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ABSTRACT 

The evolutionary features of pancreatic ductal adenocarcinoma (PDAC) have not been 

systematically studied to date. Here, we assembled a cohort of 90 PDAC patients to 

investigate the genomic landscape and clonal composition across the full spectrum of 

clinical disease contexts. The timing of driver mutations, including truncal and subtruncal 

events, did not differ significantly across clinical contexts. However, higher truncal 

densities were significantly associated with worse overall survival after adjusting for stage 

at diagnosis, age and smoking history, representing a potential prognostic biomarker. 

While we observed clonal mixing in most patients, distinct clones were also identified in 

different samples from the same patient, highlighting intratumoral heterogeneity. 

Treatment status and disease stage were associated with the clonal composition of PDAC 

with treated and late-stage patients having increased odds of being polyclonal. 

Oligometastatic patients had fewer drivers and loss of heterozygosity (LOH) events 

compared to those with widespread metastatic disease, suggesting more genomically stable 

tumors that may impact management. In sum, our findings reveal novel insights into 

subclonal evolution in PDAC beyond established genetic paradigms. 
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CHAPTER ONE: INTRODUCTION 

Pancreatic ductal adenocarcinoma 

Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplasm of the pancreas, 

accounting for >90% of all pancreatic malignancies1. This tumor type poses a significant 

health problem globally, with 495,773 (262,865 male and 232,908 female) new cases 

diagnosed in 2020 and an associated 466,003 (246,840 male and 219,163 female) deaths 

in the same year2. While the incidence rate for pancreatic cancer has increased by about 

1% per year since 2000, the death rate has increased only slightly by 0.2% per year3. 

Furthermore, the incidence rate increases with age, with the average age at diagnosis being 

70 years2. According to GLOBOCAN 2020 estimates, pancreatic cancer ranks as the 

twelfth most common malignancy (2.6% of all cancers) and the seventh leading cause of 

cancer mortality (4.7% of all cancers)4. If outcomes do not improve, the disease is projected 

to surpass breast cancer as the third leading cause of cancer death by 2025 in the European 

Union and become the second leading cause of cancer-related death in the United States 

by 20305,6. Despite significant advances in understanding the biology of PDAC and 

numerous clinical trials, the prognosis for patients with pancreatic cancer remains poor 

with a 5-year relative survival of 11% for all stages and only 3% for metastatic disease3. 

Treatment 

Therapeutic options in PDAC are lacking. Surgical resection in early stage (Stage I/II) 

patients offers the only opportunity for cure. However, only 10-20% of patients with PDAC 

have resectable disease1.  The primary surgical treatment for PDAC is a 

pancreaticoduodenectomy (Whipple procedure), which involves the removal of the head 

of the pancreas, most of the duodenum, the gallbladder and a portion of the bile duct7. For 
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tumors of the pancreatic tail, a distal pancreatectomy with splenectomy is performed8. A 

total pancreatectomy is rarely required except for tumors that are either centrally located 

or expand the entire length of the organ9. Overall, pancreatic cancer surgery has acceptably 

low mortality rates of <5% thanks to centralization of patient care to high-volume 

centers10,11 and improved perioperative management12. However, of those who undergo 

resection followed by adjuvant therapy, ~80% will relapse and ultimately die of their 

disease8.  

For Stage III/IV patients with good performance status, chemotherapy is the first-

line treatment option. Gemcitabine has been the standard chemotherapy drug for many 

years, but combination therapies with nab-paclitaxel and FOLFIRINOX have recently 

shown better survival outcomes in patients with advanced PDAC13. Conversely, patients 

with a poor performance status generally receive either gemcitabine alone or in 

combination with erlotinib or capecitabine integrated with palliative care13. For select 

patients with locally advanced disease, radiation-based therapy is either administered as a 

single modality or in combination with chemotherapy14. Approximately 10% of PDACs 

contain mutations in DNA damage repair genes such as BRCA2 and PALB215. 

Consequently, these tumors exhibit large numbers of structural variants (SVs), exceeding 

200 per genome16. For patients with this scale of genomic instability, platinum salts (e.g. 

cisplatin and oxaliplatin) and PARP inhibitors are becoming important therapeutic 

strategies17. Although mismatch repair deficiency only occurs in <1% of PDACs18, it 

confers favorable responses to immune checkpoint inhibitors, likely owing to a higher 

neoantigen burden. Overall, improvements in patient outcomes have been modest and 

incremental compared to the prior treatment standard, single agent gemcitabine.  
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Novel and innovative treatment approaches are urgently needed to improve clinical 

outcomes in patients with PDAC. One promising area of research is the development of 

mRNA vaccines against pancreatic cancer. These vaccines work by delivering mRNA 

molecules that encode tumor-associated antigens, which stimulate an immune response 

against the cancer19. In a recent Phase 1 trial, Balachandran et al. tested an mRNA vaccine 

encoding neoantigens in PDAC patients. They found the vaccine was safe and generated 

functional T cell responses against multiple neoantigens in patients20. In a follow-up study, 

they analyzed neoantigen quality in long-term survivors versus short-term survivors21. 

Survivors had T cells targeting neoantigens with higher MHC binding affinity. However, 

over time, clones targeting these high-quality neoantigens were selectively lost. This 

reveals a process of immunoediting, where cancer cells expressing high affinity 

neoantigens are eliminated, leading to outgrowth of cells with lower quality neoantigens 

no longer targeted by T cells. These findings provide insights into PDAC immune escape 

and have implications for mRNA vaccine design and T cell monitoring approaches. 

Optimizing neoantigen selection and combatting T cell exhaustion may be key to 

improving mRNA vaccine efficacy in PDAC. 

PDAC genetics 

PDAC is characterized by a high prevalence of mutations in KRAS, TP53, CDKN2A, and 

SMAD4. Oncogenic KRAS mutations occur in over 90% of PDACs and are considered a 

key early event in pancreatic tumorigenesis15,16,22. Multiple oncogenic KRAS alleles have 

been identified, including G12D, G12V, and G12R, as well as numerous other hotspot 

codon 12 and 61 mutant alleles at a lower prevalence15,16,22–24. Somatic TP53 mutations are 

also detected in up to 85% of PDACs25 with as many as 66% of TP53 mutations being 
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missense mutations that affect the DNA binding domain22.Inactivation of the CDKN2A 

tumor suppressor, which regulates p16INK4A and p19ARF, is found in >90% of PDACs 

through mutation, deletion, or promoter methylation26. Finally, inactivation of SMAD4 

occurs in approximately 55% of PDACs either by homozygous deletion (30%) or by an 

intragenic mutation coupled with loss of the second copy (25%)27. 

Furthermore, PDAC also harbors extensive copy number alterations (CNAs). In a 

TCGA study of 150 pancreatic cancers, arm-level CNAs were identified in over a third of 

PDAC tumors using both SNP microarrays and whole-exome sequencing (WES)15. 

Amplifications of 1q (33%) and deletions of several chromosomal regions such as 6p 

(41%), 6q (51%), 8p (28%), 9p (48%), 17p (64%), 17q (31%), 18p (32%), and 18q (71%) 

were consistent with previous studies16,28,29. GISTIC analysis of focal amplifications and 

deletions in the high-purity group of tumors revealed recurrent events containing known 

oncogenic drivers including amplifications of GATA6, ERBB2, KRAS, AKT2, and MYC, 

as well as deletions of CDKN2A, SMAD4, ARID1A, and PTEN.  

