioSource) following the manufacturer’s instructions.

Lantibiotic purification and co-culture

Co-culture of E. faecalis with conditioned supernatant from B. producta SCSK or
KH6 strains and purified lantibiotic was performed as previously described (Kim et al.,
2019). Briefly, a frozen aliquot of B. producta was inoculated and cultured for 24 hours.
Culture supernatant was collected by centrifugation at 4,000 RPM for 10 min and
subsequent filtration (0.22 pum). Supernatants were diluted 1:2 with culture broth. E.
faecalis was subsequent inoculated (103 CFUs/mL), cultured for 24 hours and enumerated
at the end of the experiment.

To purify lantibiotic from the culture supernatant of B. producta, ammonium sulfate
was added to 45% saturation and equilibrated overnight stirring at 4°C. The precipitate was

collected by centrifugation at 3000 g for 30 min at 4°C, resuspended with 5 mL sterile
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dPBS and dialyzed through the Amicon Ultra 3 KDa filter with dPBS to wash out the
residual ammonium sulfate. Total protein concentrations were quantified with the BCA
protein assay kit (Thermo Fisher), normalized (2 mg/mL), sterile filtered and diluted in
culture broth (20 pg/mL). E. faecalis was inoculated (10° CFUs/mL), cultured for 24 hours

and enumerated at the end of the experiment.

Statistical analysis

Results are shown as means = SEM, unless otherwise indicated. Tests between two
groups used a two-tailed Student’s t-test or a Mann-Whitney U-test. Tests between more
than two groups used a one-way ANOVA with Tukey or a Kruskal-Wallis test with Dunn
for multiple comparisons. Linear regression was used to assess correlations between two
data sets. Survival curves were evaluated using a log-rank Mantel-Cox test with p-values
adjusted for multiple comparisons. Results were considered significant at *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001. Statistical significance was calculated using Prism

version 9.0 (GraphPad Software).
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CHAPTER FOUR

CONCLUDING REMARKS

This thesis focuses on the interactions between pharmacological exposures, the
intestinal microbiota and the immune system in the context of allo-HCT. Several studies
have demonstrated the association between the intestinal microbiota and clinical outcomes
following allo-HCT (Holler et al., 2014; Peled et al., 2020; Stein-Thoeringer et al., 2019).
Therefore, interventions to minimize disruptions to the intestinal microbiota are of
significant clinical importance. One such intervention involves the stewardship of
pharmacological exposures, minimizing the collateral damage of medications on the
intestinal microbiota (Weersma et al., 2020; Zimmermann et al., 2021). While preclinical
and clinical studies have demonstrated the detrimental impact of broad-spectrum
antibiotics on the intestinal microbiota (Fishbein et al., 2023), the influence of non-
antibiotic medications on the gut microbes is less well-understood, especially in the human
setting. We investigated the associations between various pharmacological exposures
(encompassing both antibiotic and non-antibiotic drug classes) on the intestinal microbiota.

Our study enabled the identification of medication-microbiome associations using
a high-throughput approach and showed the power of those associations in predicting
clinical outcomes. However, important limitations exist, and the interpretation of the
results should be performed with care. (i) This study analyzes a retrospective cohort study.
Controlled experiments are required to confirm whether our predictions are causal or
not. (ii) Drug-microbiome interactions are potentially dependent on drug dosing, which we

did not account for. (iii) While synergistic and antagonistic drug interactions have been
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reported (Yeh et al., 2009), our model assumes drugs to act independently from each other.
(iv) Transplant-specific effects, such as conditioning intensity and graft type, are not fully
captured by our model. We assume those effects are partially attenuated by atime
parameter and the medication protocol depending on transplant type and conditioning
regimen. (v) Medication exposure is only one component among the various perturbations
a patient is subjected to. Other environmental factors have also been associated with
changes in the intestinal microbiome. For example, dietary intake has been shown to play
a major role in shaping the intestinal microbiota in both healthy individuals and cancer
patients (Gacesa et al., 2022; Spencer et al.,2021; Wu et al., 2011). Future efforts to collect
dietary intake data could help elucidate further the association between diet, changes in the
intestinal microbiota and clinical outcomes of allo-HCT patients. Finally, we envision
PARADIGM to be a valuable tool to investigate microbiome dynamics in vivo and await
its application to other comparable datasets, encompassing drug exposures and other
environmental factors, to replicate and extend the results in this study.

In the events that microbiome disruption is unavoidable, understanding of the
immunological mechanism underlying microbe-host interactions could provide additional
therapeutic approaches to maximize clinical outcomes following allo-HCT. Several
preclinical and clinical studies have reported that the genus Enterococcus is strongly
associated with an increased risk of GVHD-related mortality following allo-HCT (Holler
et al., 2014; Stein-Thoeringer et al., 2019). Our study demonstrated that intestinal
Enterococcus colonization could upregulate MHC-II expression by IECs at non-

transplanted steady state and during GVHD. Modulation of MHC-II expression by IECs is

dependent on IFNy signaling from CD4+ T cell subsets. Several microbial taxa have been
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identified as inducers of MHC-II expression by IECs (Koyama et al., 2023; Tuganbaev et
al., 2020). Although previous studies have demonstrated the involvement of the innate
immune signaling such as TLR (Beyaz et al.,2021; Koyama et al.,2019), we observed that
the regulation of gut epithelium antigen presentation by Enterococcus occurred
independently of TLR2 signaling and in the absence of DCs. Future studies are important
to delineate further the involvement of other immune and non-immune cell types in the
regulation of antigen presentation by IECs. In addition, identification of microbial derived
molecules driving IFNy signaling from CD4+ T cells and subsequent MHC-II expression
by IECs will further provide important mechanistic insights into gut epithelium-microbe
interactions.

Collectively, this thesis supports the development of microbiome-based
therapeutics to prevent and ameliorate GVHD pathophysiology and improve patient
outcomes following allo-HCT. We envision various potential approaches, including (1) the
optimization of pharmacological exposures to limit perturbations to the intestinal
microbiota, and (ii) the targeted elimination of pro-inflammatory microbial taxa by
rationally designed probiotics to restore intestinal epithelium homeostasis. Importantly, the
data from our studies could be extended beyond allo-HCT, given the involvement of the
gut microbiota in several other diseases, including inflammatory bowel disease and

gastrointestinal cancer.
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