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ABSTRACT 

 

The intestinal microbiota, which refers to a community of bacteria, fungi, viruses, 

and protozoa that lives in the gastrointestinal tracts, plays an important role in human health 

and disease. Particularly in the context of allogeneic hematopoietic cell transplantation 

(allo-HCT), preclinical and clinical studies have demonstrated that the intestinal 

microbiota is an important predictor of clinical outcomes. Allo-HCT is a potentially 

curative treatment for a variety of hematological malignancies. However, transplant-

associated complications such as acute graft-versus-host disease (GVHD) can compromise 

patient long-term survival after allo-HCT. Perturbations to the intestinal microbiota during 

allo-HCT may result in a decline of biomass diversity and an increase in domination by 

bacteria in the genus Enterococcus, which have been associated with an increased risk of 

GVHD-related mortality. These data highlight the potential clinical importance of 

preserving the intestinal microbiome to maximize patient outcomes post-allo-HCT. In 

addition, mechanistic understandings of the interactions between gut microbes and the 

immune system, specifically focusing on microbial modulation of antigen-presenting cells 

and T cells, are crucial to develop microbiome-based therapeutics to enhance the efficacy 

and alleviate the toxicity of allo-HCT.   

In this thesis, we investigated the association between pharmacological exposures 

and the intestinal microbiome. We developed a novel computational method, termed 

PARADIGM (PARameters Associated with DynamIcs of Gut Microbiota), and applied it 

to a large data set of longitudinal fecal microbiome profiles and detailed medication-

administration records from allo-HCT patients. We observed that several non-antibiotic 
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medications, including laxatives, antiemetics, and opioids, are associated with decreased 

intestinal bacterial diversity and increased Enterococcus relative abundance. We integrated 

drug-microbiome associations to predict clinical outcomes in two validation cohorts on the 

basis of drug exposures alone, suggesting that this approach can generate biologically and 

clinically relevant insights on how pharmacological exposures can perturb or preserve 

microbiota composition. 

Next, we turned to mouse models of allo-HCT to understand the immunological 

mechanism by which Enterococcus, a genus of Gram-positive facultative bacteria, 

aggravates GVHD. We observed that endogenous Enterococcus relative abundance is 

associated with increased mortality and MHC-II expression by the intestinal epithelial cells 

(IECs) of GVHD mice. Monocolonization of gnotobiotic mice with Enterococcus is 

sufficient to induce MHC-II expression by colonic IECs at non-transplanted steady state. 

These observations suggest an enhanced capacity of IECs to present antigens and activate 

donor T cells, thereby initiating the inflammatory GVHD cascade. We also explored a 

potential interventional approach to improve GVHD survival using a strain of Blautia 

producta that confers colonization resistance against Enterococcus through lantibiotic 

production. Altogether, these findings highlight the regulation of gut epithelium antigen 

presentation by the intestinal microbiota as a potential therapeutic target to prevent and 

ameliorate GVHD pathophysiology.  
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CHAPTER ONE 

INTRODUCTION* 

 

The digestive tract harbors the largest microbial community of the mammalian 

body. These microorganisms have a significant capacity to interact with and influence their 

host through direct contact with both parenchymal and hematopoietic cell populations and 

production of circulating metabolites. Advances in sequencing technologies in recent years 

have facilitated the rapid progress in clinical associative studies. In turn, these studies have 

served as valuable hypothesis-generating tools for mechanistic studies in preclinical animal 

models. 

 

 

 

 

 

 

 

 

 

 

*  Nguyen, C.L., Docampo, M.D., van den Brink, M.R., Markey, K.A. (2021). The role of 

the intestinal microbiota in allogeneic HCT: clinical associations and preclinical 

mechanisms. Curr Opin Genet Dev 66, 25-35.  
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Allo-HCT is a curative-intent treatment for patients with hematological 

malignancies. However, it is a high-risk therapy, as overall post-transplant mortality 

remains in the order of 50%, most commonly due to disease progression or relapse, 

infection and GVHD (D’ Souza A, 2019). Acute GVHD (aGVHD) is a systemic, 

potentially fatal condition that occurs following allo-HCT, in which donor-derived T cells 

recognize host antigens as foreign, resulting in cytotoxic tissue damage to predominantly 

the skin, the liver and the gastrointestinal tract (Ferrara et al., 1999). This introductory 

section outlines our current understanding of the role of the intestinal microbiota in allo-

HCT and GVHD from both clinical and preclinical studies (Figure 1.1). 

 

Figure 1.1. Intestinal microbiota dysbiosis and patient outcomes following allo-HCT. 
Allo-HCT patients are exposed to various environmental conditions including cytotoxic 
conditioning regimens, antibiotics, and dietary changes that might contribute to alterations 
in the intestinal microbiota. These injuries to the intestinal microbiota, in turn, are 
associated with transplant outcomes such as infections, immune reconstitution, GVHD and 
relapse through various different immunological mechanisms involving different 
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hematopoietic and non-hematopoietic cell populations. Strategies to restore the intestinal 
microbiota health include fecal microbiota transplantation, de-escalated antibiotic 
exposures and enteral diets that promote the growth of beneficial bacteria. VRE, 
vancomycin-resistant Enterococcus; MAIT, mucosal-associated invariant T cell; ILC, 
innate lymphoid cell; APC, antigen-presenting cell; Th, T helper.  
 

Environmental exposures and intestinal microbiome dynamics  

Microbial diversity, a summary measurement of the richness and evenness of 

unique bacterial taxa, is a useful measure of intestinal microbiota health. Several groups 

have observed a decline in intestinal microbial diversity manifesting early in the course of 

allo-HCT, and this injury to the intestinal microbiota is associated with lower overall 

survival after allo-HCT (Peled et al., 2020; Ying Taur, 2014). Exposures to broad-spectrum 

antibiotics are associated with a decrease in the intestinal microbiota biodiversity during 

allo-HCT, although other factors such as dietary changes, conditioning regimens and other 

medications are likely to influence the post-HCT intestinal microbiota dynamics (Table 

1.1) (Stoma et al., 2020; Taur et al., 2014).  

 

Table 1.1. Potential modulators of the intestinal microbiota during allo-HCT  

Factors  Impacts References 
Antibiotics 
Broad-spectrum antibiotics (β-
lactam, metronidazole, 
meropenem) 

Broad-spectrum antibiotics 
target obligate anaerobes 
which are typically 
producers of short-chain 
fatty acids in the gut and 
allows the expansion of 
opportunistic pathogens 

(Shono et al., 2016; 
Stoma et al., 2020) 

Imipenem-cilastatin Imipenem-cilastatin 
treatment in mice leads to 
expansion of the mucus-
degrading bacteria 
Akkermansia  

(Shono et al., 2016) 
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Fluoroquinolones Prophylactic 
fluoroquinolones lead to a 
decreased risk of intestinal 
domination by Gram-
negative bacteria  

(Taur et al., 2012) 

Transplant-associated factors 
Conditioning chemotherapy: 
carmustine, etoposide, aracytin 
and melphalan 

After conditioning, the 
intestinal microbiota 
diversity declined, 
accompanied by a decrease 
in Faecalibacterium 
abundance and an increase 
in Escherichia abundance  

(Montassier et al., 
2014) 

Conditioning intensity Patients receiving non-
myeloablative conditioning 
regimens have higher 
intestinal diversity at 
engraftment time compared 
to patients receiving 
myeloablative conditioning 
regimens 

(Taur et al., 2014) 

Total body radiation Total body radiation in mice 
leads to reduction in the 
intestinal microbiota 
diversity and a shift in the 
overall microbial 
compositions compared to 
controls 

(Zhao et al., 2019) 

Immuno-suppressive 
medications (methotrexate, 
cyclosporine A) 

In a high-throughput in vitro 
drug screen, some human-
target drugs show 
antibacterial activities to 
some commensal bacterial 
strains often found in the 
human gut  

(Maier et al., 2018) 

Diet 
Total parenteral nutrition (TPN) Use of long-term TPN (≥10 

days) is associated with a 
loss of Blautia  

(Jenq et al., 2015) 

Western diet/Fiber-free diet Mice fed on a prolonged 
fiber-free diet experience 
decreased intestinal 
microbiota diversity, a 
decrease in Bifidobacteria 
and an increase in mucus-
degrading Akkermansia 

(Desai et al., 2016; 
Schroeder et al., 2018) 
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Dietary fiber inulin 
supplementation 

Inulin supplementation 
restores mucus functions in 
mice fed on a Western diet 
and restore microbiota loads  

(Zou et al., 2018) 

High-fiber (pectin, cellulose) 
diet  

High-fiber diets containing 
cellulose and pectin lead to 
increased cecal and 
systemic levels of short-
chain fatty acids such as 
acetate, propionate and 
butyrate 

(Lewis et al., 2019) 

Host genetics 
rs4988235 SNP conferring 
lactase expression and lactose 
intolerance in European 
populations 

C/C SNP is associated with 
non-absorbers of lactose and 
increased risk of 
Enterococcus domination 
after allo-HCT 

(Stein-Thoeringer et 
al., 2019) 

Paneth cell ⍺-defensin-5 gene 
SNPs 

rs4415345G is associated 
with a higher abundance of 
a butyrogenic obligate 
anaerobe, Odoribacter 
splanchnicus, which is 
associated with a reduced 
risk of acute GHVD  

(Rashidi et al., 2020) 

NLRP6 deficiency NLRP6 deficiency in the 
intestinal epithelial cells 
leads downregulation of IL-
18 and alters the AMP 
production to a profile that 
favors intestinal microbiota 
dysbiosis 

(Levy et al., 2015) 

 

One of the first indications that the intestinal microbiota could play a role in 

transplant outcome came from the observation that transplanted germ-free mice had 

improved survival compared to specific-pathogen free (SPF) mice with intact microbiota 

(van Bekkum et al., 1974). Since then, clinical strategies aimed at “decontaminating” the 

gut have been an area of active investigation, although these clinical trials have produced 

conflicting results, suggesting the need for mechanistic studies using preclinical models to 

fully identify important taxonomic groups and their interactions with the host during allo-
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HCT (Fredricks, 2019). Several clinical studies have reported associations between 

specific features of the intestinal microbiota and transplant outcomes, some favorable and 

some unfavorable (Golob et al., 2017; Holler et al., 2014; Jenq et al., 2015; Peled et al., 

2017; Peled et al., 2020; Simms-Waldrip et al., 2017; Taur et al., 2012). Many currently 

active clinical trials employ therapeutic strategies that aim to eliminate microbiome 

features associated with adverse transplant outcomes, while preserving features associated 

with desirable outcomes (Taur et al., 2018).  

 

Interactions between the intestinal microbiome and the mammalian host  

The mechanisms by which the gut commensals influence local and systemic 

immunity include both direct interactions with immune cells, and indirect interactions via 

secreted microbial metabolites, such as short-chain fatty acids (SCFAs), secondary bile 

acids and other small molecules (Belkaid and Harrison, 2017) (Figure 1.2).  

Short-chain fatty acids (SCFAs), such as butyrate, propionate and acetate, are 

produced as a result of the fermentation of dietary fiber by the intestinal microbiota. 

Butyrate (and to a lesser extent propionate) acts as a histone deacetylase inhibitor to 

promote the differentiation of colonic FoxP3+ regulatory T cells (Tregs) in mice (Arpaia et 

al., 2013; Furusawa et al., 2013). Propionate and acetate also induce anti-inflammatory 

responses and improve intestinal epithelial barrier integrity (Fukuda et al., 2011; Trompette 

et al., 2014).   Secondary bile acids, which are produced as a result of microbial metabolism 

of primary bile acids excreted by the liver, can also induce differentiation of peripheral 

Tregs (Campbell et al., 2020; Hang et al., 2019). Microbe-derived indole derivatives from 

tryptophan metabolism confer a protective effect against epithelial barrier damage after 
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total body irradiation (TBI) and in a chemically induced colitis model (Shimada et al., 

2013; Swimm et al., 2018). Moreover, the intestinal microbiota also produces many 

metabolites that act as ligands for the aryl hydrocarbon receptors (AhR), which are 

expressed by many cell types, and can play an important role in the induction and 

development of immune-mediated diseases (Lee et al., 2011; Manfredo Vieira et al., 2018; 

Zelante et al., 2013) (Figure 1.2).  

The intestinal microbiota contributes to the maintenance and degradation of the 

mucus layer in the gastrointestinal tract, which forms a protective barrier between microbes 

and IECs. However, the outgrowth of bacteria with mucus-degrading activities can 

potentially lead to impaired intestinal barrier integrity in mice (Desai et al., 2016; 

Schroeder et al., 2018; Sovran et al., 2019). In addition, the intestinal microbiota also 

modulates antimicrobial peptide (AMP) production by IECs, such that disruption of the 

endogenous microbiota can affect AMP expression to favor the expansion of pathogenic 

bacteria in mice (Levy et al., 2015) (Figure 1.2). Alternatively, host genetics can also 

modulate the intestinal microbiota compositions: NLRP6 deficiency in mice leads to 

aberrant AMP production that favors intestinal microbiota dysbiosis (Table 1.1) (Levy et 

al., 2015). Gut commensals can also directly induce the expression of critical innate 

immune effectors and AMPs to maintain intestinal mucosal integrity and prevent 

colonization by opportunistic pathogens (Cash et al., 2006; Fan et al., 2015). 
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Figure 1.2. Interactions between the intestinal microbiota and the mammalian host. 
Within the gut lumen and intestinal epithelial environment, the intestinal microbiota 
promotes mucus production from goblet cells, as well as AMP production from Paneth 
cells to maintain gut homeostasis. AMPs, in turn, regulate the intestinal microbial 
compositions. Signals from the intestinal microbiota also activate APCs such as 
macrophages and dendritic cells, leading to downstream production of cytokines that 
promote context-specific inflammation or tolerance. Dendritic cells can also migrate to 
lymphoid organs to present antigens and activate T cells, and microbially derived 
metabolites such as SCFAs and secondary bile acids could mediate this process by 
influencing T cell activation and differentiation. Other microbially derived products such 
as AhR ligands, bacterial DNA and bacterial components can also translocate across the 
intestinal epithelial barrier into systemic circulation, reaching distal organs such as the 
liver, the lung and the bone marrow and modulate the generation, activation and 
differentiation of different cell subsets at these sites. SCFA, short-chain fatty acid; AhR, 
aryl-hydrocarbon receptor; AMP, anti-microbial peptide; IL, interleukin.  
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Intestinal microbiota and graft-versus-host disease (GVHD)  

Several studies have reported that increased microbial diversity during the peri-

neutrophil engraftment period is associated with a decreased risk of GVHD-related 

mortality (Golob et al., 2017; Holler et al., 2014; Peled et al., 2020; Simms-Waldrip et al., 

2017; Taur et al., 2014). The intestinal microbial diversity during allo-HCT is most 

commonly determined through 16S ribosomal RNA sequencing of fecal samples that 

identify unique bacterial taxa and their relative abundance. Indoxyl sulfate, a product of 

the tryptophan metabolism by the intestinal microbiota, is a potential biomarker of 

intestinal biodiversity which can be measured in urine and has been studied in a pilot study 

of 31 allo-HCT patients (Holler et al., 2014). Decreased concentrations of these indole-

derived metabolites were observed in allo-HCT patients with active GVHD compared to 

patients without GVHD (Michonneau et al., 2019).  

Several specific members of the intestinal microbial community have been 

associated with either increased or decreased GVHD risks. SCFA-producing members of 

the families Lachnospiraceae and Ruminococcaceae, such as Blautia, Clostridium and 

Lachnoclostridium, are associated with protection against acute GVHD-related mortality 

and chronic GVHD development (Jenq et al., 2015; Markey et al., 2020). The absence of 

these beneficial bacteria, attributed to broad-spectrum antibiotic exposures, is correlated 

with an increased risk of GVHD development, specifically of the gastrointestinal tract (Han 

et al., 2018; Lee et al., 2019b). High relative abundance of Lachnospiraceae and 

Ruminococcaceae has also been correlated with an increased ratio of Treg/Th17 cells, 

potentially maintaining the balance of anti-inflammatory and pro-inflammatory responses 

during GVHD (Han et al., 2018; Han et al., 2019).  
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In addition, some bacterial taxa have been associated with increased GVHD 

severity. Enterococcus domination post-allo-HCT is associated with an increased risk of 

severe GVHD and GVHD-related mortality in allo-HCT patients and in mice (Holler et al., 

2014; Stein-Thoeringer et al., 2019). Furthermore, Enterococcus requires lactose as a 

source of nutrition for maximal growth, and patients with the single-nucleotide 

polymorphism associated with lactose intolerance (thus retention of lactose in the gut 

lumen) also saw an increased risk of Enterococcus domination following allo-HCT (Stein-

Thoeringer et al., 2019). Akkermansia expansion, which is associated with exposures to 

piperacillin/tazobactam and imipenem during transplant, is also correlated with an 

increased risk of GVHD-related mortality in both humans and mice (Desai et al., 2016; 

Shono et al., 2016). Moreover, this genus has been associated with an increased risk of 

chronic GVHD (Markey et al., 2020).   