In addition to these common single nucleotide variants (SNVs) and CNAs, PDAC 

genomes exhibit complex structural variations such as deletions, inversions, 

interchromosomal translocations and tandem duplications 16. Analysis of whole-genome 

sequencing data from 100 PDACs by Waddell et al. revealed that pancreatic cancers 

contained an average of 119 SVs per tumor (range 15–558) and the majority of structural 

variants were intra-chromosomal. The authors defined four subgroups of PDAC based on 

the frequency and distribution of structural rearrangements found within a sample, 

including stable, locally rearranged, scattered and unstable. The stable subtype (20% of all 

samples) contained ≤ 50 structural variation events and often exhibited widespread 
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aneuploidy, which suggested defects in cell cycle/mitosis. In the locally rearranged subtype 

(30% of all samples), the genome exhibited a significant focal event on either one or two 

chromosomes. Roughly one third of locally rearranged genomes contained regions of copy 

number gain that harbor known oncogenes, KRAS, SOX9, and GATA6, as well as in 

therapeutic targets such as ERBB2, MET, CDK6, PIK3CA, and PIK3R3 at low prevalence. 

These data suggest that there is a significant diversity of mechanisms involved in PDAC 

progression. The remaining local rearrangements involved complex genomic events such 

as breakage–fusion–bridge or chromothripsis30,31. In the scattered subtype (36% of all 

samples), tumors exhibited a moderate range of non-random chromosomal damage and 

<200 structural variation events. Lastly, the unstable subtype (14% of all samples) 

exhibited a large number of structural variation events (>200; maximum of 558), indicative 

of defects in DNA maintenance. Upon further analysis, the authors found that unstable 

tumors were associated with a high BRCA mutation signature and deleterious mutations in 

BRCA pathway genes. While mutations in other genes involved in DNA maintenance such 

as ATM, FANCM, XRCC4, and XRCC6 were also detected in tumors with an unstable 

genome, these events had not been causally linked to these genomic events at the time of 

the authors’ analysis. 

Genetic intratumoral heterogeneity 

PDAC exhibits multiple types of genetic Intratumoral Heterogeneity (gITH). In solid 

tumors, gITH can be categorized into three types32; Type 1 gITH refers to genomic 

differences between any two cells within the primary tumor; Type 2 gITH refers to 

genomic differences between any two cells within a metastasis; and Type 3 gITH refers to 

genomic differences between two different metastasis-initiating cells within the primary 
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tumor. An additional distinction to be made is whether gITH corresponds to any mutation 

(silent and non-silent) or to deleterious driver gene alterations specifically. From a clinical 

perspective, gITH is associated with cancer progression and contributes to therapeutic 

resistance33.  

In a multiregion study of treatment-naïve Stage IV PDAC, identical driver 

mutations were identified in every metastatic lesion for each patient studied with respect 

to pathogenic SNVs, focal CNAs, and SVs34. The only Type 3 gITH identified 

corresponded to passenger (silent and non-deleterious) mutations, which when quantified 

yielded higher (i.e., more related) Jaccard relatedness indices compared to those of normal 

tissue. These findings suggest that at least one clonal sweep occurred in all the PDACs 

examined, resulting in a genetically homogeneous tumor prior to metastatic dissemination. 

Furthermore, these results have encouraging clinical implications for the success of future 

potential targeted therapies against clonal drivers in advanced-stage PDAC, suggesting that 

they could provide an initial clinical benefit. This rationale is believed to underlie 

exceptional responses to cisplatin or PARP inhibitors in patients with germline or somatic 

BRCA2 mutations17. 

By contrast, in a separate study of patients that were originally diagnosed with 

Stage I/II resectable PDAC who recurred after adjuvant therapy, all primary tumors 

exhibited evidence of Type 1 gITH with respect to driver genes35. These primary tumors 

were further categorized according to their phylogenetic relationship to the recurrent 

disease. “Outgroup” primaries were distantly related to the recurrent disease, suggesting 

that recurrence was the product of the expansion of a single residual clone (monophyletic). 

Conversely, “ingroup” primaries were as related to the recurrent disease as any other 
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sample in the patient, suggesting that recurrence arose from clonally diverse (polyphyletic) 

residual disease. Irrespective of phylogenetic category, recurrent disease was enriched for 

functionally deleterious SNVs and CNAs that activate MAPK/ERK and PI3K/AKT 

signaling. Notably, droplet digital PCR confirmed the presence of these SNVs in the 

primary tumor. Cumulatively, these findings demonstrate that gITH for deleterious driver 

gene alterations exists in Stage I/II PDAC upon which treatment imposes a genetic 

bottleneck. Not only are these results significant because they support investigation into 

the role for MAPK and PI3K inhibitors in the adjuvant setting, but when considered in 

tandem with other multiregion studies34, they demonstrate that clinically relevant gITH is 

stage and context dependent. 

PDAC from an evolutionary perspective 

Stages of PDAC evolution 

PDAC is a highly aggressive cancer that arises from the exocrine cells of the pancreas and 

its evolution can be characterized into three general stages. These stages are tumor 

initiation via the acquisition of a driver gene mutation, clonal expansion of the cell carrying 

the initiating mutation, and dissemination of the neoplastic population into foreign 

microenvironments32. While the occurrence of the initiating driver gene mutation is 

necessary for PDAC progression, this event alone is insufficient; it is not until the initiating 

mutation becomes fixed in the epithelial cell population that PDAC can develop. The 

subsequent clonal expansion stage corresponds to the development of PDAC precursor 

lesions called pancreatic intraepithelial neoplasia (PanINs)36, during which high frequency 

(KRAS, CDKN2A, TP53, SMAD4) and low frequency (KMT2C, ARID1A and SF3B1) 

somatic mutations16 accumulate. These mutations commonly accumulate in a stepwise 
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manner37, but in rare cases multiple alterations can be acquired simultaneously in the 

aftermath of a catastrophic genome-wide event such as chromothripsis38. Once cells break 

through the basement membrane into the surrounding stroma, various selective pressures 

shape them into subclonal populations with varying degrees of fitness. 

Timeline of PDAC evolution 

The timeline of PDAC evolution spans multiple decades. Quantitative analyses of the 

timing of the genetic evolution of PDAC suggest that at least a decade passes between the 

occurrence of the initiating mutation and the birth of the non-metastatic founder cell39. The 

same model also predicts that at least five more years are required for the acquisition of 

metastatic ability, after which most patients die a few years later. Therefore, the time from 

tumor initiation to death of the patient has been estimated to take >20 years, providing a 

large window of opportunity for early detection of PDAC while it is still in its early, curable 

stage.  

Evolutionary trajectories in PDAC 

There is a range of evolutionary trajectories in cancer, both within and across tumor types. 

At one end of the spectrum, tumors follow a classical Darwinian growth pattern, displaying 

extensive gITH that is characterized by heterogeneous subclonal driver mutations and 

CNAs40. Clear cell renal cell carcinoma (ccRCC) typifies this end of the spectrum and 

clinically is characterized by having a more indolent growth pattern, oligometastatic 

disease and relatively long-term survival41. At the other end of the spectrum, PDAC 

patients typically have multiple clonal (truncal) driver gene alterations consisting of both 

somatic coding mutations and CNAs, and their subsequent evolutionary trajectories are 

relatively monoclonal40. From a clinical perspective, these patients usually suffer from 
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rapid progression and dissemination across multiple metastatic sites, succumbing to their 

disease early. However, a minority of advanced stage PDAC patients exhibit an indolent 

disease course and relatively long-term survival42, similar to patients with ccRCC40. Deep 

genomic profiling of one such unusual patient revealed a truncal CTNNA2 deletion as the 

sole genetic event.  

How and why these different evolutionary growth patterns emerge remains unclear. 