The intestinal microbiota potentially contributes to the development of GVHD 

through multiple mechanisms. Tissue damage caused by conditioning regimens allow 

translocation of pathogen-associated molecular patterns such as lipopolysaccharide (LPS) 

across the intestinal barrier, which can activate the innate immune system and is thought 

to be key for initiation of GVHD (Cooke et al., 2001; Zhao et al., 2013). Exposure to 

imipenem leads to decreased gut barrier integrity, resulting in more severe GVHD in mice, 

potentially due to the resultant increase in relative abundance of Akkermansia (Shono et 

al., 2016). Treatment with indole-3-carboxaldehyde, an indole derivative, limits gut 

epithelial damage and prevents the initial cascade of inflammatory responses triggered by 

TBI in a mouse model of GVHD (Swimm et al., 2018). Other indole derivatives can also 

activate aryl hydrocarbon receptor (AhR) on innate lymphoid cells (ILCs) and induce IL-
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22 expression, which promotes epithelial regeneration after radiation and improves GVHD 

survival in mice (Lee et al., 2011; Lindemans et al., 2015; Zelante et al., 2013).  

In addition, propionate, and to a lesser extent butyrate, has been shown to promote 

the activation of the NLPR3 inflammasome in non-hematopoietic cells to ameliorate 

GVHD (Fujiwara et al., 2018). Furthermore, oral dosing of mice with 17 butyrate-

producing Clostridium strains after allo-HCT restores the intestinal butyrate levels and 

improves intestinal epithelial integrity, thereby reducing GVHD severity (Mathewson et 

al., 2016). Oral administration of butyrate in a mouse model of allo-HCT also mitigates 

GVHD through enhancing epithelial cell barrier functions, reducing apoptosis, and 

increasing expression of tight junction proteins (Mathewson et al., 2016). 

Bacteria signal through toll-like receptors (TLRs) to recruit neutrophils into the 

ileum after allo-HCT, where they generate reactive oxygen species that further amplify 

radiation-induced damages in the gastrointestinal tract of recipient mice (Schwab et al., 

2014). Neutrophil migration from the ileum to the mesenteric lymph nodes also depends 

on the intestinal microbiota, promoting alloantigen presentation to donor T cells 

(Hulsdunker et al., 2018). The intestinal microbiota also promotes MHC-II expression on 

IECs in a MyD88/TRIF-dependent manner, following the cues of inflammatory cytokines 

IFNg and IL-12 (Koyama et al., 2019). In addition, professional donor-derived APCs such 

as CD103+ DCs migrate from the lamina propria to the mesenteric lymph nodes, where 

they promote the activation and proliferation of donor T cells through antigen presentation, 

and release inflammatory cytokines IL-6 and IL-12 in a MyD88/TRIF-dependent manner, 

suggesting the involvement of the intestinal microbiota in the activation and migration of 

APCs in GVHD pathophysiology (Koyama et al., 2015). Pre-transplant Enterococcus 
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colonization led to increased GVHD severity and mortality in a germ-free mouse model of 

GVHD. Feeding experimental mice a lactose-free diet prevented Enterococcus growth 

while preserving other members of the gut commensals, leading to improvement in GVHD-

related survival in a mouse model of allo-HCT (Stein-Thoeringer et al., 2019).  The specific 

mechanism by which Enterococcus modulates immune function during GVHD remains 

unclear and requires further investigation.  

Not unsurprisingly, the influence of the complex intestinal bacterial community on 

GVHD outcome is complex, with some bacterial taxa appearing to be protective and others 

pathogenic. This highlights the need for novel therapeutic approaches to enhance the 

protective taxa while eliminating or decreasing the pathogenic taxa. 

 

Introduction to the thesis 

Clinical investigations have described relationships between the intestinal 

microbiota during allo-HCT and GVHD. Preclinical studies have complemented these 

clinical findings by elucidating some key mechanisms, specifically focusing on APC 

activation and antigen-presenting functions, effector functions of T cells and key mediating 

cytokines such as IL-6, IL-12 and IFNg. In addition, studies into the potential modulators 

of the intestinal microbiota, including pharmacological exposures, dietary intakes, and host 

genetics, have provided additional insights regarding strategies to prevent and reverse 

microbiome perturbations. However, knowledge gaps persist that could potentially limit 

the clinical application of these findings.  

In my thesis, I have combined computational analysis of human data with 

preclinical mechanistic studies using mouse models to further elucidate the interactions 
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between the environment, the intestinal microbiota, and the immune system during allo-

HCT. Chapter two expands on our understanding of how non-antibiotic drug exposures are 

associated with the intestinal microbiome dynamics through the development of a novel 

computational method. Chapter three describes a mechanism by which a specific bacteria 

genus, Enterococcus, could aggravate GVHD through its influence on the intestinal 

epithelium antigen presentation. Altogether, these findings demonstrate a multi-pronged 

approach to preserve the health of the intestinal microbiota and its interaction with host 

immunity to maximize cancer treatment efficacy and safety.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

CHAPTER TWO 

HIGH-RESOLUTION ANALYSES OF ASSOCIATIONS BETWEEN  

MEDICATIONS, MICROBIOME AND MORTALITY IN  

CANCER PATIENTS* 

 

Introduction 

Gut microbiota perturbations have been associated with various diseases and 

frequently linked to environmental exposures including antibiotic use and nutritional 

deficiencies (Johnson et al., 2019; Korpela et al., 2016). Non-antibiotic drugs can also 

contribute to intestinal microbiota changes (Maier et al., 2018), but their effects in humans 

are less well-understood and challenging to study due to a lack of reliable drug exposure 

data (e.g. recall-based surveys of habitual use of chronic medications) (Korpela et al., 2016; 

Vieira-Silva et al., 2020), and the absence of densely-collected longitudinal fecal samples 

(Falony et al., 2016; Vich Vila et al., 2020). Moreover, several pioneering studies of 

medication exposures and microbiome composition focused on volunteers at relatively 

healthy steady states (Falony et al., 2016; Vieira-Silva et al., 2020).  

 

 

 

 

*  Nguyen, C.L., Markey, K.A., Miltiadous, O., Dai, A., Waters, N., Sadeghi, K., et al. 

(2023). High-resolution analyses of associations between medications, microbiome, and 

mortality in cancer patients. Cell 186(12): 2705-2718 e17. 
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Patients undergoing allo-HCT exhibit major perturbations of fecal microbiome 

composition that have been associated with increased risk of mortality (Holler et al., 2014; 

Peled et al., 2020; Stein-Thoeringer et al., 2019). These patients are exposed to a variety 

of drugs upon prolonged hospitalizations, during which a wealth of data is routinely 

gathered as part of their electronic health records. As such, this patient population, from 

which we have assembled a large bank of fecal specimens, presents a unique opportunity 

to investigate intestinal microbial responses to drug exposures in vivo.  

Previous studies in these patients have largely focused on the effect of antibiotics 

on the intestinal microbiota (Morjaria et al., 2019; Peled et al., 2020; Taur et al., 2012), yet 

many non-antibiotic drugs routinely administered during allo-HCT have demonstrated 

anti-bacterial activities in vitro (Maier et al., 2018). Furthermore, the microbiome 

perturbations in allo-HCT patients are observed prior to broad-spectrum antibiotic 

administration, suggesting a potential influence of transplant-associated medications 

(Shouval et al., 2022). Here, we inferred relationships between medications, microbiome 

composition, and clinical outcomes by developing, applying, and validating a new 

computational method named PARADIGM (PARameters Associated with DynamIcs of 

Gut Microbiota) to a large dataset of 16S rRNA and shotgun metagenomic sequencing 

profiles of serially collected fecal samples from allo-HCT patients.  

 

Results 

Clustering captures the intestinal microbiome temporal dynamics during allo-HCT 

The dataset consists of 9,167 fecal samples from 1,201 allo-HCT patients at 

Memorial Sloan Kettering Cancer Center (MSKCC; Figure 2.1 and Table 2.1). We 
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divided the MSKCC cohort into discovery (7,454 samples; 778 patients) and validation 

(1,713 samples; 423 patients) cohorts (Figure 2.1 and Table 2.2). We computed the 

compositional differences among discovery-cohort samples using Bray-Curtis b-diversity 

dissimilarity indices at the genus level for 16S rRNA-sequenced samples, or at the species 

level for shotgun metagenomic sequenced samples and visualized the high-dimensional 

stool composition data via t-stochastic neighbor embedding (tSNE; Figures 2.2A-B).  

 

Table 2.1. Patient and sample cohorts from MSKCC and Duke cohorts. 

 

 

 MSKCC 
Discovery  

MSKCC 
Validation  

Duke 
Validation 

Number of patients 778 423 142 
Number of patients with  
16S-sequenced samples  

778 405 138 

Number of 16S-sequenced samples 7,454 1,713 473 
Number of 16S-sequenced samples per 
patient, median (first-third quartile) 

7 (3 – 14) 3 (2 – 5) 2 (1 – 5) 

Number of patients with at least one 
pair of daily 16S-sequenced samples 
between day -14 and 14 relative to 
HCT  

454 - - 

Number of pairs of daily 16S-
sequenced samples between day -14 
and 14 relative to HCT   

2,039 - - 

Number of pairs of daily 16S-
sequenced samples per patient, median 
(first-third quartile) 

3 (1 – 7) - - 

Number of patients with shotgun 
metagenomic samples  

340 142 - 

Number of shotgun metagenomic 
samples 

980 200 - 

Number of patients with  
drug exposures data 

775 423 142 
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Figure 2.1. Patient selection criteria for the discovery and validation cohorts. The 
MSKCC discovery cohort was included in the clustering of sequencing data and 
PARADIGM algorithm training set. The validation cohorts were included in the analysis 
of clinical outcomes. FMT, fecal microbiota transplantation; PBSC, peripheral blood stem 
cell.  
 

We observed patterns of microbiome injuries, including loss of alpha-diversity and 

enrichment of potentially pathogenic bacteria such as Enterococcus and 

Enterobacteriaceae (Figures 2.2A-B). As has been well-described in allo-HCT patients, 

these domination events can be profound, to the point of a single taxon comprising >90% 

of the relative abundance of a fecal sample (Peled et al., 2020; Taur et al., 2012), and are 

predictive of specific deleterious clinical outcomes such as bloodstream infections, GVHD 

and mortality (Stein-Thoeringer et al., 2019; Stoma et al., 2021; Taur et al., 2012). A subset 

of 980 samples with shotgun metagenomic profiling also showed similar patterns of 

microbiome injuries during allo-HCT (Figure 2.2B). Specifically, we observed a cluster 
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of samples whose most abundant organisms were various strict anaerobes such as 

Ruminococcus gnavus or Erysipelatoclostridium ramosum, as well as distinct clusters 

enriched for potentially pathogenic facultative species including Enterococcus faecium, 

Klebsiella pneumoniae, and Escherichia coli.  

 

 

Figure 2.2. The intestinal microbiota of allo-HCT patients is highly dynamic. A, B, 
Compositional space of the intestinal microbiota in the MSKCC discovery cohort 
visualized by tSNE projection. Each point represents a sample, colored according to the 
taxon of highest relative abundance based on (A) 16S rRNA (7,454 samples; 778 patients) 
or (B) shotgun metagenomic sequencing profiles (980 samples; 340 patients) (p: phylum; 
f: family; o: order; g: genus). Samples were collected between day -30 and 2,205 relative 
to HCT. c, Ten clusters of intestinal microbiome compositions are assigned by k-means 
unsupervised clustering. D, E, Relative abundance of the top 20 most observed (D) genera 
in the 16S rRNA profiles and (E) species in the shotgun metagenomic profiles in the 
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MSKCC discovery cohort. Each column is one sample, each row is one genus or species. 
Rows are clustered by hierarchical clustering. F, Cluster alpha-diversity (reciprocal 
Simpson index). The horizontal dashed line represents the median alpha-diversity of the 
MSKCC discovery cohort. G, Cluster relative frequency over time relative to HCT. H, 
Network map depicting the transitions among the ten intestinal microbiota clusters over 
time (5,482 pairs of subsequent samples; 677 patients; collection between day -16 and 
1,084 relative to HCT). The thickness of the line is proportional to transition frequency, 
while the node size is proportional to the number of samples per cluster. 
 

The reproducibly observed microbiome perturbations in allo-HCT patients offer a 

unique opportunity to understand dynamics and evolution of relatively distinct perturbed 

microbiome compositions or states under environmental exposures, in contrast to the more 

fluid and non-discrete microbiota in healthy populations (Costea et al., 2018; DiGiulio et 

al., 2015; Human Microbiome Project, 2012; Munoz et al., 2021; Stewart et al., 2018). 

Given the mathematical challenge of reducing dimensionality complexity while preserving 

bacterial community structure, we performed unsupervised k-means clustering on the 

Bray-Curtis b-diversity matrix of samples in the discovery set and identified ten distinct 

microbiota clusters (Figure 2.2C). We also explored other clustering approaches including 

hierarchical clustering (Figures 2.3A-C) and Dirichlet Multinomial Mixtures (Figures 

2.3D-F) (Holmes et al., 2012). Since k-means clustering partitioned samples more evenly 

(Figure 2.3G), we utilized k-means clusters for our subsequent analyses.  
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Figure 2.3. Clusters of intestinal microbiota during allo-HCT were identified by other 
unsupervised clustering methods. A, D, Compositional space of the intestinal microbiota 
visualized by tSNE projection in the MSKCC discovery cohort. Each dot represents a 
sample, colored according to clusters assigned by (A) hierarchical clustering or (D) 
Dirichlet Multinomial Mixture (DMM) model. B, E, Alpha-diversity per cluster identified 
by (B) hierarchical clustering or (E) DMM. The horizontal dashed line represents the 
median alpha-diversity of samples in the MSKCC discovery cohort. C, F, Compositional 
characteristics per cluster identified by (C) hierarchical clustering or (F) DMM. Samples 
in which the relative abundance of the most common taxon is ³ 30% are color-coded by 
the most common taxon. Non-dominated samples are colored in white. (p: phylum; f: 
family; o: order; g: genus). G, Distribution of samples across 10 clusters identified by three 
unsupervised clustering methods. H, Optimal number of k-means clusters was estimated 
from the curve of within-cluster sum of square distances from each point to its cluster 
centroid. I, Optimal number of clusters identified by DMM was estimated by the smallest 
Laplace approximation metric. J, Correlation between cluster stability and alpha-diversity. 
Cluster stability was measured by self-transition probability. Alpha-diversity is defined as 
the cluster median reciprocal Simpson diversity. K, Co-exclusionary and inclusionary 
relationships associated with the stability of Enterococcus-high cluster 10.  
 

Lachnospiraceae and Clostridiales, which constitute major commensal taxa 

present in the healthy human gut, were commonly observed in clusters 1-3, which were 

also characterized by high alpha-diversity (when compared to the median diversity of the 

discovery cohort) (Figures 2.2D-F) (Qin et al., 2010). Clusters 7-10 represented low-

diversity “dysbiotic” states (Figures 2.2D-F). Intestinal domination by a single bacterial 

organism (³ 30% relative abundance) is a hallmark of severe intestinal dysbiosis (Taur et 

al., 2012). Lactobacillus, Proteobacteria and Streptococcus were highly enriched in 

samples in clusters 5, 8 and 9. Clusters 7 and 10 consisted of Enterococcus-dominated 

samples, with cluster 10 specifically enriched for E. faecium (Figure 2.2D-E). These 

compositional clusters also captured the temporal dynamics of the intestinal microbiota 

during allo-HCT: high-diversity clusters 1-3 were common pre-allo-HCT, while low-

diversity states, particularly clusters 7-10, were more prevalent after allo-HCT (Figure 

2.2G).  
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Table 2.2. Patient characteristics from MSKCC and Duke cohorts. IQR, interquartile 
range; sd, standard deviation; AML, acute myeloid leukemia; BM, bone marrow; PBSC, 
peripheral blood stem cell; PBSC T-cell depletion was performed by ex vivo CD34-
selection of the graft. 

 

This classification of samples into discrete microbiome states enabled us to model 

the complex changes in microbial communities as cluster transition probabilities. We 

observed the transition frequencies of consecutive samples collected at most 7 days apart 

between day -16 and day 1,084 relative to HCT. Patients remained in the same cluster over 

two consecutive samples in 2,987 (54.5%) pairs of samples (Figure 2.2H). Patients were 

less likely to remain in high-diversity clusters 1-3 among consecutive samples (mean 

frequency 46.4%; SD 5.0%), compared with dominated clusters such as 8-10 which are 

highly stable (mean frequency 65.1%; SD 14.1%). We observed a significant and negative 

 MSKCC 
Discovery  

MSKCC 
Validation  

Duke 
Validation 

Number of patients 778 423 142 
Mean age at HCT, year (sd) 55 (13) 53 (13) 51 (13) 
Year of HCT (%)    
       2009 - 2015 374 (48) 331 (78) 33 (23) 
       2016 - 2019 404 (52) 92 (22) 109 (77) 
Sex (%)     
       Female 312 (40) 166 (39) 43 (30) 
       Male 466 (60) 257 (61) 99 (70) 
Disease (%)    
       AML 278 (36) 144 (34) 42 (30) 
       Others 500 (64) 279 (66) 100 (70) 
Conditioning intensity (%)    
       Nonmyeloablative 46 (6) 89 (21) 13 (9) 
       Reduced intensity 171 (22) 245 (58) 6 (4) 
       Ablative 561 (72) 89 (21) 123 (87) 
Median follow-up, months 46 49 11 
Graft type (%)    
       Cord blood 62 (8) 131 (31) 19 (13) 
       BM unmodified 78 (10) 30 (7) 13 (9) 
       PBSC unmodified 176 (23) 262 (62) 110 (78) 
       PBSC T-cell depleted 462 (59) - - 
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association between cluster alpha-diversity and self-transition probabilities, suggesting that 

high-diversity clusters are less stable compared to low-diversity clusters (Figure 2.2J). 

Transitions from one cluster to another were observed in 2,495 pairs of samples (45.5%). 

We observed a particularly strong stability of the Enterococcus-high cluster 10, 

which is of interest due to the association of this genus with poor clinical outcomes 

following HCT (Holler et al., 2014; Stein-Thoeringer et al., 2019; Taur et al., 2012). To 

investigate potential drivers of Enterococcus domination stability, we developed a logistic 

regression model with lasso penalty analyzing cluster 10 stability as a function of 

parameters including antibiotic exposure, time of sample collection, alpha-diversity, and 

relative abundance of top 20 most abundant genera in cluster 10. We applied this model to 

a dataset of daily sample pairs collected between day -14 and 100 relative to HCT and 

found that higher relative abundances of Staphylococcus and Erysipelatoclostridium were 

associated with decreased cluster 10 stability (Figure 2.3K). On the other hand, higher 

relative abundance of Enterococcus was associated with increased cluster 10 stability, 

indicating that Enterococcus domination leads to a positive feedback loop that support its 

own stability. As expected, antibiotic exposure was associated with increased cluster 10 

stability. Here, using real-world data, we showed that both environmental factors such as 

medication exposures, and ecological relationships between bacteria, contribute to 

microbiota community stability, specifically regarding Enterococcus domination.  
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Non-antibiotic exposures during allo-HCT are associated with changes in the intestinal 

microbiome compositions 

To investigate the associations between drug exposures and microbiome cluster 

transitions, we developed PARADIGM, a computational tool based on a logistic regression 

model integrated with first-order Markov-chain transitions. Markov-chain models have 

been utilized to investigate microbiome dynamics previously, but the associations between 

Markov transitions and environmental factors have not been extensively studied (Brooks 

et al., 2017; Cerdo et al., 2022; DiGiulio et al., 2015; Jin et al., 2017; Lee et al., 2019a). 

The model takes advantage of the high resolution daily 16S rRNA-sequenced fecal samples 

(2,039 sample pairs; 454 patients; Table 2.3) to infer associations between drug exposures 

and cluster transitions. For each cluster, we defined two transition types: self transitions 

(patients stay in the same cluster) and attractor transitions (patients move to a given 

cluster). The naming of “self transition” and “attractor transition” is motivated due to the 

intuitive connotation they convey about our cluster dynamics. Self transition describes the 

probability of a given cluster preserving its current state, and attractor transition describes 

the probability of a given cluster receiving transitions from any clusters other than itself, 

in a pair of daily collected samples (Figure 2.4A).  
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Figure 2.4. PARADIGM predicts changes in microbiome features such as genus 
relative abundance and alpha-diversity following drug exposures. A, Schematic 
representation of PARADIGM which takes advantage of daily sampling 16S rRNA-
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sequenced samples and cluster transitions to infer how drug exposures are associated with 
microbial dynamics. Bacteria response scores translate drug-cluster associations into drug-
genus associations. B, Pearson’s correlation between Enterococcus response scores and 
alpha-diversity response scores. Each point represents an individual drug. C, Pearson’s 
correlation between bacteria response scores and measurements of in vitro inhibition 
(Maier et al., 2018). Each point represents the association between a unique drug-species 
pair. D, Predicted bacteria response scores by in vitro inhibition. Two-sided Wilcoxon’s 
rank-sum test.   
 
Table 2.3. Patient characteristics of the MSKCC sub-cohort included in PARADIGM 
training set of daily collected fecal samples. IQR, interquartile range; sd, standard 
deviation; AML, acute myeloid leukemia; BM, bone marrow; PBSC, peripheral blood stem 
cell; PBSC T-cell depletion was performed by ex vivo CD34-selection of the graft. 
 

 

We focused on 62 drugs to which patients in the discovery set were commonly 

exposed. To determine the contribution of each drug to the likelihood of self and attractor 

transitions, we utilized elastic-net logistic regression, where the resulting coefficients for 

each drug indicate both the direction and magnitude of the association between the drug 

and daily cluster transitions. Microbiome injury patterns in allo-HCT are strongly linked 

 MSKCC 
Number of patients 454 
Number of daily sample pairs 2,039 
Number of pairs of samples per 
patient, median (first-third quartile) 

3 (1 – 7) 

Mean age at HCT, year (sd) 56 (13) 
Sex (%)   
         Female 183 (40) 
         Male 271 (60) 
Disease (%)  
       AML 159 (35) 
       Others 295 (65) 
Conditioning intensity (%)  
       Nonmyeloablative 40 (9) 
       Reduced intensity 162 (36) 
       Ablative 252 (55) 
Graft type (%)  
       Cord blood 56 (12) 
       BM unmodified 76 (17) 
       PBSC unmodified 166 (37) 
       PBSC T-cell depleted 156 (34) 
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with time relative to allo-HCT (Peled et al., 2020; Taur et al., 2018; Taur et al., 2012). 

Therefore, we included time as a co-variable to address the temporal patterns of drug 

exposures and attenuate time-dependent variability in microbiome cluster dynamics 

(Figure 2.5). To account for unequal patient contribution of data points to the training set 

(Table 2.3), we pre-specified the 10-fold cross-validation partitions in our training cohort 

such that samples of the same patient are always in the same partition.  

We identified several associations between drug exposures and cluster self and 

attractor transitions (Figure 2.6). As expected, several antibiotics used to empirically treat 

neutropenic fever were associated with profound changes in the intestinal microbiota. 

Exposures to meropenem (2.5-fold increase), and metronidazole (3.4-fold increase) were 

associated with increased transitions to the Enterococcus-high cluster 10, consistent with 

previous reports (Soares et al., 2017; Taur et al., 2012). Several non-antibiotic medications 

were also associated with specific cluster dynamics. Exposure to aprepitant, a tachykinin 

receptor antagonist used for chemotherapy-induced nausea, was associated with a 2.8-fold 

increase in transition frequency to the Enterococcus-high cluster 10 (Figure 2.6). 

Similarly, exposure to the opioid analgesic fentanyl was associated with a 1.9-fold increase 

in transition frequency to the Enterococcus-high cluster 10. Other medications such as 

labetalol and insulin, which are not known to target intestinal bacteria, were associated 

with decreased stability of the Enterococcus-high cluster 10 (Figure 2.6). Altogether, 

PARADIGM identified the association between several non-antibiotic drugs and changes 

in the intestinal microbiome. 
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Figure 2.5. Time courses of drug exposures between day -14 to 14 relative to allo-
HCT. Red dashed lines indicate day 0 which is the day of stem cell infusion.  
 

Previous studies have identified specific bacteria that have either beneficial or 

deleterious associations with clinical outcomes following allo-HCT(Golob et al., 2017; 

Jenq et al., 2015; Simms-Waldrip et al., 2017). As such, we translated drug-cluster 

associations into drug-taxon associations by calculating bacteria response scores to identify 
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associations between drug exposure and changes in specific taxonomic groups of clinical 

interests (Figure 2.7). In our model, bacteria response scores estimate the association 

between a drug exposure and a microbiome feature, namely relative abundance of taxa or 

alpha diversity, where positive scores indicate association with higher relative abundances 

or diversity values (Figure 2.4A). We focused on four microbiome features previously 

associated with allo-HCT patient outcomes, namely relative abundance of Enterococcus, 

Blautia, Erysipelatoclostridium, and alpha-diversity (Golob et al., 2017; Holler et al., 

2014; Jenq et al., 2015; Peled et al., 2020; Stein-Thoeringer et al., 2019). 

Most antibiotics used in this cohort as empiric or pathogen-directed treatments 

(metronidazole, meropenem, aztreonam, and cefepime) were associated with increased 

relative abundance of Enterococcus as well as decreased alpha-diversity, consistent with 

previous studies (Figures 2.7) (Lee et al., 2019b; Shono et al., 2016; Taur et al., 2012). 

Our observation that cefepime exposure was associated with Enterococcus expansion is 

consistent with our previous report (Shono et al., 2016), and may be partly explained by 

the poor activity of cefepime and other cephalosporins against enterococci. Piperacillin-

tazobactam exposures were associated with decreased Enterococcus relative abundance, as 

well as decreased relative abundance of intestinal commensals such as Blautia and 

Erysipelatoclostridium to a greater extent compared to other empiric antibiotics (Figure 

2.7). We also observed that drugs most strongly associated with Enterococcus expansion 

were the non-antibiotic drugs including opioids such as fentanyl and hydromorphone, 

hormones such as levothyroxine, and anticonvulsants such as gabapentin (Figure 2.7).  
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Figure 2.6. Associations between drug exposures and cluster self and attractor 
transitions. Self coefficients indicate whether drug exposure increases (positive 
coefficients, red shades) or decreases (negative coefficients, blue shades) the log-odds of 
cluster stability. Attractor coefficients indicate whether drug exposure increases (positive 
coefficients, red shades) or decreases (negative coefficients, blue shades) the log-odds of 
transition to a given cluster. #pts indicates the number of patients exposed to each drug, 
#dps indicates the number of sample pairs collected on the day of each drug exposure.  
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Figure 2.7. Bacteria response scores for four microbiome features of interest. Bacteria 
response scores predict the association between a given drug exposure and changes in 
genus relative abundance or alpha-diversity. Positive response scores (red shades) indicate 
that drug exposures are associated with increased genus relative abundance or alpha-
diversity. Negative response scores (blue shades) indicate that drug exposures are 
associated with decreased genus relative abundance or alpha-diversity. 

 

Opioid exposures have been previously associated with decreased relative 

abundance of Blautia in ICU patients who did not receive antibiotics (Pettigrew et al., 

2019), an observation we also reported here for fentanyl and hydromorphone (Figure 2.6). 

In contrast, laxatives such as docusate and polyethylene glycol were strongly associated 

with decreased Enterococcus relative abundance (Figure 2.7). Previous experimental 

studies have demonstrated that polyethylene glycol induces global changes in bacterial 

compositions in mice, either through modulation of intestinal osmolality or through direct 

anti-bacterial inhibition (Nalawade et al., 2015; Tropini et al., 2018). Overall, drug 

exposures associated with alpha-diversity preservation were correlated with decreased 

Enterococcus expansion, and vice versa (Figure 2.4B).  

 

Validation of in silico findings from real-world patient dataset against an independent 

in vitro dataset 

We tested the predictive power of PARADIGM by comparing the in silico results 

described here using ‘real-world data’ from cancer patients with an independent published 

in vitro dataset (Maier et al., 2018) (Figures 2.4C-D). The in vitro screen and the present 

study share in common 19 bacterial species and 34 drugs. We observed an enrichment of 

drug-species pairs that showed in vitro inhibition (for both antibiotics and non-antibiotics) 

in the lower left quadrant of the plot, which corresponds to negative response scores in 
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silico (Fisher’s Exact Test: odd ratio = 0.60, p-value = 0.01). Furthermore, drug-species 

pairs that showed in vitro inhibition had significantly lower response scores in the patient 

dataset when compared to those that did not show inhibition in vitro (Figure 2.4D). 

Altogether, these results suggest that PARADIGM can accurately predict in vitro anti-

bacterial activity of both antibiotics and non-antibiotics and distinguish direct interactions 

of drugs with bacteria species from the potential confounding influence of the clinical 

symptoms prompting these drug exposures.  

 

Antibiotic exposure is a strong predictor of subspecies dynamics  

Several experimental studies have demonstrated that the bactericidal spectra of 

several drugs are species- and strain-specific even within the same genus (Maier et al., 

2021; Maier et al., 2018). We therefore explored the associations between drug exposures 

and changes in relative abundances of species within genera of clinical importance in allo-

HCT, using a subset of 980 specimens from 340 patients in the MSKCC discovery cohort 

with available shotgun metagenomic sequencing profiles (Figure 2.8). By applying a linear 

mixed-effects regression model, we identified associations between drug exposures and 

changes in bacterial species relative abundance. Again, we detected that several drug 

exposures spanning different drug classes (antibiotics, laxatives, anti-diarrhea, and opioids) 

were associated with changes in relative abundance of Blautia coccoides, Blautia producta, 

Enterococcus faecalis, Enterococcus faecium and Erysipelatoclostridium ramosum, 

although these associations were not statistically significant.  
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Figure 2.8. Associations between drug exposures and changes in species relative 
abundance from samples with shotgun metagenomic sequencing. Log changes in 
species relative abundance between subsequently collected samples were analyzed as a 
function of individual drug exposure in a linear mixed-effects regression model, with time 
of sample collection binned into weekly intervals as a random effect variable. Positive 
coefficient values (red shades) indicate that drug exposures are associated with increased 
species relative abundance. Negative coefficient values (blue shades) indicate that drug 
exposures are associated with decreased species relative abundance. A white box indicates 
that there is insufficient datapoint to fit the regression model for a given drug-species pair.  
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Figure 2.9. Antibiotics are strong predictors of strain genetic convergence during allo-
HCT. A, Strain convergence over time relative to HCT (middle row), or by species relative 
abundance (bottom row). Each point represents the tree-based phylogenetic distance 
between the dominant strains of a given species in a pair of subsequently collected samples. 
Higher phylogenetic distance suggests genetic dissimilarity, while lower phylogenetic 
distance suggests strain genetic similarity. B, C, Antibiotic exposure (B), but not non-
antibiotic exposure (C) is associated with increased E. faecium dominant strain 
convergence. Each point represents the phylogenetic distance between E. faecium 
dominant strains in a pair of subsequently collected samples, stratified by drug exposures 
during the time gap of sample pair collection. Two-sided Wilcoxon’s rank-sum test. 
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Within human intestinal microbiome communities, most species are represented by 

a single dominant strain (Truong et al., 2017), although we have previously observed 

complex strain dynamics during episodes of domination by E. faecium in allo-HCT patients 

(Dubin et al., 2019). For five species within three genera of interest, we identified the 

sequence signatures of the dominant strains on the basis of marker gene polymorphisms 

using the StrainPhlAn algorithm (Truong et al., 2017) and calculated tree-based 

phylogenetic distances between dominant strains in consecutive patient samples (Figure 

2.9A). Small phylogenetic distances between strains in consecutive samples indicate 

dominant-strain convergence, while large distances suggest dominant-strain divergence 

over time. For most species, and particularly E. faecium, the phylogenetic distance between 

consecutive samples declined over time (Figure 2.9B). This temporal pattern suggests 

reduction of within-species genetic variability across multiple species over time and the 

rise of a dominant subtype. Furthermore, subtype variability was inversely associated with 

species relative abundance (Figure 2.9B). This correlation might be a consequence of so-

called “selective sweeps” (Bendall et al., 2016; Diaz Caballero et al., 2015) by 

comparatively better-fit strains or loss of variability due to a population bottleneck that 

may occur during allo-HCT (Ghalayini et al., 2018). Subspecies diversification following 

a parabolic fitness landscape has been observed in vancomycin-resistant E. faecium 

isolated from longitudinal stool sampling of allo-HCT patients (Dubin et al., 2019), which 

this method of strain classification focusing on dominant strains might fail to capture. We 

observed that antibiotic exposure was a significant predictor of dominant strain genetic 

convergence within species E. faecium, while non-antibiotic exposure was not (Figures 

2.9C-D).  
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Figure 2.10. Drug exposure profiles are predictive of future microbiome trajectories 
and allo-HCT patient outcomes in two distinct validation cohorts. A, Schematic of the 
patient-specific bacteria response score calculation. B, Patients-specific Enterococcus 
response scores in the validation cohort were derived based solely on drug exposure 
profiles (between day -14 to 14 relative to HCT) and bacteria response scores presented in 
Figure 2.6C. A negative score indicates that the drug exposure profile is associated with 
an Enterococcus-inhibiting effect, while a positive score indicates that the drug exposure 
profile is associated with an Enterococcus-promoting effect. C, Pearson’s correlation 
between patient-specific bacteria response scores and observed genus relative abundance 
or alpha-diversity in samples collected between day 14 and 45 relative to HCT in the 
MSKCC validation cohort (423 patients) and Duke cohort (142 patients). Adjusted p-
values by Benjamini-Hochberg’s correction. D, Patient-specific bacteria response scores 
are predictive of overall and cause-specific mortality in the MSKCC and Duke validation 
cohorts, in each respective multivariate Cox proportional hazard or Fine-Gray model, 
controlled for age, sex, conditioning intensity, graft source and underlying disease. 
Adjusted p-values by Benjamini-Hochberg’s correction. 
 

Drug-microbiome associations are predictive of future microbiome trajectories and 

clinical outcomes following allo-HCT 

Having demonstrated that drug exposures are associated with microbiota changes, 

and in light of previous reports associating fecal microbial composition with allo-HCT 

clinical outcomes, we next asked whether patterns of drug exposure alone could predict 

mortality independent of microbiome data. Using drug-exposure data from a separate 

MSKCC validation cohort, we defined patient-specific response scores as metrics that 

quantify the net response of microbiome features to drug-exposure profiles (Figure 2.10A). 