Moreover, it is unknown if the clinical timepoint at which samples are collected represents 

the full scope of evolutionary trajectories that can occur within a particular disease. For 

patients with ccRCC, surgery plays a major role in disease management41. This clinical 

paradigm has supported evolutionary studies in this tumor type because both the primary 

tumor and matched synchronous metastases can be sampled as a byproduct of delivering 

routine care. Conversely, surgical management plays a more limited role in patients 

diagnosed with PDAC. Not only is surgical resection difficult because the pancreas lies 

deep within the abdomen adjacent to vital veins and arteries, but PDAC is commonly 

asymptomatic until it progresses to more advanced stages. Consequently, most patients 

present with unresectable disease that is either locally advanced at diagnosis or has 

metastasized to distant organs8. As a result, multiregion studies of PDAC have been 

performed on samples that have been obtained primarily through post-mortem 

collection34,35,43. It is unknown whether there are underappreciated biases from these tissue 

sampling practices related to the extent and prevalence of gITH both between and within 

tumor types. Furthermore, multiple factors including the pathogenicity of driver event(s), 

disease latency, cell of origin and tumor microenvironment, as well as exogenous and 

endogenous mutational processes, may also contribute44.  
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Evolutionarily informed therapies 

From a therapeutic perspective, targeting the evolutionary mechanisms of PDAC 

has emerged as a promising strategy to improve patient outcomes. One example of an 

evolutionary-based therapy is inhibition of the KRAS pathway, which has been a 

longstanding challenge due to the lack of druggable targets45. However, recent advances 

have led to the development of novel KRAS inhibitors, such as AMG510 (sotorasib) and 

MRTX849 (adagrasib), which have shown promising results in preclinical and early-phase 

clinical trials46,47. AMG510 and MRTX849 are covalent inhibitors that lock KRAS G12C 

in an inactivated GDP-bound state, thus decreasing functional KRAS and ultimately 

leading to cell cycle arrest and apoptosis in KRAS-mutant tumors. Unlike other tumor 

types including non-small-cell lung cancer and colorectal cancer, KRAS G12C is a rare 

mutation that only occurs in 1-2% of pancreatic cancers patients, thus limiting its utility in 

this clinical context. Excitingly, a non-covalent inhibitor of KRAS G12D, MRTX1133, has 

recently demonstrated potent inhibition of KRAS G12D-dependent signaling and tumor 

regression in xenograft models48. While phase I/II clinical trials have only recently 

launched in early 2023, MRTX1133 could have a far greater impact on PDAC patients as 

KRAS G12D is present in approximately 34% of cases49. Targeting early events like KRAS 

that drive tumorigenesis is widely considered to be an optimal therapeutic strategy because 

most if not all the tumor cells will harbor the alteration of interest. However, subclonal 

mutations may also be useful targets in combination therapies if they play a functional role 

in subclones influencing tumor progression. 
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Scope of thesis 

gITH has been associated with cancer progression and is thought to be a major contributor 

to treatment resistance. However, the extent to which different genetic drivers that arise 

during carcinogenesis specifically influence subsequent evolutionary trajectories and 

clinical course remains unknown. Ultimately, a deeper understanding of evolutionary 

trajectories within and across multiple tumor types, as well as before and after treatment 

may distinguish patients with more indolent disease biology or oligometastatic progression 

from those with more rapid dissemination and clinical courses. Such insights have the 

potential to facilitate clinical trial stratification and disease management. The aim of this 

project is to determine the extent to which diversity and evolutionary timing of driver gene 

mutations impacts clinical disease course in a single cancer type, PDAC. While there are 

known driver genes in PDAC, the extent to which the quantity, quality, or chronology of 

these drivers impacts tumor evolution remains unclear.  
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CHAPTER TWO: MATERIALS AND METHODS 

Tissue sample collection and processing 

Tumor and matched normal tissues were collected through the Gastrointestinal Cancer 

Rapid Medical Donation Program at the Johns Hopkins Hospital and the Medical Donation 

Program at Memorial Sloan Kettering Cancer Center. Pre-mortem informed consent was 

obtained from all subjects. Following their demise, a research autopsy was conducted and 

samples from any primary tumor (if not already resected), local recurrence, or metastasis 

were harvested. All samples were split into two equal halves for snap freezing in liquid 

nitrogen and formalin fixing respectively, such that the fresh frozen sample is a mirror 

image of the formalin-fixed, paraffin embedded (FFPE) sample. H&E sections were 

prepared from either frozen or FFPE tissues and reviewed by a gastrointestinal pathologist 

(A.H. and C.A.I.-D.) and tumor rich regions were identified for DNA purification. Either 

serial 20 μm sections were cut and the area of interest scraped from the slide using a blade 

or alternatively a core was directly punched from the tissue block. 

DNA sequencing 

Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) following 

the manufacturer’s protocol. DNA quantification, library preparation, and sequencing were 

performed in the Integrated Genomics Operation and preliminary bioinformatics analysis 

was performed by the Bioinformatics Core at Memorial Sloan Kettering Cancer Center 

(New York, NY). Briefly, an Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq 

6000 platform was used. The majority of samples (n=545) underwent whole exome 

sequencing (WES) at 250X coverage, 34 samples underwent WES at 150X coverage, and 
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77 samples underwent whole genome sequencing (WGS) at 60X coverage. The resulting 

sequencing reads were analyzed in silico to assess quality and overall coverage, and 

alignment to the human reference genome hg19 was performed with BWA v0.7.1750. Read 

deduplication, base quality recalibration, and multiple sequence realignment were 

performed using the Picard Suite and GATK v.3.151. Somatic single-nucleotide variants 

and insertion–deletion mutations were detected using Mutect2 (v4.1.2.0) and 

HaplotypeCaller v.2.452. To validate the mutations found from WES and WGS datasets, 

one of two different targeted sequencing approaches were used. The majority of samples 

(n = 347) were sequenced with one of multiple versions of the MSK IMPACT panel 

(IMPACT 410, n = 68; IMPACT 468, n = 105; IMPACT 505, n = 174), with a mean 

coverage of 500-1000×. Another 285 samples were sequenced using a custom targeted 

panel described elsewhere [Hong et al. in preparation]. BAM files and associated metadata 

have been uploaded to the European Genome-phenome Archive (EGA; 

http://www.ebi.acu.uk/ega) under the accession number EGAS0000100737953. 

Filtering and annotation of variants 

For each patient, somatic variants were filtered using the following criteria: patient-

matched normal coverage ≥ 10 reads, variant count in patient-matched normal < 2 reads, 

patient-matched normal variant frequency < 0.02, tumor coverage ≥ 20 reads, and tumor 

variant allele frequency (VAF) ≥ 0.05 in at least one tumor sample. Variants were further 

filtered to include those present in coding regions only. Mutations located in blacklisted 

regions defined by ENCODE and RepeatMasker (https://github.com/mskcc/ngs-

filters/blob/master/data/source.txt) were ignored. In FFPE samples, if a mutation exhibited 
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VAF < 0.1 and was identified as a CàT substitution, it was considered an FFPE artifact 

and thus, excluded from subsequent analyses.  

 

Table 1. OpenCRAVAT module versions. 

 
Annotator Local version Local data version 

CHASMplus 1.3.0 v1.0.0 
ClinVar 2023.02.01 2023.02.01 
COSMIC 94.0.0 v94 
OncoKB 1.1.3 09.06.22 
REVEL 2022.11.29 v4.3a 

 

Filtered variants were then annotated by OpenCRAVAT v2.2.754 to identify likely 

functional driver mutations. When available, criteria for determining whether a mutation 

should be considered a driver by a given module were informed by recommendations made 

for interpreting results from the module in the OpenCRAVAT store. For CHASMplus55, 

the adjusted p-value needed to be < 0.05. For COSMIC56, variants needed to be present at 

least four times in the database to be considered a driver. For ClinVar57, the Clinical Sig- 

nificance value needed to be ”Pathogenic”, ”Pathogenic/Likely pathogenic”, ”Likely 

pathogenic”, ”Pathogenic, drug response, other”, or ”drug response” and the Review Status 

needed to be ”criteria provided, multiple submitters, no conflicts” or ”reviewed by expert 

panel”. For OncoKB58, a mutation needed to be labeled as either ”Oncogenic” or ”Likely 

Oncogenic”. For REVEL, the Score needed to be > 0.759,60. These modules were selected 

based on a survey of commonly used variant annotators in the scientific literature. Module 

versions are detailed in Table 1. A final driver score for each mutation was calculated by 

tallying how many annotators classified the mutation as a driver event (max score = 5). 
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Mutations with a score of 2 or higher were considered driver mutations and those with a 

score of 1 or lower were not. 