For example, the patient-specific Enterococcus response scores translated patient drug 

exposure profiles into relative risk of Enterococcus expansion (Figure 2.10B). We tested 

these patient-specific bacteria response scores against the outcomes of all-cause and 

specific-cause mortality in two independent validation cohorts: a subset of 423 MSKCC 

patients who were not included in the PARADIGM training cohort, as well as 142 patients 

from an independent cohort from Duke University Medical Center. All 62 drug exposures 



39 
 

were considered for the MSKCC validation cohort, while only antibiotic exposures were 

evaluated in the Duke validation cohort. Patient characteristics in these two cohorts are 

outlined in Table 2.2. 

We observed that patient-specific bacteria response scores based on drug exposures 

between day -14 to 14 relative to HCT were significantly and positively correlated with 

observed taxa relative abundance and alpha-diversity, respectively, from samples collected 

between day 14 and 45 relative to HCT in both the MSKCC and Duke validation cohorts 

(Figure 2.10C). Furthermore, patients whose drug exposure profiles predicted higher 

Enterococcus expansion were at an increased risk of all-cause and transplant-related 

mortality following allo-HCT in the MSKCC and Duke validation cohorts. Specifically, in 

the MSKCC validation cohort, patient-specific Enterococcus response scores were also 

significantly associated with an increased risk of GVHD-related mortality (Figure 2.10D). 

Conversely, patients whose drug exposure profiles predicted Eryispelatoclostridium, 

Blautia or alpha-diversity preservation had a decreased risk of all-cause mortality in both 

the MSKCC discovery and validation cohorts (Figure 2.10). Overall, we demonstrated that 

drug-microbiome associations are predictive of subsequent changes in the intestinal 

microbiome compositions post-exposure, and of clinical outcomes in allo-HCT patients.  

The framework for this analysis is a hypothesis that drug exposures affect the 

intestinal microbiota, which in turn shapes clinical outcomes. In some scenarios, however, 

patients at high risk for adverse outcomes (for a variety of reasons unrelated to the 

microbiome) might have received drugs that affect the intestinal bacteria. To explore these 

possibilities, we focused on Enterococcus and compared the hazard ratios of Enterococcus 

relative abundance with the corresponding patient-specific response scores in a Cox 
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proportional hazard ratio model. We reported a significant association between 

Enterococcus abundance and mortality risk, which was stronger than the association 

between patient-specific Enterococcus response scores and overall mortality, specifically 

in the MSKCC validation cohort (Figure 2.11). However, we also observed that patient-

specific response score remained a statistically significant predictor of mortality risk when 

controlled for intestinal microbiome compositions (Figure 2.11). Altogether, these results 

suggest that association between drug exposures and clinical outcomes is partially 

dependent on drug interactions with the intestinal microbiota.  

 

Figure 2.11. Investigation of causal relationship between drug exposures, microbiome 
and mortality. Microbiome feature metrics (taxa relative abundance or alpha-diversity) 
and corresponding response scores were compared in terms of their associations with 
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microbiome feature metrics in predicting overall mortality
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overall mortality risk. Measurements were fit into either an independent (which consider 
either microbiome metrics and response scores) or a competing (which considers 
microbiome metrics and response scores together) multivariate Cox proportional hazard 
model.  
 

Discussion 

We developed PARADIGM, a computational method that identifies the 

associations between drug exposures and intestinal microbial dynamics in humans. At its 

core, PARADIGM analyzes how discrete states of intestinal microbial compositions 

respond to both antibiotic and non-antibiotic drugs. While other computational methods 

have largely focused on antibiotics (Kanjilal et al., 2020; Vatanen et al., 2018), our 

approach further reveals the associations between many non-antibiotic drugs and microbial 

dynamics in high resolution by analyzing a large dataset of daily stool samples from allo-

HCT patients.  

Our method was able to infer meaningful associations between drug exposures and 

microbiome despite the various confounding parameters such as the clinical symptoms 

prompting these drug exposures, which is particularly important when analyzing 

medications used to treat gut toxicity. We validated our findings by comparing bacterial 

response scores derived from this real-world patient study with published in vitro 

observations (Maier et al., 2018) and found that our estimates were significantly correlated 

with the reported data. Furthermore, the bacterial response scores, calculated based solely 

on patient drug exposures, allowed us to predict future microbial changes and patient 

outcomes in two independent validation cohorts, particularly for Enterococcus responses. 

These results demonstrate that PARADIGM can generate hypotheses with both biological 

and clinical relevance.  
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In conclusion, we provide insights into the associations between pharmacological 

exposures and changes in intestinal microbial composition at the early stage of transplant. 

The algorithm we have developed, PARADIGM, identifies biologically meaningful and 

clinically relevant associations between drug exposures and intestinal microbial dynamics 

in humans. PARADIGM facilitates the integration of drug exposures from many classes of 

xenobiotic agents, microbiome dynamics, and clinical outcomes to understand the 

determinants of microbiome health. This computational framework is well-suited for 

longitudinal data and may be built upon in the future to investigate other environmental 

parameters of interest, such as dietary intake or other components of the “exposome”, or 

applied to other disease settings in which drug-microbiome interactions are of clinical 

importance (Vermeulen et al., 2020).  

 

Materials and Methods  

 

Study population of human subjects 

The patient and fecal sample cohort in this study has been described in previous 

studies(Liao et al., 2021; Peled et al., 2020; Stein-Thoeringer et al., 2019). Stool samples 

were collected at two different transplant centers, Memorial Sloan Kettering Cancer Center 

(MSKCC) from April 2009 to September 2019, and Duke University Medical Center from 

July 2012 to April 2018. Participants in the observational cohorts at both MSKCC and 

Duke provided written informed consent for the use of their stool samples and clinical data. 

The use and analysis of these specimens for this study was approved by Institutional 

Research Boards at both institutions (MSKCC: #16-834; Duke: PRO0006268 and 

Pro00050975). Stool samples collected after day -30 relative to a first allo-HCT, and before 
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day -10 relative to a second allogeneic transplant (if applicable) were included in the 

analysis. A subset of patients from MSKCC participated in a randomized clinical trial of 

fecal microbiota transplantation (FMT; NCT02269150) (Taur et al., 2018). Stool samples 

from patients in the control arm, as well as from patients in the FMT arm collected pre-

FMT were included for analysis. Post-FMT stool samples were excluded.  

 

Stool collection and storage  

As DNA extraction procedures, sample-handling environment, sequencing and 

bioinformatics pipelines are important sources of variability in microbiome data, we 

minimized bias and institutional batch effects by collecting and freezing samples at each 

center following the same protocol. All stool samples were collected, aliquoted and frozen 

at their respective clinical centers; extraction, sequencing, and analyses were performed 

centrally at MSKCC.  

Fecal samples were collected in both inpatient and outpatient settings. At MSKCC, 

inpatient samples were collected by nursing staff from toilet inverted “hats” into ~100 ml-

sized containers at the bedside, promptly delivered to the laboratory via pneumatic tube, 

and refrigerated at 4°C until aliquoted for long term storage at -80°C. Outpatient stools 

were collected in the patients’ homes using a commode specimen collection system, after 

which the entire collection bin was capped, placed inside a biohazard zip lock bag to 

prevent leakage, and deposited inside a 8 x 6 x 4.25” foam container along with pre-chilled 

freezer packs. Samples were either brought by the patient to a clinic appointment or shipped 

directly from the patient’s home to the laboratory via courier. 
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Upon receipt by the Molecular Microbiology Facility Laboratory at MSKCC, each 

sample was given a unique ID and recorded into the fecal biobank database. Approximately 

0.5 ml of whole stool was aliquoted without any preservative solution into four 2 ml 

cryovials using a clean disposable spatula and transferred into a -80°C freezer until thawed 

for DNA processing. Duke samples were aliquoted similarly at Duke, batch-shipped frozen 

to MSKCC, and extracted and sequenced in the same way as the MSK samples at the 

Molecular Microbiology Facility Laboratory. 

 

DNA extraction 

Bacterial DNA was extracted using an optimized phenol-chloroform protocol to 

recover nucleic acids from tough microbes commonly present in stool samples, as 

previously described(Peled et al., 2020; Rolling et al., 2021). Briefly, 200-300 mg of solid 

or 200-300 μl of liquid stool were aliquoted and the respective wet weight was recorded. 

Fecal samples were resuspended in 500 μl of extraction buffer (i.e., 0.2 M NaCl, 0.2 M 

Tris-HCl, pH 8.0, and 20 mM ethylenediaminetetraacetic acid, prepared fresh). The 

mixture was combined with 0.1 mm zirconia/silica beads (approximately 500 μl), 200 μl 

of sodium dodecyl sulfate, and 500 μl of phenol-chloroform-isoamyl alcohol (25:24:1 

solution). The bacterial cells were lysed by mechanical disruption using a bead-beater for 

2 minutes at over than 3000 rpm. Detritus was spun down at 16,000g at 4°C for 5 minutes. 

The upper aqueous layer was transferred to a clean 1.7 ml tube and mixed with 100 μl of 

extraction buffer as described above, and 500 μl of phenol-chloroform-isoamyl alcohol 

(25:24:1). The solutions were homogenized by inversion and spun down again at 16,000g 

for 5 minutes at 4°C. The upper aqueous layer was recovered, and this process was repeated 
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for a total of three times. After the final round of phenol-chloroform-isoamyl alcohol was 

completed, 400 μl of the top aqueous layer was combined with 40 μl of sodium acetate and 

880 μl of cold 100% ethanol. The mixture was vortexed and then frozen for at least 20 

minutes, preferably overnight. After the ethanol freeze incubation period, samples were 

spun down at 16,000g for 20 minutes at 4°C to pellet the DNA. The upper aqueous layer 

was aspirated, and the visible DNA pellet was resuspended in 200 μl of TE buffer 

containing 100 mg/mL of RNase solution, followed by an incubation at 50°C for 20 

minutes. The genomic DNA was further purified using the QIAamp DNA mini kit (Qiagen) 

following the manufacturer instructions. The purified DNA was eluted in 100 μl of 

ultrapure water and stored at -80°C prior to quantification of DNA yield and subsequent 

PCR amplification.  

 

Sequencing 

16S rRNA V4-V5 barcoded amplification and multiplexing: The amplification, 

multiplexing and sequencing of 16S rRNA from extracted DNA has been previously 

reported(Taur et al., 2018). Briefly, genomic purified DNA was diluted if necessary and 

50 ng was used as template during PCR amplification. The V4-V5 region of the 16S rRNA 

gene was amplified with the primers 563F (5′-nnnnnnnn-NNNNNNNNNNNN-

AYTGGGYDTAAAGNG-3’) and 926Rb (5′-nnnnnnnn-NNNNNNNNNNNN-

CCGTCAATTYHTTTRAGT-3), where ‘N’s represent unique 12-base pair Golay 

barcodes and ‘n’s represent additional nucleotides to offset the sequencing of the 

primers(Caporaso et al., 2012). Duplicate PCR reactions were performed for each sample 

with 2.5 U of Platinum Taq DNA polymerase and 0.5 mM of forward and reverse primers 
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at 94°C for 3 minutes, followed by 27 cycles of 94°C for 50 seconds, 51°C for 30 seconds 

and 72°C for 1 minute and a final elongation step at 72°C for 5 minutes. Amplicons were 

purified using the Qiaquick PCR Purification Kit (Qiagen) after pooling the sample 

replicates. The purified PCR products were quantified using Agilent Technologies 4200 

TapeStation and multiplexed at equimolar amounts. The obtained pools of barcoded 16S 

amplicons went to further processing for library preparation and sequencing on an Illumina 

MiSeq platform at paired-end 250 base pair (bp) at the MSKCC Integrated Genomics 

Operation sequencing core. Extraction blanks were included in each extraction batch as 

negative controls. These blanks were PCR-amplified but did not show PCR products and 

were subsequently removed from demultiplexing and sequencing.  

Shotgun metagenomic sequencing: Shotgun metagenomic sequencing was 

conducted as previously described(Dubin et al., 2019). Extracted DNA was sheared to a 

target size of 650 bps using a Covaris ultrasonicator. DNA was then prepared for 

sequencing using the Illumina TruSeq DNA library preparation kit and sequenced using 

the Illumina platform targeting approximately 10–20 million reads per sample with 100-

bp paired-end reads.  

 

Sequencing bioinformatics pipeline 

16S rRNA gene sequencing: Reads were quality-filtered, deduplicated, denoised 

and amplicon sequence variants (ASVs) were inferred following the DADA2 pipeline 

(Divisive Amplicon Denoising Algorithm) (Callahan et al., 2016). Reads were truncated at 

a length of 180 bp for forward and reverse reads to ensure sufficient quality and length to 

use overlapping paired end reads. Default values were used for filtering and trimming reads 
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prior to inferring sequence variants through function filterAndtrim() (maxN=0, maxEE=2, 

trunQ=2). Reads per sample were capped at 100,000 prior to sequence variance inference. 

Samples with more than 100,000 reads were sub-sampled. Each sequencing run was 

analyzed separately before merging the ASV counts across multiple runs. 

Samples with poor sequencing quality were filtered out using the following criteria:  

1. Less than 30% reads remaining after filtering and trimming  

2. Less than 1,000 reads remaining after filtering and trimming  

3. More than 5% adapter contamination  

Taxonomic classification was annotated according to the NCBI 16S rRNA 

sequence database. Alpha-diversity was calculated using the reciprocal Simpson index at 

the ASV level, which is the metric used for all alpha-diversity measures in this study. Beta-

diversity was computed according to the Bray-Curtis distances at the genus level using the 

beta_diversity.py script in the QIIME bioinformatic pipeline (Caporaso et al., 2010). We 

performed t-distributed stochastic neighbor embedding (tSNE) dimensionality reduction 

for visualization of the intestinal microbiota compositions using a Bray-Curtis b-diversity 

matrix at the genus level with R package Rtsne (max_iter = 10,000; perplexity = 75; theta 

= 0.2).  

Shotgun metagenomic sequencing: The right and left side of a read in a pair was 

trimmed to Q10 using the Phred algorithm, using the bbduk.sh script in the BBMap 

package (https://www.sourceforge.net/projects/bbmap/). A pair of reads was dropped if 

either read had a length shorter than 51 nucleotides after trimming. The 3’-end adapters 

were trimmed using a kmer of length 31, and a shorter kmer of 9 at the other end of the 

read. One mismatch was allowed in this process, and adapter trimming was based on pair 
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overlap detection (which does not require known adapter sequences) using the ‘tbo’ 

parameter. The ‘tpe’ parameter was used to trim the pair of reads to the same length. 

Removal of human contamination was done using Kneaddata with paired end reads, 

employing BMTagger. The BMTagger database was built with human genome assembly 

GRCh38.  

Samples with poor sequencing quality were filtered out using the following criteria:  

1. Less than 50% reads remaining after trimming with BBMap 

2. Less than 1 million reads remaining after trimming  

3. More than 5% adapter contamination 

  After decontamination, the paired-end reads were concatenated to a single FASTQ 

file as the input for functional profiling with the HUMAnN 3.0 pipeline (Beghini et al., 

2021). After aligning to the updated ChocoPhlAn and UniRef90 database with default 

settings, the samples were renormalized by library depth to copies per million. MetaPhlAn 

3.0 was used to identify taxonomic compositions with the relative abundance of the species 

using parameter -t rel_ab (Beghini et al., 2021). Similar to the 16S rRNA-sequenced data, 

we performed tSNE analysis for visualization of shotgun metagenomic compositions using 

a Bray-Curtis b-diversity matrix at the species level with R package Rtsne (max_iter = 

3,000; perplexity = 20; theta = 0.1).  

 

Clustering of the intestinal microbiota compositions 

Three unsupervised clustering methods were used to identify distinct clusters of the 

intestinal microbiota compositions within the MSKCC validation cohort. Unsupervised k-

means clustering and hierarchical clustering methods were applied to the Bray-Curtis b-
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diversity matrix. Dirichlet Multinomial Mixture (DMM) was applied to the raw count 

matrix at the genus level. For all three methods, cluster size parameter from 2 to 15 clusters 

was evaluated, ultimately choosing ten clusters for downstream analysis. Since k-means 

clustering partitioned samples more evenly, we utilized k-means clusters for our 

subsequent analyses. We determined ten clusters to be a good balance between reducing 

the complexity of the 16S rRNA sequencing data while still representing the variability of 

the intestinal microbiome compositions during allo-HCT.  

 

Domination threshold  

We defined sample domination by a single taxonomic units using the threshold of 

³ 0.3 of the 16S rRNA sequencing relative abundance (Peled et al., 2020). The taxonomic 

color scheme was adapted from the R package yingtool2 

(https://github.com/ying14/yingtools2) and a previous publication (Peled et al., 2020).  

 

Derivation of a mathematical model of microbial dynamics termed PARADIGM 

A biologically motivated, simplified mathematical model termed PARADIGM was 

developed to model microbial dynamics while simultaneously considering the effects of 

drug exposures on the intestinal microbiota. A naïve model with n possible clusters in a 

time interval ∆t for L distinct drugs would require Δ𝑡 • 𝑛!2" parameters, which would 

quickly saturate the amount of data available in most practical applications. The following 

characteristics of intestinal microbial dynamics during allo-HCT were considered to 

simplify our model: (i) The microbial composition is more likely to stay in same cluster 

within a day window; (ii) Drug exposures perturb clusters differently; (iii) Transitions are 
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easier to occur among close clusters compared to distant clusters; and (iv) Transition events 

vary over time. As such, we developed a model that include parameters for time, drug 

exposures and distance between clusters.  

We defined microbiota dynamics in terms of two possibilities: the rate at which the 

microbiota composition stays in the same cluster (self transition) and the rate at which it 

attracts transitions from other clusters (attractor transition). Formally, attractor transition is 

a force, measured in terms of probability, that describes the magnitude in which a given 

cluster may receive transitions from any clusters other than itself, in a pair of daily collected 

samples. For example, the attractor transition to Cluster 1 is defined as the patient moves 

to cluster 1 at time td+1, from any clusters between 2 to 10 at time td. We note that, “attractor” 

has a particular definition in statistical physics, which does not directly translate into the 

definition outlined in this study.  

Let Ti,j represent the transition probability from cluster i to j at a single day 

resolution and wself and wattractor represent the parameters associated with self and attractor 

transitions. The transition probabilities can be summarized as: 

	T©,% =
e&!"#$(%)∙*%,'+,-.*%,'/•,&())*(+),*(%|2)/

∑ e&!"#$(%)∙*%,'+,-.*%,'/•,&())*(+),*(%|2)/%
 

(1) 

Where δ2,% represents Kronecker delta. 

The transition dynamics are simplified to a 2x2 transition matrix per cluster i that 

represents self (i) and not-self (ic) states and the rates of transition between those states:  

𝑇.(𝑖) = 2
𝑝3,3 𝑝3,3-
𝑝3-,- 𝑝3-,3-4      (2) 

And the self and attractor parameters are formally represented as: 
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⎩
⎪
⎨

⎪
⎧ log <

𝑝3,3
𝑝3,3-

= = w4567(𝑖)

log <
𝑝3-,3
𝑝3-,3-

= = 𝑤899:8;9<:(𝑖)
 

        

(3)  

 

Inference of drug influence on cluster dynamics via elastic net regularized regression  

To investigate high-resolution cluster dynamics in response to drug exposures, we 

included samples that were collected 1 day apart between day -14 and 14 relative to HCT 

from patients in the MSKCC discovery cohort. The criteria for drug inclusion in this 

analysis are as followed: (1) Drugs were administered via oral/IV routes; (2) Drug 

exposures occurred between day -14 to 14 relative to HCT; (3) Drugs were administered 

to at least 5% and no more than 90% patients in the discovery cohort; and (4) Drug 

exposures occurred in at least 15 patients with single-day resolution samples.  

Equations 1-3 provide a formal definition of our microbial dynamics in terms of 

self and attractor transitions. In practice, we took advantage of a logistic regression fit to 

solve Equation 3 by assuming a binary value for each transition to a given cluster i. We 

defined the value of 1 for transitions towards cluster i and a value of 0 otherwise.  

We used elastic net regularized regression for feature selection to estimate the 

influence of drug exposures on self and attractor transitions of each cluster, using the R 

package caret, e1071 and glmnet for model fitting and parameter tuning. Formally, the 

coefficients that impact transition probabilities were computed as following:  

⎩
⎨

⎧ w4567(𝑖, 𝑡, 𝑋) = 𝛽4567,3,= +	𝛽4567,3,-𝑡 +D 𝛽4567,3,> • 𝑋>,9
>	∈	A:BC	459

𝑤899:8;9<:(𝑖, 𝑡, 𝑋) = 𝛽899:.,3,= +	𝛽899:.,3,-𝑡 + 𝛽899:.,3,!𝑑3,E +D 𝛽899:.,3,> • 𝑋>,9
>	∈	A:BC	459

 

 

     (4) 
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The parameters Xk,t have a value of 1 in days patients were exposed to drug k and 0 

otherwise. The 10-fold cross-validation partitions were pre-specified such that samples 

from the same patient are always in the same partition using function trainControl() and 

train() in R package caret. 

 

Calculation of bacterial response score of drugs  

The dynamic model we proposed can estimate the association between a given drug 

exposure with quantitative microbiome features. The self and attractor parameters 

predicted in Equation 4 can be used to construct transition probabilities according to 

Equation 1. Let the probability of switching from cluster i to j in the absence of any drug 

exposure be 𝜋3→E(𝑛𝑜	𝑑𝑟𝑢𝑔), the bacterial response score of a drug d on taxon y is defined 

as: 

𝐶(𝑦|𝑑) = 	D (𝜋3→E(𝑑) 	− 𝜋3→E(𝑛𝑜	𝑑𝑟𝑢𝑔)) • 𝑙𝑜𝑔(
𝑝E(𝑦)
𝑝3(𝑦)

)	
3,E

 
   (5) 

where pi(y) represents the average relative abundance of taxon y from all samples in cluster 

i. A negative score indicates an antibacterial effect of drug d on taxon y. The transition 

matrix used to estimate antibacterial score was computed at time t=0. 

The bacterial response scores estimated from Equation 5 were compared to 

published in vitro measurements of anti-bacterial activities (Maier et al., 2018). The in 

vitro measurements evaluated the effect of specific drugs using the area under the curve 

(AUC) of bacterial growth. An AUC value significantly below 1 indicates that the drug 

inhibited bacterial growth in vitro. We restricted our analysis to 19 bacteria species that 

appeared in more than 10% of the MSKCC samples with relative abundance above 10-4. 

We identified the relative abundance of a given species by summarizing the relative 
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abundance of all ASVs mapped to that species. Our prediction was considered consistent 

with in vitro measurements when bacterial response scores were negative for bacteria-drug 

pairs that showed inhibition in that study. Statistical significance was evaluated using two-

sided Wilcoxon’s rank-sum test.  

 

Defining patient-specific bacteria response scores based on drug exposure profiles  

A risk score that is associated with patient outcomes can be computed from how 

drug exposures are predicted to influence the microbial dynamics. We defined specific 

target values, �, which are features of the intestinal microbiota associated with each cluster, 

and adapted Equation 5 to compute a risk score, S, for each patient by averaging the 

contribution of all drug exposures that occurred within day -14 to 14 relative to HCT.  

𝑆 =D D D (𝜋3→E(𝑑, 𝑡) − 𝜋3→E(𝑛𝑜	𝑑𝑟𝑢𝑔, 𝑡)) • 𝑙𝑜𝑔(
𝜏E(𝑦)
𝜏3(𝑦)

)	
3,EG	∈	G:BC49	∈	93H5

 
(6) 

For this work, we considered four target values: relative abundance of 

Enterococcus, Erysipelatoclostridium, Blautia, and alpha-diversity. Patient-specific 

bacteria response scores for each of the considered microbiome features were calculated 

based on drug exposure profiles between day -14 and 14 and compared with observed taxa 

relative abundance or alpha diversity in samples collected between day 14 to 45 relative to 

HCT using Pearson’s correlation, with adjusted p-values by Benjamini-Hochberg’s 

correction. The median values were taken for patients with multiple samples available.  

 

Imputation of missing samples 

The dynamic model defined in Equation 1 can be used to simulate microbial 

dynamics and to impute cluster state in time points without sample collection. Equation 1 
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defines transition probabilities at single day resolution and forms the fundamental unit to 

predict microbial dynamics. Let X(t) be the compositional state at time t, the value Ti,j is 

equivalent to P(X(t+1)|X(t)). Assuming first-order Markov chain, the transition probability 

matrix between samples at longer time distance can be computed from its fundamental 

units as following: 

T(t= → t= + d) = T(t=) ∗ T(t= + 1) ∗ …∗ T(t= + 𝑑 − 1) (7) 

Where T(t0) represents transition probabilities at single day resolution between time t0 to 

t0+1. 

 The imputation of cluster states at a given time point can be performed by 

considering the state at nearby time points. Interpolations can be made based on past 

samples (forward interpolations), future samples (backward interpolations) or both 

(forward-backward interpolations). Consider the estimation of a cluster state at time point 

t from samples available at time point t-a and t+b. Forward interpolation imputes the data 

point based on the probability P(Xt| Xt-a), backward prediction from P(Xt| Xt+b) and 

backward-forward interpolation from P(Xt| Xt+a, Xt+b). Forward interpolations can be 

estimated from Equation 7. The backward interpolations were obtained by adapting model 

described in Equation 1 to predict cluster state at time t based on cluster state at time t+1 

and exposures at time t. The backward-forward interpolation takes advantage of both 

forward and backward equations and is computed as: 

𝑃Y𝑋EZ𝑋E.8 , 𝑋E+I[ 	∝ 	
𝑃Y𝑋EZ𝑋E+I = 𝑥I[ • 𝑃Y𝑋EZ𝑋E.8 = 𝑥8[

𝑃(𝑋E)
 

(8) 

A modified forward-backward interpolation was also tested in which final predictions is 

obtained by either forward or backward probabilities: 
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𝑃Y𝑋EZ𝑋E.8 , 𝑋E+I[ 	∝ ^
𝑃Y𝑋EZ𝑋E+I = 𝑥I[	𝑖𝑓	𝑤(𝑡) > 𝑐
𝑃Y𝑋EZ𝑋E.8 = 𝑥8[	𝑖𝑓	𝑤(𝑡) ≤ 𝑐

	 
(9) 

Where w(t) indicates whether forward or backward interpolation should be used to predict 

state at time t, and c indicates the mean of the forward-backward prediction probabilities.   

The imputation accuracy for each model described above was estimated using 10-

fold cross validation, in which 90% of patients were selected as the training set and 10% 

as the test set. In the training set, the logistic regression model defined in Equation 5 was 

used to estimate the parameters for self and attractor weights as well as the decision 

parameter for modified forward-backward prediction. In the test set, the regression 

coefficients were used to reconstruct transition matrices and compute forward, backward, 

forward-backward as well as modified forward-backward probabilities. The microbial state 

was classified by the cluster with the maximum probability. 

 

Linear mixed-effects model of drug-species associations using shotgun metagenomic 

profiles 

We defined a linear mixed-effects model to investigate the association between 

drug exposures and changes at a species-level resolution. Species relative abundance was 

predicted by MetaPhlAn 3.0 using shotgun metagenomic data. The model considers pairs 

of samples that were collected between day -14 and 14 relative to HCT and less than five 

days apart, and with a minimum species relative abundance of 10-4. We assumed that 

changes in species relative abundance depend on time of sample collection and drug 

exposure. Formally, let a given sample pair be collected at time t1 and t2, respectively. The 

log difference in species relative abundance, ln (Spt2/ Spt1) depends on fixed effects of drug 

exposures and a random effect relative to time of sample collection, t1, as following: 
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ln	(
𝑆𝑝9-
𝑆𝑝9!

)(𝑡-, 𝑡!, X) = 0 + 𝛽 • 𝑋9-,9! + (1|𝑡-) 
(10) 

The parameter 𝑡- represents time of first sample collection in the sample pair, binned into 

weekly intervals relative to HCT, as a random effect variable. 𝑋9-,9! represents a given drug 

exposure and has the value of 1 if patients were exposed to the drug in the time interval 

𝑡-and 𝑡!. P-values from the linear mixed-effects model were adjusted for multiple 

hypothesis testing using Benjamini-Hochberg’s correction. Equation 10 was solved using 

R package lme4. 

 

Dominant strain dynamics and its association with drug exposures  

 StrainPhlAn 3.0 was used to profile bacterial community at the strain-level 

resolution (Beghini et al., 2021; Truong et al., 2017). This algorithm identifies the most 

dominant strain per species per sample by reconstructing dominant consensus sequence 

variants across species-specific marker genes. We applied StrainPhlAn 3.0 to a dataset of 

980 shotgun metagenomic shotgun samples in the MSKCC discovery cohort, which 

returned the multiple sequence alignment of the dominant strain for a given species and the 

RaxML (Randomized Axelerated Maximum Likelihood) phylogenetic tree across samples. 

The phylogenetic tree was then used to calculate the dominant strain phylogenetic distance 

across a pair of samples. Phylogenetic distance is defined as the branch length between two 

nodes in the StrainPhlAn phylogenetic tree, normalized over the total branch length of the 

tree.  Branch length was calculated using R function cophenetic(). We focused on strains 

from five species of interest, including Blautia coccoides, Blautia producta, Enterococcus 

faecalis, Enterococcus faecium and Erysipelatoclostridium ramosum.  
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For analysis of dominant strain convergence in association with antibiotic and non-

antibiotic exposures, we compared the phylogenetic distances of dominant strains within 

the species E. feacium across pairs of samples that were collected less than five days apart 

between day -14 and 14 relative to HCT. Exposures were considered true if patients 

received the drug during sample pair collection time. Antibiotic exposure includes the 

seven investigated antibiotics in this study. Non-antibiotic exposure comprises seven drugs 

with the highest absolute Enterococcus-response score values, indicating strongest 

associations with changes in Enterococcus relative abundance. These non-antibiotic drugs 

include diphenoxylate/atropine, polyethylene glycol, levothyroxine, fentanyl, 

methotrexate, anti-thymocyte globulin and cyclosporine. Statistical significance was 

evaluated using two-sided Wilcoxon’s rank-sum test.   

 

Co-inclusionary and exclusionary relationships between bacteria and cluster stability    

To identify the potential microbiome influence on the stability of Enterococcus 

domination in allo-HCT patients, we developed a logistic regression model with lasso 

penalty. This model takes into account the relative abundance of different bacterial genera 

on the stability of Enterococcus-high cluster 10. We defined cluster 10 stability as the rate 

at which the microbiota compositions stay in the same cluster 10, assuming a value of 1 

when patients stay in cluster 10, and a value of 0 when patients move from cluster 10 to 

any other cluster among a pair of daily collected samples. We included as parameters 

antibiotics exposure, day of sample collection relative to HCT, alpha-diversity and relative 

abundance of top 20 most abundant genera in cluster 10. Antibiotic exposure includes 

exposure to any of the seven antibiotics investigated in this study. The input dataset consists 
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of pairs of daily samples collected between day -14 and 100 relative to HCT. Formally, the 

coefficients of these potential drivers of cluster 10 stability were computed as following:  

In which 𝑝3,9 represents the relative abundance of each taxon in the top 20 most abundant 

genera in cluster 10, and 𝑎𝑏𝑥 indicates if patients received any of the seven investigated 

antibiotics in this study on day 𝑡. Coefficient values indicate the direction and magnitude 

of association between each parameter and the stability of Enterococcus-high cluster 10, 

with a negative value indicating a negative association with Enterococcus domination 

stability.  

 

Statistical analyses of survival outcomes  

We used landmark analyses of survival beyond day 14 relative to HCT using R 

package survival. Patients were censored at the time of last contact or at the time of second 

allo-HCT (when applicable). All survivors were censored at two years of follow-up. 

Patients randomized to the FMT arm of the trial were excluded from analysis of clinical 

outcomes. Patient-specific bacteria response scores corresponding to a given microbiome 

feature were considered as a continuous variable in a multivariate Cox proportional hazard 

model, controlled for age, sex, conditioning intensity, graft source and underlying disease 

as variables with R function coxph(). P-values were adjusted for multiple hypothesis testing 

using Benjamini-Hochberg’s correction.  

w4567(𝑖, 𝑡, 𝑎𝑏𝑥, 𝑝) = 𝛽4567,= +	𝛽4567,-𝑡 + 𝛽4567,!𝑎𝑏𝑥9 + 

𝛽4567,J𝑠𝑖𝑚𝑝𝑠𝑜𝑛_𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙9 +D 𝛽4567,3 • 𝑝3,9
3	∈	K<L	!=	C5M5:8

 

(11) 
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Competing risk analyses were performed to identify the association between 

patient-specific bacteria response scores and cause-specific mortality. We investigated 

three competing events, namely relapse (defined here as relapse or progression of disease), 

GVHD-related mortality (defined here as death due to GVHD or after GVHD onset, 

without relapse), and transplant-related mortality (encompassing deaths from GVHD, 

infections and organ toxicities). For each competing event, multivariate Fine-Gray 

subdistribution hazard models were fit by R function crr() from R package tidycmprks. 

Hazard ratios are presented with the 95% confidence interval indicated in parentheses. 

To tease out the potential causal relationships between medication, microbiome and 

mortality, we compared the effect sizes and statistical strengths of patient-specific bacteria 

response scores and observed genus relative abundance or diversity values in predicting 

all-cause mortality. To assure proper magnitude comparison, microbiome measurements 

were rescaled by Z-score normalization and fit into either an independent (which consider 

either microbiome metrics or response scores) or a competing (which considers 

microbiome feature and response score together) multivariate Cox proportional hazard 

model, controlled for age, sex, conditioning intensity, graft source and underlying disease. 