Copy number analysis and WGD prediction 

Whole genome duplication (WGD) and allele-specific copy number alterations were 

inferred for WES and WGS datasets using HATCHet v1.2.061,62. Only autosomes were 

used for copy number analysis and phasing was performed with SHAPEIT v2.r9063. Upon 

manual review of computed read-depth ratios, B-allele frequencies, and clusters, 

parameters for clustering refinement were reviewed for consensus by four of the authors 

(K.M.M., B.J.A., M.A.M., B.J.R). Copy number calls of sufficient quality could not be 

obtained for 20 patients, as indicated in Supplemental Table 2. 

Evolutionary analysis of driver mutations 

To identify clusters of SNVs which occur in the same phylogenetic branch of tumor 

evolution, we used DeCiFer v2.1.364. HATCHet output was used as the copy number input 

for this analysis. Therefore, only the subset of 70 patients with HATCHet results underwent 

analysis with DeCiFer. To ensure timely run completion, we required a minimum VAF of 

0.05 for WES datasets and 0.1 for WGS datasets. To generate custom state trees, a 

maximum copy number of 6 was used for each patient. When the total copy number profile 

of a given mutation was > 6 or read depths were not > 1 across all samples, mutations could 

not be analyzed by DeCiFer. Furthermore, the timing of driver mutations identified 

exclusively in targeted sequencing datasets could not be analyzed with DeCiFer because 

HATCHet could not be performed on these datasets. Truncal and subtruncal densities were 
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calculated by dividing the number of truncal or subtruncal SNVs at sites with > 10X depth 

by the number of genomic positions using the same depth threshold. 

De novo mutational signature analysis 

De novo mutational signatures including Single Base Substitution (SBS), Double Base 

Substitution (DBS) and Insertion and Deletion (ID) were evaluated in comparison with 

COSMIC Mutational signatures version 3 (https://cancer.sanger.ac.uk/signatures/) using 

the R package Palimpsest65. Only somatic variants that met the filtering criteria outlined in 

the Filtering and annotation of variants section above, as well as those located within 5’ or 

3’ UTR regions, were included in this analysis. Additionally, FFPE tumor samples were 

excluded as they induce massively unique signatures that are not relevant with cancer 

progression. Significant de novo mutational signatures were extracted using the Non-

negative Matrix Factorization (NMF) algorithm66. The maximum number of NMF runs 

and de novo signatures were set to 30 and 20, respectively. Finally, we assigned the most 

representative de novo signature of the SBS, DBS and ID types among all those extracted 

to each variant based on probability scores generated by Palimpsest. 

 

Data Visualizations 

The oncoprint was created with CoMut67. Anatomic and other cartoons were created using 

BioRender (https://biorender.com/) 
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CHAPTER THREE: THE EVOLUTIONARY FOREST OF PDAC 

Introduction 

The genetic basis of pancreatic ductal adenocarcinoma has been well documented 

throughout the era of next-generation sequencing. Through the International Cancer 

Genome Consortium16,24,29, The Cancer Genome Atlas15, PCAWG68,69, and others22,23, 

whole-genome (WGS) and whole-exome sequencing (WES) has been performed on 

hundreds of samples to reveal the complex mutational landscape of primary tumors. These 

studies have revealed both common and infrequent drivers associated with PDAC and 

clarified the genetic basis of responsiveness to different standard-of-care therapies15,16. 

Notably, most samples used in these studies were obtained from surgical resections. This 

is rational given the amount of material needed for sequencing and that surgical resection 

is the most common mode of obtaining PDAC tissue for research purposes. However, 

patients with resectable disease comprise only 12% of newly diagnosed PDAC cases 

(seer.cancer.gov). Furthermore, of those who undergo resection followed by adjuvant 

therapy, more than 80% relapse and ultimately die of their disease70–72. These statistics 

highlight the need to better understand the more common clinical contexts of PDAC, 

including patients with locally advanced or metastatic disease. 

Nonetheless, collecting tumor tissue from patients with stage III or IV disease has 

proven to be challenging. Unlike early-stage patients, late-stage patients do not undergo 

surgical resection as part of their disease management; therefore, samples are typically 

collected using either a small tumor core biopsy or fine-needle aspiration. Frequently, these 

specimens are mixed with a high proportion of stromal tissue, yielding low-purity tumors 

that make comprehensive genomic assessment difficult, if not impossible73. Owing to these 
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technical challenges, PDAC has been underrepresented in recent studies of metastatic 

cancer genomes across tumor types74,75. Conversely, the MSK-MET pan-cancer cohort 

contains nearly 1800 PDAC samples, the largest study of metastatic PDAC to date76. While 

this cohort is sizable, genomic characterization is limited due to the use of a targeted 

sequencing approach. Furthermore, only a single metastatic sample was studied for most 

patients. Single-sample analyses can underestimate intratumoral heterogeneity because 

variants identified as clonal in one sample may be subclonal or even absent in another, 

giving rise to the “illusion of clonality”77. 

To circumvent some of these obstacles, sampling can be conducted postmortem via 

research autopsies to enable more extensive sampling than otherwise possible in a living 

patient78. Although it remains unclear how many samples are required to conclusively 

determine the composition and clonality of drivers present in a patient’s tumor, a 

multiregion study of clear cell renal cell carcinoma suggests that for larger tumors, 4-8 

samples are sufficient to capture the majority of events41. Thus far, a handful of multiregion 

studies have been published addressing specific clinical contexts of PDAC, including 

treatment-naive stage IV patients34, patients with recurrent disease after resection and 

adjuvant therapy79, and treated late-stage patients [Hong et al. in preparation]. Additionally, 

the genetic correlates of transcriptional phenotypes in metastatic patients have been 

explored43,80. Cumulatively, these cohorts contained relatively few patients43 and focused 

on transcriptional and genomic features during metastatic progression80, thus limiting the 

statistical power for a broader investigation of the evolutionary histories of PDAC. 

Consequently, we believe that a comprehensive analysis of PDAC, including all stages of 

diagnosis and major treatment paradigms, is lacking. To this end, we clarify the extent to 
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which genetic features of PDAC are stage-and/or context-dependent using a multiregion 

sampling approach, permitting us to define the genetics and evolutionary histories of 

PDAC on a scale that has not yet been attempted.  

Results 

Overview of cohort 

We screened 364 research autopsies to identify PDAC patients for inclusion in this study. 

Inclusion and exclusion criteria for patients and samples are detailed in Figure 2. WES or 

WGS sequencing data from 53 patients have been previously reported in multiple 

studies34,43,79. Thirty-seven patients were newly sequenced for the purposes of this study, 

including 14 research autopsies and 23 multiregion sampled surgical resections. 

Collectively, our cohort included 270 primary tumor samples, 295 metastatic samples, and 

one normal tissue sample from each of the 90 patients. The median number of tumor 

samples per patient was five, three of which were derived from spatially distinct regions 

within the primary tumor, and the other two from distinct metastatic sites (Figure 1A). All 

samples derived from surgically resected patients were treatment-naive and came from 

distinct regions of the primary tumor at least 0.5 cm apart. The cohort contained a broad 

spatial representation of metastases encompassing 12 distinct metastatic sites (Figure 1B). 

Fourteen patients were oligometastatic, which we defined as having no more than five 

metastatic lesions cumulatively from diagnosis to death, as detected by the latest scan 

results and comprehensive sampling at autopsy81,82. All stages of diagnosis were 

represented with 36 (40%), 24 (27%), and 30 (33%) patients initially presenting with stage 

I/II, III, and IV disease, respectively. The overall survival of the patients was consistent 

with the expected outcomes based on the clinical stage at diagnosis83 (Figure 1C). Male 
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Figure 1. Overview of cohort. 