The independent and competing models consider only patients with stool samples collected 

between day 0 and 45 relative to HCT (MSKCC validation cohort: 340 patients; Duke 

validation cohort: 108 patients). Genus abundance was calculated from stool samples 

collected between day 0 and 45 relative to HCT, response scores were calculated using 

drug exposure profiles between day -14 to 14 relative to HCT. The median values were 

taken for patients with multiple samples available. P-values were adjusted for multiple 

hypothesis testing by Benjamini-Hochberg’s correction.  
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CHAPTER THREE 

ENTEROCOCCUS INDUCES MHC-II EXPRESSION IN THE 

 INTESTINAL EPITHELIUM TO AGGRAVATE GVHD 

 

Introduction 

The commensal intestinal microbiota has co-evolved with the mammalian hosts and 

played an important role in maintaining local and systemic homeostasis (Artis, 2008). 

Therefore, perturbations to the intestinal microbiota community could impair the 

interactions between the gut microorganisms and their hosts, which in turn are associated 

with various diseases including infection, autoimmunity, and cancer (Hou et al., 2022). We 

and others have previously reported the frequently observed intestinal microbiota injuries 

in allo-HCT patients (Golob et al., 2017; Peled et al., 2020; Taur et al., 2012). Specifically, 

intestinal domination by Enterococcus, a genus of Gram-positive facultative bacteria, is 

associated with an increased risk of GVHD-related mortality in allo-HCT patients and in 

preclinical models (Holler et al., 2014; Stein-Thoeringer et al., 2019). However, the 

immunological mechanisms underlying this association remain unclear.  

Pathogenic Enterococcus strains are associated with hospital-acquired infections 

and autoimmunity such as inflammatory bowel disease (Levitus et al., 2023; Seishima et 

al., 2019; Zhou et al., 2016). Conversely, commensal Enterococcus strains have 

demonstrated clinical benefits as probiotics and in the context of immune checkpoint 

blockade (Griffin et al., 2021; Hanchi et al., 2018; Rashid et al., 2023). The dual role of 

this bacteria genus highlights the need to understand the biological context underlying the 

beneficial versus harmful effects of Enterococcus in human health and disease. 
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Previous literature has mostly focused on the effect of Enterococcus on innate 

immunity such as DCs and macrophages (Leendertse et al., 2008; Ocvirk et al., 2015; Park 

et al., 2013). Host- and donor-derived APCs play an important role in the development of 

GVHD through allo-antigen presentation and donor T cell activation (Koyama et al., 2015; 

Shlomchik et al., 1999). In addition, IECs could also present antigens and engage with 

alloreactive T cells to initiate GVHD through the expression of major histocompatibility 

complex class II (MHC-II) (Koyama et al., 2011; Koyama et al., 2019). While professional 

APCs constitutively express MHC-II, non-professional APCs do not typically present 

antigens through MHC-II. However, various factors such as diurnal oscillation, dietary 

changes, inflammation, and alterations to the intestinal microbiota could induce MHC-II 

expression in non-professional APCs such as IECs (Heuberger et al., 2023; Tuganbaev et 

al., 2020). Here, we investigate the regulation of intestinal epithelium MHC-II expression 

by Enterococcus as a mechanism that aggravates GVHD severity.  

 

Results 

Enterococcus abundance is associated with increased GVHD mortality  

 To assess the impact of Enterococcus on GVHD outcomes, we used an MHC-

disparate model of GVHD (C57BL/6J donors into BALB/cJ recipients). Lethally irradiated 

BALB/cJ recipients were transplanted with C57BL/6J splenic T cells along with T-cell-

depleted bone marrow (BM+T) to trigger GVHD, with the T-cell-depleted BM (BM only) 

group serving as controls (Figure 3.1A). We observed an increase in endogenous 

Enterococcus relative abundance in GVHD mice on day +7 post-BMT, compared to the 

BM only control group and pre-transplant naïve baseline, as quantified by 16S rRNA 
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sequencing of fecal samples (Figure 3.1B). This observation is consistent with previous 

findings demonstrating that Enterococcus bloom occurs both in mouse models of GVHD 

and in allo-HCT patients (Stein-Thoeringer et al., 2019).  

 

 

Figure 3.1. Enterococcus relative abundance is associated with increased mortality in 
am MHC-disparate mouse model of GVHD. A, Schematic of the MHC-disparate mouse 
model of GVHD in this study. Recipient BALB/cJ mice receiving bone marrow only from 
C57BL/6J donors do not develop GVHD, while recipient mice receiving bone marrow and 
allogeneic T cells from MHC-mismatched donor develop lethal GVHD. B, Enterococcus 
relative abundance quantified by 16S rRNA sequencing of fecal samples. C, Survival of 
GVHD mice, stratified by Enterococcus relative abundance on day +7 post-BMT. All data 
represent at least two independent experiments. Means ± SEM are plotted. ***p < 0.001, 
****p < 0.0001 by Kruskal-Wallis test (B) or Cox-proportional hazard ratio (C).  
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Figure 3.2. E. faecalis crude protein lysates moderately activate DCs but did not affect 
allogeneic T cell activation and proliferation in vitro. A-D, BMDCs were cultured with 
various stimuli and collected 24-hour post-stimulation for flow cytometry of (A) CD86 and 
(B) CD80 expression on CD11c+ MHC-II+ cDCs, and ELISA of culture supernatant for 
(C) IFNg and (D) IL-12p70. E-H, Mixed lymphocyte reaction between stimulus-activated 
BMDCs (BALB/cJ-derived) and allogeneic T cells (C56BL/6J-derived). On day +5 post-
co-culture, allogeneic T cells were collected for flow cytometry. I, Reconstitution of donor 
cDCs in the spleen and mesenteric lymph nodes on day +7 and day +14 post-BMT. All 
data represent at least two independent experiments. Means ± SEM are plotted. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way ANOVA test.  
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Given the variation in the level of endogenous Enterococcus bloom (Figure 3.1B), 

we asked whether Enterococcus relative abundance was correlated with GVHD severity. 

We stratified GVHD mice into two groups, Enterococcus-high and Enterococcus-low, 

based on the median Enterococcus relative abundance on day +7 post-BMT. We observed 

a significant and positive correlation between Enterococcus relative abundance and GVHD 

mortality, as the Enterococcus-high group had increased mortality compared to the 

Enterococcus-low group (Figure 3.1C). This observation in a mouse model of GVHD 

recapitulates previous studies in allo-HCT patients, where Enterococcus relative 

abundance in the peri-transplant period (day 0 to +21) is associated with increased GVHD-

related mortality (Holler et al., 2014; Peled et al., 2020; Stein-Thoeringer et al., 2019).   

 

Enterococcus abundance is positively correlated with MHC-II expression by colonic 

IECs during GVHD 

We next investigated the mechanism underlying the association between 

Enterococcus and GVHD mortality. Professional APCs such as host- and donor-derived 

DCs are the primary cell populations to engage with and activate donor T cells (Koyama 

et al., 2015; Matte et al., 2004; Shlomchik et al., 1999). Enterococcus could activate DCs 

and induce inflammatory cytokine secretion (Molina et al., 2015; Ocvirk et al., 2015). To 

assess the effect of Enterococcus on DCs, we cultured bone marrow-derived DCs 

(BMDCs) in the presence of crude protein lysates from a murine-derived E. faecalis strain. 

We utilized B. producta lysates as a comparison group, given the association of this genus 

with improved GVHD outcomes (Jenq et al., 2015; Kim et al., 2019; Rashidi et al., 2022). 

E. faecalis lysates upregulated the expression of costimulatory molecules, CD80 and 
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CD86, on BMDCs in a dose-dependent manner, compared to unstimulated control, 

although not statistically significant (Figures 3.2A-B). E. faecalis lysates also led to a 

robust and significant increase in IL-12p70 secretion, but not IFNg, from stimulated 

BMDCs (Figures 3.2C-D). On the other hand, B. producta lysates did not induce BMDC 

activation and inflammatory cytokine secretion.  

We next asked whether BMDC activation by E. faecalis had an impact on 

alloreactive T cell in a mixed lymphocyte reaction. E. faecalis-stimulated BMDCs did not 

significantly activate alloreactive T cells, compared to B. producta-stimulated and LPS-

stimulated BMDCs (Figures 3.2E-H). In addition to the in vitro experiments, we also 

examined DCs in vivo during GVHD. On day +7 post-BMT, which is the timepoint that 

Enterococcus bloom occurred in GVHD mice, DCs were mostly absent in the spleen and 

mesenteric lymph nodes (Figure 3.2I). Altogether, our data suggest that DCs are not the 

primary cell type mediating E. faecalis pathogenesis during GVHD.  

 

Enterococcus upregulates MHC-II expression by IECs at steady state and during GVHD 

 Previous literature has demonstrated that non-professional APCs such as IECs 

could induce GVHD through allo-antigen presentation via MHC-II (Koyama et al., 2019). 

We observed that GVHD mice exhibited a significant increase in MHC-II expression by 

colonic IECs on day +7 post-BMT, compared to BM only and non-transplanted naïve 

controls (Figure 3.3A). Furthermore, MHC-II expression by colonic IECs was 

significantly and positively correlated with fecal Enterococcus relative abundance on day 

+7 post-BMT (Figure 3.3B).  
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Figure 3.3. Enterococcus relative abundance is associated with increased MHC-II 
expression by colonic IECs in GVHD mice. A, Frequency of MHC-II+ EpCAM+ colonic 
IECs on day +7 post-BMT by flow cytometry. B, Simple linear regression between 
Enterococcus relative abundance and MHC-II expression by colonic IECs on day +7 post-
BMT in GVHD mice. C, PCA of gene expression through bulk RNA-sequencing of sorted 
CD45- CD31- EPCAM+ colonic IECs isolated on day +7 post-BMT. D, Heatmap of 
selected genes related to innate sensing and antigen-presentation (in red) from bulk-RNA 
sequencing of CD45- CD31- EPCAM+ colonic IECs. E, Gene set enrichment analysis of 
upregulated pathways in BMT mice compared to BM only controls from bulk-RNA 
sequencing of CD45- CD31- EPCAM+ colonic IECs. All data represent at least two 
independent experiments. Means ± SEM are plotted. ****p < 0.0001 by one-way ANOVA 
test.   
 

We explored other transcriptional changes in the colonic epithelium of GVHD mice 

through bulk RNA-sequencing of sorted EpCAM+ IECs (Figures 3.3C-E). The 

transcriptomic profiles of colonic epithelium during GVHD clustered distinctly from those 
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of BM only and non-transplanted naïve controls (Figure 3.3C). We confirmed the 

upregulation of genes related to anti-presentation at the transcriptional level (H2-Aa, H2-

Ab1, Ciita; Figure 3.3D), along with genes associated with IFNa/g inflammatory response 

in the colonic epithelium during GVHD (Figure 3.3E). Altogether, these data suggests that 

Enterococcus is associated with increased MHC-II expression by colonic IECs during 

GVHD.  

Previous studies have demonstrated that irradiation-induced inflammation is 

sufficient to upregulate MHC-II expression by IECs at the early time points post-BMT 

(Koyama et al., 2019). To tease out the effect of Enterococcus on the colonic epithelium 

apart from irradiation-induced and GVHD-related inflammation, we monocolonized 

germfree BALB/cJ mice with E. faecalis and profiled the IEC compartment at non-

transplanted steady state. As a control group, we utilized a cocktail of four bacteria, CBBP 

(C. bolteae, B. sartorii, B. producta and P. distasonis), which represents a minimal flora 

of potentially beneficial obligate anaerobes (Kim et al., 2019). Enterococcus-colonized 

mice exhibited increased MHC-II expression by colonic IECs compared to germfree and 

CBBP-colonized mice (Figure 3.4A). We did not observe a significant difference in the 

small IECs among the groups (Figure 3.4B).  

To validate our observations in the gnotobiotic setting, we utilized a model of 

Enterococcus colonization in the SPF setting on the C57BL/6J background (Figure 3.4C). 

FMT from naïve Jackson Laboratory-sourced donors into antibiotic-treated recipients 

served as the control group with low Enterococcus abundance. Enterococcus colonization 

is sufficient to induce MHC-II expression by both colonic and small IECs compared to the 
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FMT and CBBP groups, consistent with our findings in the gnotobiotic setting (Figure 

3.4D-E).  

 

 

Figure 3.4. Enterococcus colonization is sufficient to induce MHC-II expression by 
colonic IECs in non-transplanted steady state. A-B, Frequency of MHC-II+ EpCAM+ 
(A) colonic and (B) small IECs of gnotobiotic mice on day +14 post-colonization by oral 
gavage. C, Fecal Enterococcus abundance in SPF mice treated with antibiotics (VAMN) 
prior to bacteria colonization by oral gavage. Abx: antibiotics. D-E, Frequency of MHC-
II+ EpCAM+ (D) colonic and (E) small IECs of SPF mice on day +14 after the first oral 
gavage for bacterial colonization (day +25 after initiation of antibiotic treatment). F, PCA 
of gene expression through bulk RNA-sequencing of sorted CD45- CD31- EPCAM+ 
colonic IECs isolated from gnotobiotic mice on day +14 post-colonization by oral gavage. 
G, Volcano plot of differentially expressed genes from bulk RNA-sequencing of sorted 
CD45- CD31- EPCAM+ colonic IECs. H, A set of overlapped genes upregulated in both 
GVHD mice (SPF setting; day +7 post-BM) and Enterococcus-monocolonized mice 
(gnotobiotic setting; day +14 post-colonization. All data represent at least two independent 
experiments. Means ± SEM are plotted. ****p < 0.0001 by one-way ANOVA test.   
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Having demonstrated that Enterococcus induced MHC-II expression by colonic 

IECs in gnotobiotic mice at steady state, we next profiled the overall transcriptomic profiles 

of sorted EpCAM+ colonic IECs upon Enterococcus monocolonization (Figures 3.4F-H). 

The transcriptomes of Enterococcus-colonized colonic epithelium clustered distinctly from 

those of CBBP-colonized group (Figure 3.4F). Enterococcus-colonized group exhibited 

upregulation in genes associated with antigen presentation (H2-Eb1, H2-Aa, H2-Ab1, 

Cd74), which confirmed the flow-cytometry-based protein expression results (Figure 

3.4A), along with genes associated with IFNg signaling response (Ifi47, ligp1; Figure 

3.4G). Several genes were upregulated in both Enterococcus-colonized gnotobiotic mice 

at non-transplanted steady state and in Enterococcus-dominated SPF mice with GVHD 

(Figure 3.4H). These genes are associated with antigen presentation (Cd74, H2-Ab1, H2-

Eb1, H2-DMb1, Ciita, Nlrc5) and with IFNg signaling response (Ifi44, Igtp, Gbp8, Gbp4, 

Gbp6, Tgfbi, Ifi47). Thus, our results suggest that Enterococcus colonization is sufficient 

to induce MHC-II expression by IECs in the absence of systemic inflammation.  

 

MHC-II upregulation by colonic IECs is regulated via IFNg signaling 

TLRs recognize the gut microbiota through various bacterial surface-associated and 

intracellular molecules (Abreu et al., 2005; Fang et al., 2022). TLR signaling results in a 

cascade of innate immune activation that maintains homeostasis or mediates responses to 

pathogens (Kubinak and Round, 2012; Rakoff-Nahoum et al., 2004). To identify which 

TLRs could sense Enterococcus, we screened the crude protein lysates of murine-derived 

E. faecalis and human-derived vancomycin-resistant E. faecium (VRE) against a panel of 

murine and human TLRs, respectively. Murine-derived E. faecalis activated murine TLR2 
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and TLR13, while human VRE only activated human TLR2-TLR6 (Figures 3.5A-B). This 

observation is consistent with previous studies reporting the role of TLR2 in host defense 

against pathogenic Enterococcus (Leendertse et al., 2008; Park et al., 2013). 

 

 

Figure 3.5. Enterococcus-induced MHC-II upregulation by colonic IECs is 
independent of TLR2 signaling. A, TLR activation screening using HEK293 cells 
expressing various mouse TLR co-cultured with crude protein lysates of murine-derived 
E. faecalis. B, TLR activation screening using HEK293 cells expressing various human 
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TLR co-cultured with crude protein lysates of human-derived E. faecium. C, Frequency of 
MHC-II+ EpCAM+ colonic IECs in gnotobiotic mice colonized with different 
Enterococcus strains by flow cytometry. D, TLR2 activation screen using HEK293 cells 
expressing mouse TLR2 co-cultured with crude protein lysates of different Enterococcus 
strains. E, Frequency of MHC-II+ EpCAM+ colonic IECs in TLR2 WT versus TLR2 KO 
mice colonized with E. faecalis post-antibiotic decontamination by flow cytometry.  F, 
Absolute fecal Enterococcus abundance of TLR2 WT and KO mice colonized with E. 
faecalis post-antibiotic decontamination. VAMN: vancomycin, ampicillin, metronidazole, 
neomycin. All data represent at least two independent experiments. Means ± SEM are 
plotted. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA test.   
 

Lipoteichoic acid (LTA) is a cell-wall compenent of Gram-posive bacteria that 

serves as a ligand for TLR2 (Long et al., 2009). Given that Enterococcus species share 

similar LTA structures, we investigated whether Enterococcus species are similarly 

immunogenic in the context of the gut epithelium. We monocolonized germfree BALB/cJ 

mice with various different Enterococcus species and profiled MHC-II expression by 

colonic IECs at steady state. In this screen, E. faecalis was the only species that significanly 

upregulated MHC-II expression by colonic IECs, compared to germfree controls (Figure 

3.5C). E. durans also induced MHC-II expression moderately, although not statistically 

signficantly. On the other hand, E. gallinarium and E. hirae did not affect MHC-II 

expression by the colonic epithelium. This species-specific phenotype in vivo did not 

correlate with TLR2 activation in vitro, given that MHC-II non-inducers such as B. 

producta and E. gallinarium could strongly induce TLR2 activation to a comparable level 

with E. faecalis (Figure 3.5D).    

To further assess whether TLR2 signaling regulates Enterococcus-induced MHC-

II expression in the colonic epithelium, we utilized TLR2-deficient mice in the SPF setting. 

While high Enterococcus colonization was achieved in both TLR2-competent and deficient 

mice, we observed no significant difference in MHC-II expression by colonic IECs in wild-
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type versus TLR2-deficient mice (Figure 3.5E). Altogether, these data suggest that 

Enterococcus induces MHC-II expression in the colonic epithelium in a TLR2-independent 

manner. 

 
Figure 3.6. IFNg signaling mediates Enterococcus-induced MHC-II upregulation by 
colonic IECs. A, HLA-DR expression of HT-29 cells after 5 days of stimulation with IFNg 
and bacterial protein lysates. B-C, Frequency of MHC-II+ EpCAM+ in (B) colonic and 
(C) small IECs in VillinCre+ IFNgRfl/fl mice at steady state. D-E, Frequency of MHC-II+ 
EpCAM+ in (D) colonic and (E) small IECs in mice with epithelial deficiency of IFNgR 
upon colonization with E. faecalis by oral gavage for 5 days. F, Fecal absolute 
Enterococcus abundance of mice with epithelial deficiency of IFNgR at steady state and 
upon colonization with E. faecalis. G, Frequency of MHC-II+ EpCAM+ colonic IECs in 
gnotobiotic mice 14-day post-colonization with B. producta or E. faecalis in addition to 
treatment with isotype control or anti-CD4 depletion antibody. All data represent at least 
two independent experiments. Means ± SEM are plotted. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001 by one-way ANOVA test (A, F-G) or Student’s t-test (B-E). 
 

Previous literature has established the role of IFNg signaling in the regulation of 

MHC-II expression by non-professional APCs (Buttice et al., 2006; Koyama et al., 2019; 
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Nikcevich et al., 1999). We also observed increased presence of IFNg signaling upon 

Enterococcus colonization both at non-transplanted steady state and during GVHD. Thus, 

we next asked whether IFNg signaling mediates the interaction between Enterococcus and 

the intestinal epithelium. We co-cultured HT-29 colorectal adenocarcinoma cells with 

either IFNg alone or in combination with bacterial protein lysates. IFNg treatment alone 

was sufficient to significantly upregulate MHC-II expression by HT-29 cells in vitro 

(Figure 3.6A). The addition of bacterial lysates from either E. faecalis or B. producta did 

not affect MHC-II expression in HT-29 cells compared to IFNg treatment alone, suggesting 

an indirect interaction between bacteria and IECs potentially mediated by IFNg signaling.  

 To further delineate the role of IFNg signaling in regulating the interactions 

between Enterococcus and IECs, we utilized VillinCre+ IFNgRfl/fl mice with specific deletion 

of IFNgR in Villin-expressing IECs. VillinCre+ IFNgRfl/fl mice exhibited significantly 

decreased MHC-II expression by small IECs, compared to VillinCre- IFNgRfl/fl littermate 

controls, both at baseline microbiota and upon colonization with Enterococcus (Figures 

3.6B-E). The intestinal microbiome profiles based on 16S rRNA sequencing of fecal 

pellets collected at the time of tissue isolation demonstrated comparable levels of 

Enterococcus relative abundance between VillinCre+ and VillinCre- littermates (Figure 3.6F). 

Overall, these data suggest that IFNg signaling is important for the induction of MHC-II 

expression by IECs both at steady state and during Enterococcus colonization.  

 While many immune cell types could secrete IFNg, conventional CD4+ T cells are 

the most dominant source of this inflammatory cytokine in the gastrointestinal tract 

(Koyama et al., 2019). To test whether CD4+ T cells mediate the effect of Enterococcus 

on the intestinal epithelium, we administered antibodies depleting CD4+ T cells to 
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gnotobiotic mice monocolonized with E. faecalis or CBBP. Depletion of CD4+ T cells 

significantly abrogated the upregulation of MHC-II expression by colonic IECs in the 

presence of E. faecalis monocolonization (Figure 3.6G). These data support the hypothesis 

that IFNg signaling from CD4+ T cells mediates the induction of antigen presentation in 

the intestinal epithelium by Enterococcus.  

  

Butyrate does not regulate antigen presentation by the colonic epithelium in the context 

of Enterococcus domination 

 This study and others have demonstrated that only specific members of the 

intestinal microbiota could induce MHC-II expression by IECs (Koyama et al., 2023; 

Tuganbaev et al., 2020). Thus, we next investigated the microbial-derived factors driving 

this phenotype. Histone deacetylases (HDAC) such as HDAC3 play an important role in 

maintaining intestinal homeostasis and promoting barrier functions during GVHD 

(Alenghat et al., 2013; Mathewson et al., 2016; Reddy et al., 2004). Deletion of HDAC3 

specifically in IECs significantly abrogates MHC-II expression in this cellular 

compartment, suggesting that role of HDAC3 in regulating MHC-II expression (Eshleman 

et al., 2023). The intestinal microbiota could modulate HDAC3 activity through the 

secretion of butyrate, a short-chain fatty acid that acts as a pan-HDAC inhibitor (Candido 

et al., 1978). Thus, we next assessed whether butyrate could suppress MHC-II expression 

by IECs. We induced MHC-II expression in HT-29 cells through IFNg treatment in the 

presence of varying concentrations of sodium butyrate. Butyrate concentration as low as 

5mM was sufficient to completely abrogate MHC-II expression by HT-29 cells, even when 

combined with a high dose of IFNg (Figure 3.7A).  
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 We next assessed the effect of butyrate in vivo using our gnotobiotic mouse model. 

Since orally supplemented butyrate is rapidly absorbed in the duodenum and therefore does 

not reach the colon, we administered tributyrin, a precursor of butyrate that is slowly 

converted to butyrate in the colon by pancreatic lipases, to gnotobiotic mice monocolonized 

with E. faecalis or CBBP. We observed a trend, although not statically significant, that 

tributyrin-treated mice exhibited decreased MHC-II expression by colonic IECs in the 

presence of E. faecalis monocolonization, compared to vehicle-treated group (Figure 

3.7B). Thus, butyrate could suppress MHC-II expression in vitro, but its potential in vivo 

effects require further investigation.  

 

 
Figure 3.7. Butyrate suppresses MHC-II expression by colonic IECs in vitro but not 
in vivo. A, HLA-DR expression of HT-29 cells after 24 hours of stimulation with varying 
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concentrations of IFNg and butyrate. B, Frequency of MHC-II+ EpCAM+ colonic IECs in 
gnotobiotic mice colonized with B. producta or Enterococcus strains upon treatment with 
vehicle control (glycerol) or tributyrin (TB). C, IP3 concentration in supernatant of E. 
faecalis culture in BHI with and without addition of phytate. D, Fecal IP3 concentration of 
gnotobiotic mice colonized with B. producta or E. faecalis. E, HLA-DR expression of HT-
29 cells after 24 hours of stimulation with varying concentrations of IFNg and IP3. All data 
represent at least two independent experiments. Means ± SEM are plotted. ***p < 0.001, 
****p < 0.0001 by one-way ANOVA test (B, D) or two-way ANOVA test (A, E).   
 

The intestinal microbiota could also promote HDAC activity in the gut through the 

microbial-derived metabolite inositol-1,4,5-triphosphate (IP3), a byproduct of dietary 

phytate metabolism (Wu et al., 2020). We hypothesized that E. faecalis stimulates MHC-

II expression by IECs through IP3 production. We confirmed the capability of E. faecalis 

to metabolize dietary phytate, as demonstrated by the detection of IP3 in the culture 

supernatant upon addition of phytate to E. faecalis culture (Figure 3.7C). However, we did 

not detect a significant difference in IP3 production by E. faecalis in vivo, compared to 

MHC-II non-inducers such as CBBP (Figure 3.7D). In addition, treatment of HT-29 cells 

with IP3, with or without IFNg, did not affect MHC-II expression (Figure 3.7E). 

Altogether, these data do not support the hypothesis that E. faecalis induces MHC-II 

expression by IECs through modulation of HDAC activity.   

 

Lantibiotic-producing B. producta improves GHVD survival through suppression of 

Enterococcus bloom 

 Having demonstrated CBBP as MHC-II non-inducers, we next assessed whether 

the CBBP cocktail has a potential therapeutic effect in the setting of GVHD. We colonized 

GVHD mice with either E. faecalis and CBBP on day +4 and +5 post-transplant and 

observed that CBBP colonization significantly improved survival compared to E. faecalis 

colonization (Figure 3.8A). Colonization with CBBP also led to a reduction in fecal 
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Enterococcus burden on day +7 post-BMT, compared to PBS-treated and E. faecalis-

colonized group (Figure 3.8B).   

 

Figure 3.8. Colonization resistance against Enterococcus by a B. producta strain 
improves GVHD survival. A, Survival of GVHD mice colonized with lantibiotic-
producing B. producta or E. faecalis. B, Fecal Enterococcus absolute abundance on day 
+7 post-BMT. C, Enterococcus absolute abundance in co-culture with conditioned media 
from the lantibiotic-producing B. producta strain (B.p. SCSK) and a non-producer control 
strain (B.p. KH6). D, Enterococcus absolute abundance in co-culture with purified 
lantibiotic from the culture supernant of B.p. SCSK compared to vehicle control (PBS). E, 
Schematic of the interaction between Enterococcus and the intestinal epithelium through 
CD4+ T cells and IFNg signaling pathway, leading to increased allo-antigen presentation 
by IECs that induces activation of alloreactive T cells and subsequent development of 
GVHD. All data represent at least two independent experiments. Means ± SEM are plotted. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by Cox-proportional hazard ratio (A), 
Kruskal-Wallis test (B-C) or Mann-Whitney U-test (D). 
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The CBBP cocktail contains a strain of B. producta, termed B.p. SCSK, which 

could suppress VRE growth through lantibiotic production (Kim et al., 2019). We next 

assessed whether B.p. SCSK strain could also suppress commensal E. faecalis growth. 

Treatment with conditioned media from B.p. SCSK culture strongly suppressed E. faecalis 

growth in vitro, compared to untreated control and treatment with conditioned media from 

the control strain B.p. KH6 that does not produce lantibiotic (Figure 3.8C). In addition, 

treatment with purified lantibiotic also led to a strong reduction in E. faecalis growth in 

vitro (Figure 3.8D). Altogether, these data support the potential therapeutic effect of CBBP 

in ameliorating GVHD severity through suppression of Enterococcus growth.  

 

Discussion 

 In this study, we described the role of the intestinal microbiota in the regulation of 

MHC-II expression by IECs (Koyama et al., 2023; Tuganbaev et al., 2020). Specifically, 

we demonstrated that E. faecalis could strongly upregulate MHC-II expression by IECs 

both at steady state and during GVHD. Conversely, other strains of Enterococcus and of 

specific obligate anaerobes such as B. producta did not induce MHC-II expression. 

Importantly, Enterococcus domination was also strongly correlated with increased MHC-

II expression by colonic IECs during GVHD, further highlighting the importance of antigen 

presentation by non-professional APCs to initiate the GVHD inflammatory cascade 

(Koyama et al., 2011; Koyama et al., 2019). We also reported that Enterococcus induction 

of MHC-II expression by IECs was mediated by IFNg signaling. Antigen presentation by 

non-professional APCs, as regulated by the intestinal microbiota, also play a crucial role 

in other disease settings (Beyaz et al., 2021; Kreisel et al., 2010). Thus, targeting the 
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microbiome-gut epithelium MHC class II- IFNg axis presents a window of opportunity 

across many therapeutic areas (Figure 3.8E).  

 In addition, we identified the potentially therapeutic effect of B. producta SCSK 

strain to ameliorate GVHD severity and improve survival. B. producta SCSK strain 

produces lantibiotic that suppresses both commensal and pathogenic Enterococcus growth 

in vitro and in vivo (Kim et al., 2019). During allo-HCT, disruptions to the gut microbial 

community could lead to pathogen outgrowth and subsequent enteric and systemic 

infections, which could be prevented or reversed through restoring colonization resistance 

by beneficial gut commensals (Buffie and Pamer, 2013; Khan et al., 2021; Taur et al., 

2012). Here, we demonstrated that colonization resistance against Enterococcus could also 

ameliorate GVHD severity. We envision the use of B. producta SCSK strain as probiotics 

prior to allo-HCT to prevent Enterococcus bloom or as a treatment in response to intestinal 

Enteroocccus colonization to prevent the risk of GVHD-related mortality.  

 In conclusion, we reported a mechanism by which Enterococcus aggravates GVHD 

through the upregulation of MHC-II expression by IECs. Future preclinical and clinical 

studies may further delineate the relevance of these observations in allo-HCT patients. 

Despite its pathogenic impact in the context of GVHD, enhanced antigen presentation by 

the gut epithelium could be beneficial in other disease settings such as enteric infections 

and gastrointestinal cancer (Alenghat et al., 2013; Beyaz et al., 2021; Heuberger et al., 

2023; Kreisel et al., 2010; Tuganbaev et al., 2020). Enterococcus could also confer benefits 

in boosting immune responses during infection and cancer immunotherapy (Griffin et al., 

2021; Rashid et al., 2023). Additional mechanistic insights into the microbial-derived 
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factors driving the interactions between Enterococcus with the gut epithelium, therefore, 

may allow more precise utilization of this bacteria in a clinical setting. 

 

Materials and Methods 

Mice 

Female C57BL/6J and BALB/cJ mice were purchased from the Jackson Laboratory 

and maintained in our SPF facility. Female germfree BALB/cJ mice were born and 

maintained in flexible isolators at the Weill Cornell Gnotobiotic Mouse Facility, fed 

autoclaved feed and water, and routinely monitored for sterility. Villin-Cre (B6.Cg-

Tg(Vil1-cre)1000Gum/J), TLR2 KO (B6.129-Tlr2tm1Kir/J) and IFNgR fl/fl (C57BL/6N-

Ifngr1tm1.1Rds/J) mice were purchased from the Jackson Laboratory. In all experiments, 

sex- and age-matched littermate controls were used. Mice were 6-12 weeks of age at the 

beginning of experiments. All experiments procedures were conducted in compliance with 

the institutional guidelines at MSKCC.  

 

Bone marrow transplantation and assessment of GVHD 

Bone marrow transplantation were performed as previously described (Shono et al., 

2014; Tsai et al., 2018). Briefly, BALB/cJ recipients received 900-cGy split-dosed lethal 

irradiation and were transplanted with T-cell-depleted bone marrow (10 x 106 cells) and 

enriched T cells (1 x 106 cells) from donor C57BL/6J mice. T cells were depleted from the 

bone marrow with anti-Thy-1.2 and Low-Tox-M rabbit complement (CEDARLANE 

Laboratories). Donor T cells were prepared from splenocytes, enriched for CD5+ T cells 
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by Miltenyi MACS purification kit (routinely >90% purity). Mice were monitored daily 

for survival and weekly for GVHD clinical scores (Cooke et al., 1996).  

 

Bacterial species 

The E. faecalis strain used in this study was isolated from a BALB/cJ mouse with 

GVHD on day +7 post-transplant by plating homogenized fecal pellets in sterile PBS on 

Enterococcosel agar medium (Becton Dickinson).  The following commercial bacteria 

species and strains were sourced as follows: E. durans 23C2 (ATCC 6056), E. hirae R 

(ATCC 8043) and E. gallinarum NCDO 2313 (ATCC 51559). All Enterococcus strains 

and species were grown at 37oC under ambient atmosphere in autoclaved Gibco Bacto 

Brain Heart Infusion medium (Fisher Scientific). 

C. boltea, B. producta SCSK, B.producta KH6, B. sartorii and P. distasonis strains 

were kindly provided by Eric Pamer (University of Chicago). These strains were cultured 

in pre-reduced and autoclaved Brain Heart Infusion medium supplemented with yeast 

extract (5 g/L) and L-cysteine (1 g/L) at 37oC under anaerobic atmosphere.  

For colony-forming unit (CFU) assay, fecal samples were sterilely collected, 

weighed, resuspended in sterile PBS, homogenized by douncing with sterile pestles, 

serially diluted in sterile PBS, and then plated by drip assay onto selective Enterococcosel 

agar plates.  

Bacterial lysates were prepared by growing bacteria until log phase overnight. 

Pelleted bacteria were washed twice with sterile PBS, resuspended in sterile PBS 

supplemented with 250 µL/mL of MD solution. MD solution contained 0.1M MgCl2 and 

100 µg/mL DNase I in sterile water. Autoclaved zirconium beads (0.1mm size, 400 
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mg/tube) were added to the bacterial suspension, and bacteria was disrupted using a Bead 

beater (Fast-Prep24; program: 6.5 M/S; 30 seconds) for three times, with rest on ice in 

between each repeat for one minute. After the last bead beating cycle, samples were rested 

on ice for 5 min, centrifuged at 7500g for 5 min. Supernatant was collected, sterile filtered 

and stored in -20oC. Protein concentration was quantified by Bradford assay (Thermo 

Scientific).  