(A) Overview of somatic alterations detected in tumor samples of 90 PDAC cases. Mutations were annotated by 
OpenCRAVAT (Methods). A complete list of genes harboring likely functional drivers is in Supplemental Table 3. 
Multiple indicates three or more mutations, treatment modalities, or sequencing methods. Split mutation patches 
containing Multiple indicate that a patient contained multiple mutations in a gene, one of which had a Support Level of 
3 or higher. (B) Overview of different tumor sites sampled. (C) Survival statistics of cohort with respect to stage at 
diagnosis. (D) Frequency of CNAs in the multiregion PDAC cohort. Copy number gains and losses are indicated in red 
and blue respectively. Clonal CNAs are shown in darker and subclonal CNAs in lighter shades of their respective 
colors. Genomic regions containing known driver mutations are annotated. 
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Figure 2. Cohort inclusion and exclusion criteria. 
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and female patients were nearly equally represented, with the average age at diagnosis for 

females being 66±13 years and 63±12 years for males, respectively. Forty-one patients 

(46% of cohort) reported a former or current history of smoking, and 24 patients (27% of 

cohort) had a history of Type 2 Diabetes Mellitus, both of which are common risk factors 

for PDAC84,85. Additional detailed clinical annotations for each patient are provided in 

Supplemental Table 1. 

Annotation of driver events in PDAC 

When selecting a sequencing assay, there is a trade-off between depth and breadth; a high 

depth is required to accurately recover clone frequency, whereas genome-wide detection 

of passenger mutations helps identify distinct clones86. To maximize our ability to both 

assess the clonal architecture of patients’ tumors and identify likely functional driver 

mutations with high fidelity, we sequenced samples using at least two different methods 

(Figure 1A, Supplemental Table 2, Methods) when sufficient tissue was available. To build 

upon previous PDAC studies that highlighted all non-silent variants for a subset of genes, 

here, we report which SNVs and INDELs are predicted to be likely functional drivers. 

Using a multi-tool annotation approach (Methods), we identified 231 unique driver 

mutations across 121 genes (Supplemental Table 3), where the most frequently observed 

PDAC drivers (i.e., KRAS, TP53) generally yielded the highest support values (Figure 

1A). Fourteen percent of drivers were identified exclusively in the targeted sequencing 

dataset, including major drivers such as KRAS, TP53, CDKN2A, and SMAD4, 

highlighting the importance of using orthogonal methods to detect driver mutations, 

especially in lower-purity samples. The median number of driver mutations identified per 

patient was three (range 1-15), in line with other recent reports87. Of the five patients with 
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eight or more driver mutations, four harbored somatic mutations in mismatch repair genes, 

including MSH6 and MSH2, of which 50% concurrently demonstrated loss of 

heterozygosity (LOH). An additional patient harbored a somatic mutation in ATM, 

indicating a defect in homologous recombination. The median number of driver mutations 

identified per sample was three (range 1-7), indicating a degree of driver gene 

heterogeneity within the cohort. 

To address whether the genomic landscape of end-stage PDAC differs from that of 

early stage PDAC, we compared our findings to other published datasets that contain a 

predominance of resectable PDAC16,88. Common driver genes, including KRAS, TP53, and 

SMAD4, among others, were mutated at similar frequencies across TCGA, ICGC, and our 

multiregion cohort (Figure 3A). KRAS mutations were identified in 84/90 (93%) patients, 

in line with previous reports15,29, although we identified a broader spectrum of mutant 

alleles, including E31K, G13P, and G12L (Figure 3C). We did not observe meaningful 

differences in survival with respect to different KRAS alleles (Figure 3D). KRAS WT 

patients harbored driver mutations in TP53, SMAD4, BRAF, BRCA2, and RBM10. An 

additional 19 known driver genes were common between our cohort and TCGA (n=14) or 

the ICGC (n=5), whereas 92 genes were found to harbor driver mutations unique to our 

cohort, including U2AF1 and SMAD2 (Figure 3B).  

Nine patients in our cohort contained longitudinal data, with one sample collected 

at surgical resection and the rest collected after disease recurrence at autopsy. Seven 

patients acquired additional driver mutations following treatment, including alterations in  

PIK3CA, PDGFRB, HLA-B, and MSH2. While we did not have longitudinal data for most 

patients, we compared drivers identified in patients with early- and late-stage disease with  



 
 

 
 

38 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Driver mutations in large PDAC cohorts.  

(A) Mutational frequency of common driver genes in multiregion cohort and two large scale PDAC studies, the ICGC 
and TCGA. Mutational frequencies represent only mutations identified as likely drivers, not all mutations identified in 
the indicated genes. (B) Number of unique driver genes identified per cohort. (C) Prevalence of KRAS alleles in 
multiregion cohort, the ICGC, and TCGA. (D) Survival of patients in multiregion cohort with respect to the most 
common KRAS alleles.  
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respect to different therapeutic interventions to determine the extent to which drivers were 

stage-and/or treatment-dependent. The majority of drivers identified were only observed 

in a single patient; however, SMAD3 and NF1 were the only recurrent driver genes 

exclusively found in treatment-naive patients who underwent surgical resection as part of 

their clinical management. Furthermore, we did not identify a significant difference in 

driver counts between treated and treatment-naive patients (Wilcoxon rank-sum test, P = 

0.55). 

Given the range of driver mutations identified, we also explored whether there was 

any relationship between the quantity or quality of drivers with respect to tissue type. To 

account for correlations within samples and between patients, we used a generalized linear 

mixed model with random intercept and unconstructed covariance structure to model the 

number of distinct driver mutations with respect to sample type (Primary vs Metastasis). 

In a univariate analysis, we observed a significant increase in the expected mean driver 

mutation count in metastatic samples compared to primary samples (Figure 4A, 

beta=0.178, 95% CI: 0.027-0.32, P = 0.02). Given this observation, we further investigated 

whether there was any relationship between the driver count and different metastatic routes 

(lymphatic, hematogenous, and directly seeded). Using the model outlined above, we found 

no significant association between the route of metastasis and number of driver genes 

(Figure 4B, P = 0.60). Although multiple driver genes were identified across distinct 

metastatic sites or routes, some were only observed in the context of specific sites or routes. 

However, these mutations were rare events, and we did not find any significant associations 

between gene enrichment of different core signaling pathways and routes of metastasis 

(Table 2). Cumulatively, these data suggest that the expansion of a subclone, potentially  
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Figure 4. Driver counts with respect to metastasis. 

(A) Driver mutation counts with respect to sample type. (B) Driver mutation counts of different metastases with respect 
to different routes to metastasis. Unknown encompasses sites whose metastatic route is uncertain (e.g., diaphragm, 
pleural cavity, pericardial sac, adrenal gland). Metastatic sites and their corresponding routes to metastasis are located 
in Supplemental Table 2.  
 

 

Table 2. Prevalence of driver genes grouped by functional pathways with respect to route of metastasis. 

Pathway Direct 
seeding 

Hematogenous Lymphatic Unknown Total 

RAS_RTK      
Yes 86 (32.2%) 160 (35.2%) 24 (35.3%) 30 (31.9%) 300 (34.9%) 
Cell cycle      
Yes 64 (23.9%) 140 (30.8%) 16 (23.5%) 25 (26.6%) 245 (27.7%) 
TGFb      
Yes 43 (16.1%) 30 (6.6%) 5 (7.4%) 8 (8.5%) 86 (9.7%) 
Chromatin 
Modification 

     

Yes 5 (1.8%) 5 (1.1%) 1(1.5%) 1 (1.1%) 12 (1.3%) 
DDR      
Yes 5 (1.8%) 16 (3.5%) 4 (5.8%) 4 (4.2%) 29 (3.2%) 
RNA 
processing 

     

Yes 1 (0.3%) 7 (1.5%) 0 (0%) 1 (1.0%) 9 (1.0%) 
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containing one or more additional driver alterations, precedes its dissemination and growth 

in secondary sites. However, the lack of association between any specific gene or pathway 

and a particular metastatic route suggests that alternative genetic, epigenetic, or post-

translational mechanisms promote organ-specific colonization, as previously reported89,90. 

Somatic copy number alterations 

Previous genomic analyses of PDAC have revealed numerous somatic copy number 

alterations (CNAs) affecting key oncogenes and tumor suppressor genes, including KRAS, 

TP53, SMAD4, and CDKN2A, among others15,16,22,29. To this end, we used HATCHet 

(Methods) to infer both allele-and clone-specific CNAs and their relative proportions 

across multiple samples from a subset of 70 patients for which these metrics could be 

reliably derived61,62. Our analysis revealed a notably high frequency of both clonal and 

subclonal gains in KRAS and MYC compared to the rest of the genome (Figure 1D, 

Supplemental Table 4). Moreover, these regions were distinguished by a relatively high 

proportion of subclonal gains. Similarly, other genes on chromosome 8 demonstrated the 

highest frequencies of subclonal gains in the cohort, including C8orf31, AK3P2, LY6E, 

ZNF16, NRBP2, BAI1, MROH4P, and ARC. The prevalence of LOH of 8p, TP53, 

CDKN2A, SMAD4, and SMAD2 was also remarkably high compared with that observed 

at other loci; however, these events were disproportionately clonal. Additionally, 

homozygous deletions in the latter genes were identified in 3-9% of patients, the majority 

of which were subclonal and co-occurred with LOH events in the same gene. Of the four 

KRAS WT patients, we were able to obtain CNA calls for (MPAM11, MPAM12, PAM26, 

and PAM32), two exhibited gains in KRAS (PAM26 and PAM32). All four patients 
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demonstrated LOH of SMAD4 and CDKN2A, whereas PAM26 and PAM32 also exhibited 

LOH of TP53. 

Overall, both clonal (Wilcoxon rank-sum test, P = 2e-11) and subclonal (Wilcoxon 

rank-sum test, P = 0.0001) LOH events were significantly more common than gains in our 

cohort (Figure 5A). LOH was detected in all patients, however PAM25 was the sole patient 

without any copy number gains. Furthermore, both subclonal gains (Wilcoxon rank-sum 

test, P = 4.7e-14) and LOH events (Wilcoxon rank-sum test, P = 7.3e-12) were significantly 

more common than clonal copy number events (Figure 5A), suggesting that the majority 

of CNA events occurred relatively later in tumor evolution, as reported previously24, and 

that they may play a crucial role in driving intratumoral heterogeneity and tumor 

progression.  

Whole-genome duplication (WGD) was identified in nearly two-thirds (45/70) of 

patients (Figure 1A). This exceeds previously reported rates of WGD in metastatic 

PDAC68,74, likely due to more comprehensive sampling per patient. No significant 

association was found between the number of driver mutations and tetraploid status (odds 

ratio [OR]:1.11, 95% CI:0.88-1.51, P = 0.4). We observed that tetraploid patients had a 

significantly higher number of clonal (Wilcoxon rank-sum test, P = 0.013) and subclonal 

(Wilcoxon rank-sum test, P = 2.99e-6) LOH events (i.e., fractional allelic loss) than diploid 

patients, likely due to increased genomic instability (Figure 5B). Neither the proportion of 

clonal nor subclonal gain events differed significantly with respect to WGD status (Figure 

5B). Furthermore, we found that WGD did not occur more frequently in treated than in 

treatment-naïve patients (Fisher’s exact test, P = 0.23). 
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Figure 5. Quantification of CNA events. 

(A) Fractional allelic loss and gains identified in multiregion cohort. Clonal CNAs are shown in darker and subclonal 
CNAs in lighter shade of color. (B) Fractional allelic loss and gains with respect to WGD status.  
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Timing of somatic events 

A previous study of patients with late-stage PDAC demonstrated limited intratumoral 

heterogeneity of driver mutations in the absence of therapeutic pressure34, indicating that 

they were acquired prior to the formation of metastatic subclones. To determine the 

evolutionary timing of driver alterations across the spectrum of PDAC clinical contexts, 

we analyzed the subset of our cohort (n = 70) for which we obtained CNA calls using 

DeCiFer (Methods). SNVs were classified as truncal if they were inferred to occur before 

the most recent common ancestor and subtruncal otherwise91. Of the 63% of putative 

drivers for which a truncal status could be determined (Methods), 79% were classified as 

truncal and the other 21% were subtruncal (Figure 6A). To compare our results to 

traditional CCF methods, we ran DeCiFer in CCF mode to determine whether truncal 

mutations were consistently clonal. Overall, we found that most truncal driver mutations 

were considered clonal based on CCF calculations. Notably, we identified two KRAS 

mutations and one TP53 mutation that were all found to be truncal yet had variant allele 

frequencies that were consistent with subclonality. Upon further investigation, we found 

that subclonal deletions and gains likely contributed to these truncal mutations having 

subclonal mutation frequencies, leading to erroneous conclusions regarding the 

evolutionary timing of somatic mutations from CCF estimates alone. 

Notably, KRAS driver mutations were not universally determined to be truncal 

events. Of the two patients harboring subtruncal KRAS mutations, one had alternative 

truncal driver events in AKT1 and GNAS (PAM40). The second patient, PAM46, 

underwent surgical resection followed by adjuvant chemoradiation before passing away 

from locally recurrent disease. Both the original surgical resection and all samples of 

recurrent disease harbored a G12R mutation, which was determined to be truncal. 
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Conversely, a subtruncal G12D mutation was identified in two of the eight samples of the 

locoregional recurrence. Two additional patients, MPAM26 and PAM44, also harbored 

multiple KRAS mutations. Similar to PAM46, PAM44 also experienced locoregional 

recurrence after surgical resection. Unlike PAM46, PAM44 harbored a G12D mutation in 

every sample of recurrent disease and only harbored a G12R mutation in the original 

surgically resected sample. Additional mutational analysis revealed that the original 

resection was an independent primary tumor; thus, the timing of this event could not be 

inferred79. Both KRAS G12D and E31K mutations identified in MPAM26 were inferred 

to be truncal; however, they were found on different alleles. Cumulatively, these patients 

demonstrated convergent evolution toward increased KRAS signaling in the context of 

patients diagnosed with early-stage disease followed by surgical resection. Additional 

functional studies investigating the differences in downstream signaling and the efficacy 

of pan-KRAS inhibitors in this context are warranted. 

Given the spectrum of clinical management represented in our dataset, we aimed to 

determine whether the timing of driver mutations differed across these contexts. We found 

no differences in the number of truncal or subtruncal drivers between treatment-naïve 

patients with early- versus late-stage disease, patients with treatment-naive versus treated 

late-stage disease, or patients pre- versus post-surgical resection (Figure 6B). Furthermore, 

patients with WGD did not have a significantly different number of truncal or subtruncal 

driver mutations compared to diploid patients. The median number of truncal drivers per 

patient was 2. Using this cutoff, we did not observe any difference in OS between those 

with more vs less than 2 truncal drivers (Log rank test, P = 0.2, Figure 6C). Although we 

found that a one-unit increase in the number of truncal drivers increased all-cause mortality  



 
 

 
 

46 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

0 6 12 18 24 30 36 42 48 54 60
Time since diagnosis (months)

O
S 

(%
)

Less or equal to 2

More than 2

42 35 24 19 17 12 8 6 4 3 2
28 21 16 12 6 4 1 1 1 1 0More than 2

Less or equal to 2
Number at Risk

A B 

C 

E 

D 

Figure 6. Timing of somatic events. 