 

Cell culture 

The following cell lines were used and sourced as follows: HT-29 (ATCC HTB-

38) and HEK293-mTLR2 (Invivogen hkb-mtlr2). HT-29 cells were cultured at 37oC and 

5% CO2 in complete McCoy’s 5A (ATCC 30-2007) supplemented with 10% fetal bovine 

serum, 100 U/mL penicillin and 100 µg/mL streptomycin. HEK293-mTLR2 cells were 

cultured at 37oC and 5% CO2 in complete DMEM (ThermoFisher) supplemented with 10% 

fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 100 µg/mL 

Normocin (Invivogen). Cells were maintained at no greater than 80% confluency and 

subcultured accordingly using Trypsin. Cells were routinely tested for mycoplasma.  

For experiments using bacterial protein lysates, HT-29 cells were cultured in 

complete media supplemented with recombinant human IFNg (15 U/mL; Peprotech), along 

with bacterial crude protein lysates (15 µg/mL) or LPS (50 ng/mL; ThermoFisher) for 5 

days before collecting the cells for flow cytometry analysis. For experiments using butyrate 

and IP3, HT-29 cells were cultured in complete media supplemented with varying 

concentrations of recombinant human IFNg and sodium butyrate (Sigma) or D-myo-
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Inositol 1, 4, 5-triphosphate trisodium salt (Sigma) for 24 hours before collecting the cells 

for flow cytometry analysis. 

 

Bone marrow-derived dendritic cell culture and mixed lymphocyte reaction  

Bone marrow cells were isolated from wildtype BALB/cJ mice, cultured in 

complete RPMI supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100 

µg/mL streptomycin, along with recombinant GM-CSF (20ng/mL; Peprotech) and IL-4 (5 

ng/mL; Preprotech) for 6 days. On day 6, BMDCs were matured with various 

concentrations of bacterial lysates or with LPS (50 ng/mL; Sigma) for 24 hours. BMDCs 

were collected by scraping and used for flow cytometry analysis of activation markers or 

subsequent MLR. Culture supernatant was collected for cytokine analysis with 

ProcartaPlex Multiplex Immunoassay per the manufacturer’s instructions (Affymetrix). 

Cytokine concentration results were acquired with a Luminex 200 instrument and analyzed 

with xPONENT software (Luminex Corporation).  

 For subsequent MLR, activated BMDCs were used as stimulators. Splenic T cells 

from wildtype C57BL/6J mice were isolated using Miltenyi MACS purification of Pan T 

cells (routinely >95% purity). Isolated T cells were labeled with carboxyfluorescein 

succinimidyl ester (CFSE) to measure proliferation, as indicated by the percentage of 

CFSElow/medium cells by flow cytometry analysis. 100,000 T cells were mixed with 10,000 

stimulated BMDCs and co-cultured in a 96-well U-bottom plate for 96 hours.  
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Bacterial administration 

 In the germfree setting, bacteria were administered through a single dose of oral 

gavage. On the day of administration, frozen bacterial stocks were thawed, pelleted by 

centrifugation at 4,000g for 10 min and resuspended in sterile PBS (3 x 108 CFUs/mouse). 

Mice were euthanized on day +14 relative to colonization day for profiling of IECs by flow 

cytometry, unless otherwise indicated.  

 For GVHD experiments in the SPF setting, BALB/cJ recipients were provided with 

sterile-filtered drinking water supplemented with ampicillin (0.5 g/L; Sigma) and 

enrofloxacin (0.25 g/L; Sigma) as previously described (Staffas et al., 2018). Antibiotic 

treatment started at day -2 pre-BMT and continued until day 3 post-BMT until antibiotic 

solutions were replaced with regular drinking water. On day 4 and 5, bacteria were 

administered via oral gavage (3 x 108 CFUs/mouse).    

For steady state experiments in the SPF setting, mice were provided with sterile-

filtered drinking water supplemented with ampicillin (1 g/L; Sigma), vancomycin (0.5 g/L; 

Sigma), metronidazole (1 g/L; Sigma), neomycin (1 g/L; Sigma) and glucose (1 g/L; 

Sigma) for 10 days. Bacteria were administered via oral gavage for the subsequent 3 

consecutive days. On the day prior to administration, bacteria were inoculated into growth 

medium and grown overnight to late logarithmic phase. The following day, overnight 

cultures were pelleted by centrifugation and resuspended in sterile PBS (8 x 1010 

CFUs/day/mouse). FMT was carried out as fast as possible to avoid prolonged aerobic 

exposure. Microbiome samples were collected from the cecal content of a healthy, naïve 

C57BL/6 into a Falcon tube containing 1 mL sterile PBS. Samples were homogenized, 
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filtered through a 100 µM strainer and immediately administered to recipient mice pre-

treated with antibiotics. 

 

Cell isolation and flow cytometry 

Single cell suspensions from intestinal tissues were prepared as previously 

described (Stein-Thoeringer et al., 2019). Briefly, intestinal tissue was excised from mice, 

thoroughly rinsed with ice-cold PBS to clean out luminal content and opened 

longitudinally. The tissue was then cut into pieces of 1cm length and incubated in PBS 

containing 1mM EDTA and 1mM DTT (Teknova) at 37oC for 30 min while shaking at 250 

rpm. Epithelial cells were collected, filtered, centrifuged, and subsequently incubated with 

staining buffer (PBS, 0.5% BSA, 2mM EDTA) containing anti-mouse CD16/32 blocking 

agent (1:400; BD Pharmingen 553142) for 15 min on ice. Samples were protected from 

light from this point forward. Samples were washed with staining buffer and then incubated 

with antibody cocktail for 30 min on ice. Antibodies were procured and used as follows: 

anti-CD45 (1:800; BV711, 30-F11, BioLegend 103147), anti-CD31 (1:200; BV605, 390, 

BioLegend 102427), anti-CD326 (1:200; PE-Cy7, G8.8, eBioscience 25-5791-80) and 

anti-I/A-I/E (1:200; APC, M5/114.15.2, eBioscience 17-5321-82). After staining, cells 

were washed with staining buffer and resuspended in staining buffer containing DAPI 

(1:200). Multiparameter analysis was performed on a FACS Symphony A5 (BD 

Biosciences) flow cytometer and analyzed with FlowJo software (Tree Star). When 

applicable, gating was determined using isotype control.  

FACS sorting experiment followed a similar protocol as described above. 

Antibodies were procured and used as follows: anti-CD45 (1:1600; FITC), anti-CD31 
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(1:200;) and anti-CD326 (1:200; PE-Cy7, G8.8, eBioscience 25-5791-80). Samples were 

sorted on SH800S Cell Sorter (SONY) to >98% purity.  

 

DNA extraction and 16S rRNA sequencing  

 DNA was extracted from mouse fecal samples using a phenol-chloroform bead 

beating protocol and genomic 16S ribosomal RNA gene V4-V5 variable region was 

amplified and sequenced on the Illumina MiSeq platform as previously described (Jenq et 

al., 2015). Amplicon sequence variants (ASVs) were inferred following the DADA2 

pipeline (Callahan et al., 2016) and classified to the genus level against the NCBI database.  

 

RNA sequencing and analysis 

 CD45- CD31- EpCAM+ intestinal epithelial cells from the colon of GVHD mice 

on day +7 post-BMT and from gnotobiotic mice on day +14 post-colonization were 

isolated and FACS-sorted. RNA was isolated using TRIzol (Invitrogen) and phase 

separation as induced with chloroform. RNA was extraction from the aqueous phase using 

the miRNeasy Micro or Mini Kit (Qiagen) on the QIAcube Connect (Qiagen) according to 

the maufacturer’s instructions. Smaple was eluted in RNase-free water.  

 After RiboGreen quantification and quality control by Agilent BioAnalyzer, total 

RNA was amplified using TruSeq Stranded mRNA LT kit (Illumna) according to the 

manufacturer’s instructions, with 8 cycles of PCR. Samples were barcoded and run on the 

NovaSeq 6000 in a PE100 run using the NovaSeq 6000 S4 Reagent Kit (200 Cycles; 

Illumina).  
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TLR stimulation test  

 TLR stimulation is tested by assessing NF-kB activation in the TLR expressing cell 

lines (InvivoGen). The activity of the test articles is tested on nine different human TLRs 

(TLR1/2, 2/6, 2, 3, 4, 5, 7, 8 and 9) and eight mouse TLRs (mTLR2, 3, 4, 5, 7, 8, 9 and 13) 

as potential agonists. HEK-Blue hTLR2 cells have been stably transfected with human 

TLR2 and CD14. In HEK-Blue hTLR2-TLR1 cells endogenous TLR1 and TLR6 genes 

have been neutralized and human TLR1, TLR2 and CD14 have been stably transfected. In 

HEK-Blue hTLR2-TLR6 cells endogenous TLR1 and TLR6 genes have been neutralized 

and human TLR2, TLR6 and CD14 have been stably transfected. The activity of the test 

articles is tested at the concentration of 10 µg/mL and compared to control ligands.  

The secreted embryonic alkaline phosphatase (SEAP) reporter is under the control 

of a promoter inducible by the transcription factor NF-κB. This reporter gene allows the 

monitoring of signaling through the TLR, based on the activation of NF-κB. In a 96-well 

plate (200 μL total volume) containing the appropriate cells (50,000 – 75,000 cells/well), 

20 μL of the test article or the positive control ligand is added to the wells. The media 

added to the wells is designed for the detection of NF-κB induced SEAP expression. After 

a 24-hour incubation the optical density (OD) is read at 650 nm on a Molecular Devices 

SpectraMax 340PC absorbance detector.  

 

In vivo CD4 depletion  

 Monocolonized mice were treated with anti-CD4-depletion antibody (250 

µg/dose/mouse; BioXCell) or isotype control (rat IgG2b; BioXCell) by intraperitoneal 

injection on day -3, -1, +4 and +11 relative to colonization day. 
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Tributyrin administration in gnotobiotic setting 

 Monocolonized mice were treated with tributyrin (150 mM; Sigma) or equimolar 

glycerol vehicle control by oral gavage three times a week starting on the day of bacterial 

administration.  

 

IP3 ELISA 

 Fecal pellets were homogenized in 250 µL of sterile PBS then centrifuged at 1,000 

g for 10 min. E. faecalis was grown in BHI overnight supplemented with phytic acid 

sodium salt hydrate (1 mM; Sigma). Overnight culture was centrifuged at 4,000 RPM for 

10 min Supernatants were collected and IP3 levels were determined using mouse inositol 

1, 4, 5, -triphosphate ELISA kit (MyBioSource) following the manufacturer’s instructions.  

 

Lantibiotic purification and co-culture  

 Co-culture of E. faecalis with conditioned supernatant from B. producta SCSK or 

KH6 strains and purified lantibiotic was performed as previously described (Kim et al., 

2019). Briefly, a frozen aliquot of B. producta was inoculated and cultured for 24 hours. 

Culture supernatant was collected by centrifugation at 4,000 RPM for 10 min and 

subsequent filtration (0.22 µm). Supernatants were diluted 1:2 with culture broth. E. 

faecalis was subsequent inoculated (103 CFUs/mL), cultured for 24 hours and enumerated 

at the end of the experiment.  

 To purify lantibiotic from the culture supernatant of B. producta, ammonium sulfate 

was added to 45% saturation and equilibrated overnight stirring at 4oC. The precipitate was 

collected by centrifugation at 3000 g for 30 min at 4oC, resuspended with 5 mL sterile 
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dPBS and dialyzed through the Amicon Ultra 3 KDa filter with dPBS to wash out the 

residual ammonium sulfate. Total protein concentrations were quantified with the BCA 

protein assay kit (Thermo Fisher), normalized (2 mg/mL), sterile filtered and diluted in 

culture broth (20 µg/mL). E. faecalis was inoculated (103 CFUs/mL), cultured for 24 hours 

and enumerated at the end of the experiment.  

 

Statistical analysis 

 Results are shown as means ± SEM, unless otherwise indicated. Tests between two 

groups used a two-tailed Student’s t-test or a Mann-Whitney U-test. Tests between more 

than two groups used a one-way ANOVA with Tukey or a Kruskal-Wallis test with Dunn 

for multiple comparisons. Linear regression was used to assess correlations between two 

data sets. Survival curves were evaluated using a log-rank Mantel-Cox test with p-values 

adjusted for multiple comparisons. Results were considered significant at *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001. Statistical significance was calculated using Prism 

version 9.0 (GraphPad Software).  
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CHAPTER FOUR 

CONCLUDING REMARKS  

 

This thesis focuses on the interactions between pharmacological exposures, the 

intestinal microbiota and the immune system in the context of allo-HCT. Several studies 

have demonstrated the association between the intestinal microbiota and clinical outcomes 

following allo-HCT (Holler et al., 2014; Peled et al., 2020; Stein-Thoeringer et al., 2019). 

Therefore, interventions to minimize disruptions to the intestinal microbiota are of 

significant clinical importance. One such intervention involves the stewardship of 

pharmacological exposures, minimizing the collateral damage of medications on the 

intestinal microbiota (Weersma et al., 2020; Zimmermann et al., 2021). While preclinical 

and clinical studies have demonstrated the detrimental impact of broad-spectrum 

antibiotics on the intestinal microbiota (Fishbein et al., 2023), the influence of non-

antibiotic medications on the gut microbes is less well-understood, especially in the human 

setting. We investigated the associations between various pharmacological exposures 

(encompassing both antibiotic and non-antibiotic drug classes) on the intestinal microbiota.  

Our study enabled the identification of medication-microbiome associations using 

a high-throughput approach and showed the power of those associations in predicting 

clinical outcomes. However, important limitations exist, and the interpretation of the 

results should be performed with care. (i) This study analyzes a retrospective cohort study. 

Controlled experiments are required to confirm whether our predictions are causal or 

not. (ii) Drug-microbiome interactions are potentially dependent on drug dosing, which we 

did not account for. (iii) While synergistic and antagonistic drug interactions have been 
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reported (Yeh et al., 2009), our model assumes drugs to act independently from each other. 

(iv) Transplant-specific effects, such as conditioning intensity and graft type, are not fully 

captured by our model. We assume those effects are partially attenuated by a time 

parameter and the medication protocol depending on transplant type and conditioning 

regimen. (v) Medication exposure is only one component among the various perturbations 

a patient is subjected to. Other environmental factors have also been associated with 

changes in the intestinal microbiome. For example, dietary intake has been shown to play 

a major role in shaping the intestinal microbiota in both healthy individuals and cancer 

patients (Gacesa et al., 2022; Spencer et al., 2021; Wu et al., 2011). Future efforts to collect 

dietary intake data could help elucidate further the association between diet, changes in the 

intestinal microbiota and clinical outcomes of allo-HCT patients. Finally, we envision 

PARADIGM to be a valuable tool to investigate microbiome dynamics in vivo and await 

its application to other comparable datasets, encompassing drug exposures and other 

environmental factors, to replicate and extend the results in this study. 

In the events that microbiome disruption is unavoidable, understanding of the 

immunological mechanism underlying microbe-host interactions could provide additional 

therapeutic approaches to maximize clinical outcomes following allo-HCT. Several 

preclinical and clinical studies have reported that the genus Enterococcus is strongly 

associated with an increased risk of GVHD-related mortality following allo-HCT (Holler 

et al., 2014; Stein-Thoeringer et al., 2019). Our study demonstrated that intestinal 

Enterococcus colonization could upregulate MHC-II expression by IECs at non-

transplanted steady state and during GVHD. Modulation of MHC-II expression by IECs is 

dependent on IFNg signaling from CD4+ T cell subsets. Several microbial taxa have been 
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identified as inducers of MHC-II expression by IECs (Koyama et al., 2023; Tuganbaev et 

al., 2020). Although previous studies have demonstrated the involvement of the innate 

immune signaling such as TLR (Beyaz et al., 2021; Koyama et al., 2019), we observed that 

the regulation of gut epithelium antigen presentation by Enterococcus occurred 

independently of TLR2 signaling and in the absence of DCs. Future studies are important 

to delineate further the involvement of other immune and non-immune cell types in the 

regulation of antigen presentation by IECs. In addition, identification of microbial derived 

molecules driving IFNg signaling from CD4+ T cells and subsequent MHC-II expression 

by IECs will further provide important mechanistic insights into gut epithelium-microbe 

interactions.  

Collectively, this thesis supports the development of microbiome-based 

therapeutics to prevent and ameliorate GVHD pathophysiology and improve patient 

outcomes following allo-HCT. We envision various potential approaches, including (i) the 

optimization of pharmacological exposures to limit perturbations to the intestinal 

microbiota, and (ii) the targeted elimination of pro-inflammatory microbial taxa by 

rationally designed probiotics to restore intestinal epithelium homeostasis. Importantly, the 

data from our studies could be extended beyond allo-HCT, given the involvement of the 

gut microbiota in several other diseases, including inflammatory bowel disease and 

gastrointestinal cancer.  
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