(A) Proportion of truncal vs subtruncal drivers in multiregion cohort. (B) Number of truncal and subtruncal drivers 
with respect to different clinical contexts. Samples from early-stage treatment naive patients were collected pre-surgical 
resection. (C) Overall survival with respect to number of truncal driver mutations. (D) Truncal and subtruncal densities 
per patient. Data points are scaled by the number of samples per patient and colored by treatment and stage 
information. The top and bottom 1% of outliers are annotated. (E) Overall survival with respect to truncal density. 
Patients were categorized into quartiles based on their truncal densities. 
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by 20% (HR:1.20, 95% CI:0.95-1.53), this association did not reach statistical significance  

(P = 0.14). Given how few subtruncal drivers were identified, we could not predict whether 

truncal alterations in specific genes were associated with an increased or decreased 

likelihood of subsequent subtruncal alterations92. 

In light of these observations, we expanded our scope to assess the timing of 

all SNV/INDEL events. To do this, we calculated truncal and subtruncal densities for each 

patient (Methods). Across the cohort, we observed that subtruncal densities were 

significantly larger than truncal densities (Wilcoxon rank-sum test, P = 2.17e-09). No 

relationship was observed between subtruncal density and the number of samples per 

patient (Figure 6D). The majority of patient outliers harbored mutations in genes associated 

with DNA damage response, including MSH2, MSH3, ATM and POLQ. When comparing 

early- versus late-stage treatment-naive patients, we found that late-stage patients had 

larger truncal densities compared to early-stage patients (Wilcoxon rank-sum test, P = 

0.02); however, no significant differences were observed with respect to subtruncal 

densities between these two groups (Wilcoxon rank-sum test, P = 0.74). There were no 

significant differences in the truncal or subtruncal densities between patients pre- versus 

post-surgical resection. While there were no significant differences between the subtruncal 

densities of late-stage treatment-naive versus late-stage treated groups (Wilcoxon rank-

sum test, P = 0.53), treatment-naive patients had significantly larger truncal densities 

(Wilcoxon rank-sum test, P = 0.03). Moreover, we did not observe a relationship between 

truncal density and the number of truncal drivers identified per patient. 

Given these findings, we determined the relationship between truncal and 

subtruncal density and survival. We found a significant association between truncal 
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densities (per 1 unit increase in log-scale) and overall survival (OS) (HR:1.67, 95% 

CI:1.16-2.42, P =0.006). Upon categorizing truncal densities into quartiles and adjusting 

for stage at diagnosis, age at diagnosis, and smoking history, we continued to observe 

worse survival for patients with higher truncal densities (Q4) compared to the reference 

group (Q1) with the lowest truncal densities [HR:2.91, 95% CI:1.42-5.99, P =0.004] 

(Figure 6E). Conversely, we did not observe any association between subtruncal density 

and OS (HR:1.07, 95% CI:0.81-1.42, P = 0.64). Cumulatively, these data suggest that the 

extent of accumulation of coding somatic alterations prior to the MRCA is a prognostic 

marker for PDAC. 

Smoking is a common risk factor for PDAC, contributing to the development of up 

to 25% of cases93,94. Therefore, we investigated the relationship between smoking and the 

mutational landscape of patients’ tumors. We did not observe a significant association 

between smoking status and truncal density (Fisher’s exact test, P = 0.2). We did not 

observe a significant association between smoking status and truncal density (Fisher's exact 

test, P = 0.2) thus we investigated the relationship between smoking and the mutational 

signatures prevalent within each sample. De novo extraction of mutational signatures from 

134,772 somatic alterations identified seven double base substitutions signatures, two indel 

signatures and six SBS (single base substitution) signatures. SBSs accounted for 92.3% of 

all somatic mutations identified, thus we focused solely on this subset for evaluating the 

relationship of smoking related mutational signatures to PDAC evolutionary features. SBS 

de novo signature 4, representing 21.0% of all SBSs, was found to be most similar to 

COSMIC signature SBS29, whose etiology is tobacco-related95, though it also showed 

similarity to COSMIC SBS4 (Figure 7 and Methods). To account for correlations within  
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Figure 7. De novo mutational signature analysis reveals tobacco-related signature in multiregion cohort. 

(A) Mutational signature SBS29 (COSMIC Version 3) has been identified in cancer samples from individuals with a 
tobacco chewing habit. (B) Mutational signature of de novo SBS signature 4. (C) Cosign similarity of each de novo SBS 
signature compared to COSMIC V3 signatures. Mutational signature SBS_denovo_4 is very similar to that of SBS29. 
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samples, we used a GLMM with random intercept and unconstructed covariance structure 

to model the number of SBS de novo signature 4 mutations with respect to smoking history 

status. In a univariate analysis, we did not observe any relationship between smoking 

history and the number of mutations attributed to the de novo SBS4 signature (P = 0.72). 

Similar to previous reports92, some patients with smoking histories (current or former) 

contained samples that did not harbor any smoking related mutations. Conversely, several 

never-smokers harbored mutations attributed to SBS de novo signature 4. These findings 

suggest that despite substantial tobacco exposure in some patients, PDAC initiation may 

be independent of smoking-mediated mutagenesis. 

 

Quantification of subclones and clinical correlates 

To date, the clonal composition of PDAC remains poorly understood. To this end, we used 

HATCHet61,62 to infer clonal populations and their relative proportions jointly across 

multiple samples from the same patient. The number of subclones identified per patient 

ranged from one to five with 34% of patients being classified as monoclonal (Figure 8A). 

Patients with polyclonal disease demonstrated varying degrees of clonal mixing, with some 

patients exclusively comprising polyclonal samples (26%) and others harboring a mix of 

monoclonal and polyclonal samples (39%).  

We identified a single polyclonal patient who did not exhibit any clonal mixing 

with two clones identified across five monoclonal samples (Figure 8A, B). Notably, all 

samples collected from the right liver and the abdominal wall metastasis were composed 

of one clone and the metastasis from the left liver (MPAM01PT5) was comprised 

exclusively of a different clone (Figure 9). While all five of the driver mutations identified 

in MPAM01 were truncal and present in every sample, we observed mirrored-subclonal  
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Figure 8. Clonal composition of PDAC tumors. 

(A) Schematic of possible clonal compositions of patients. Polyclonal patients can be comprised of monoclonal or 
polyclonal samples. (B) Quantification of scenarios outlined in (A). 

A 

B 



 
 

 
 

52 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C 

Figure 9. Polyclonal patients can comprise monoclonal samples with distinct copy number profiles. 

(A) Distribution of metastatic disease in patient MPAM01. All lesions are monoclonal. (B) Inferred copy-number 
states for clone 1 and clone 2 in samples PT4 and PT5, respectively. Each point is a genomic bin whose position 
corresponds to its inferred mirrored haplotype BAF (mhBAF, x-axis) and fractional copy number (y-axis). Each bin 
is colored by its inferred copy-number state. Points labeled (A, B) are the expected position of the corresponding 
haplotype-specific copy-number state with A copies of the major haplotype and B copies of the minor haplotype. 
Bolded copy-number states are clonal events that are present in all tumor clones. (C) mhBAF values across the 
genome. Black lines indicate the expected mhBAF of the assigned copy-number state (analogous to labeled points 
in panel B).  
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Figure 10. Polyclonal patients can comprise both mono- and polyclonal lesions. 

(A) Distribution of metastatic disease in patient PAM01. Some lesions are monoclonal (PT2, PT4) and others are 
polyclonal (PT1, PT3). (B) Inferred copy-number states for samples PT1 and PT3, respectively. Each point is a 
genomic bin whose position corresponds to its inferred mirrored haplotype BAF (mhBAF, x-axis) and fractional 
copy number (y-axis). Each bin is colored by its inferred copy-number state. Points labeled (A, B) are the expected 
position of the corresponding haplotype-specific copy-number state with A copies of the major haplotype and B 
copies of the minor haplotype. Bolded copy-number states are clonal events that are present in all tumor clones. 
When multiple copy number states are annotated, they correspond to the values inferred for each clone present in the 
sample. (C) mhBAF values across the genome. Black lines indicate the expected mhBAF of the assigned copy-
number state (analogous to labeled points in panel B).  
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CNAs, or differential gains or losses of the maternal and paternal chromosomes in distinct 

tumor clones62. We found that clone 1 had a copy state (1,2) or (2,4) across regions of 

chromosome 12 totaling 46.3 Mb, excluding KRAS (Figure 9B, C). Within these same 

regions, clone 2 demonstrated LOH and amplifications of the opposite allele with copy-

states (2,0) and (4,2). Numerous additional subclonal CNA events were also observed on 

chromosomes 1, 4, 5, 13, 15, 19, 20 and 21. 

Similarly, PAM01 demonstrated an abundance of subclonal CNAs spanning across 

all chromosomes and totaling 1.7Gb (Figure 10B, C). These events varied in size, ranging 

from relatively focal events (8q, olive green) to entire chromosomes (chromosome 4, 

goldenrod) (Figure 10C). The copy number state of KRAS differed in each of the three 

identified clones; however, all clones exhibited LOH of the B-allele (clone 1: 3,0; clone 2: 

12,0; clone 3: 5,0). Notably, mirrored subclonal CNAs were observed on different 

chromosomes compared to MPAM01, including 5p and 18p. Overall, 51% (36/70) of 

patients harbored mirrored-subclonal CNAs and the average frequency of any genomic bin 

harboring such an event was 5.4%. This phenomenon was observed on every chromosome, 

with chromosomes 3, 7 and 21 being the most commonly altered across patients. Notable 

genes exhibiting the highest frequencies of mirrored subclonal CNAs included TGFBR2, 

MLH1, and SETD2, all of which localize to chromosome 3p96. 

With respect to treatment, we found that treated patients had increased odds of 

being polyclonal compared to treatment-naive patients in a multivariable adjusted analysis 

(OR: 4.54, 95% CI:1.33-17.3, P = 0.019) (Table 3). No significant association was found 

between the number of driver genes and polyclonal status (OR:1.08, 95% CI:0.86-1.45, P 

= 0.6). Among treatment-naive patients, we found that those with early-stage disease were  
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Table 3. Factors associated with polyclonal status. 

   
Characteristic N OR1 95% CI1 p-value OR1 95% CI1 p-value 
Number of distinct driver mutation 70 1.08 0.86, 1.45 0.6    
AGE_AT_DIAGNOSIS 70 0.94 0.89, 0.98 0.011 0.95 0.90, 1.00 0.075 
Smoking History 70       

Never/Unknown  — —     
Yes  1.28 0.48, 3.54 0.6    

type2.diabetes 70       
No/Unknown  — —     
Yes  0.63 0.21, 1.90 0.4    

PRIMARY_REGIONS_PER_PATIENT 70 1.02 0.80, 1.31 >0.9    
Stage at diagnosis 70       

Stage I-II  — —  — —  
Stage III  0.75 0.20, 2.75 0.7 0.54 0.12, 2.34 0.4 
Stage IV  3.45 1.06, 12.7 0.047 4.07 1.08, 18.1 0.047 

TREATED 70       
Not treated  — —  — —  
Treated  4.45 1.58, 13.3 0.006 4.54 1.33, 17.3 0.019 

GENDER 70       
F  — —     
M  1.29 0.48, 3.52 0.6    

race 70       
All Other  — —     
Caucasian non-Hispanic White  2.29 0.69, 7.73 0.2    

1OR = Odds Ratio, CI = Confidence Interval 
 

 
 
 
 

 
 
 

 
 

 
Figure 11. Prevalence of polyclonality with respect to disease stage and treatment. 

(A) Proportions of patients with mono- vs polyclonal disease with respect to different clinical contexts. Samples from 
early-stage treatment naive patients were collected pre-surgical resection.  
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more often monoclonal compared to those with late-stage disease (Fisher’s exact test; P = 

0.049; Figure 11). Furthermore, we found that treatment-naive samples collected from 

patients who underwent surgical resection were more often monoclonal compared to 

samples collected from patients with late-stage disease who subsequently received 

adjuvant therapy and ultimately relapsed (Figure 11, Fisher’s exact test, P = 0.004). 

Amongst patients with late-stage disease, we did not find a significant difference in the 

proportion of patients with mono-vs polyclonal disease (Fisher’s exact test, P = 0.7). After 

correcting for age at diagnosis and treatment status, we observed that patients with stage 

IV disease had increased odds of being polyclonal compared to patients with stage I/II 

disease (Figure 11A, OR: 4.07, 95% CI: 1.08-18.1, P = 0.047). Cumulatively, our findings 

indicate that the clonal composition of PDAC is significantly associated with both 

advanced stage at diagnosis and treatment status. 

Expanding upon these observations, we considered the diversity of metastatic sites 

represented in our cohort and investigated the prevalence of polyclonality with respect to 

different tissues. While we found that metastases were frequently polyclonal with respect 

to different sites and routes of metastatic dissemination (Supplemental Table 2, Figure 

12A, B), none of these observations reached statistical significance. However, the number 

of metastatic samples sequenced was significantly higher in polyclonal patients compared 

with monoclonal patients (Wilcoxon rank-sum test, P = 0.00096; Figure 12C). 

Additionally, we observed a higher proportion of polyclonal disease in tetraploid patients 

(33/45) compared to diploid patients (13/25), however this did not reach statistical 

significance (Figure 12D, Fisher’s exact test, P = 0.11). 
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Figure 12. Polyclonality with respect to metastasis. 

Clonal composition with respect to different tissue sites (A) and routes to metastasis (B). (C) Number of metastatic 
samples sequenced in patients with mono- vs polyclonal disease. (D) Clonal composition with respect to WGD status. 
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Features of oligometastatic patients 

While chemotherapy is the standard of care for patients with metastatic disease, clinical 

management strategies remain poorly defined for patients with oligometastatic disease97,98. 

To this end, we determined the extent to which oligometastatic patients harbored genetic 

differences compared to patients with widespread metastatic disease. We found that 

oligometastatic patients have a median of one fewer drivers compared to patients with 

metastatic disease, but this did not reach statistical significance (Wilcoxon rank-sum test, 

P = 0.081) (Figure 13A). No significant associations between gene enrichment of various 

core signaling pathways and oligometastatic status were found. Furthermore, we found no 

differences in the number of truncal or subtruncal drivers or densities between patients with 

oligometastatic versus metastatic disease. 

With respect to CNAs, oligometastatic patients contained significantly fewer LOH 

events compared to metastatic patients (Wilcoxon rank-sum test, P = 0.02), though no 

differences were observed with respect to gains (Figure 13B). Notably, LOH in both TP53 

and SMAD4 was significantly less common in oligometastatic patients (Fisher’s exact test, 

P = 0.49), however no difference was observed in other common tumor suppressor genes. 

While MYC gains were less prevalent in oligometastatic patients, this did not reach 

statistical significance (Fisher’s exact test, P = 0.16). Extending upon these findings, we 

found that patients with oligometastatic disease were more often monoclonal compared to 

patients with widespread metastatic disease (Fisher’s exact test, P < 0.001, Figure 13C). 

Cumulatively, these data suggest that patients with oligometastatic disease have more 

genomically stable tumors, which in turn may restrain metastatic efficiency99. 
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Figure 13. Genetic features of oligometastatic disease. 

(A) Driver mutation counts, (B) fractional allelic loss and gains, and (C) proportion of monoclonal vs polyclonal 
disease in patients with and without oligometastatic disease. 
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CHAPTER FOUR: DISCUSSION 

Summary 
 
This study both corroborates and enriches existing knowledge of the PDAC genome15,16,34. 

Collectively, our multiregion sampling approach78 and broad spectrum of disease 

presentations enabled us to quantify the diversity of evolutionary features in this tumor 

type and correlate them with clinical attributes. Comparing our findings to previously 

published datasets, we observed recurrent alterations in the genomic landscape of PDAC 

across different disease stages, supporting the notion that key genetic events occur early in 

the course of the disease. Our analysis identified 122 driver genes, with 92 being unique to 

our cohort, suggesting a diverse array of mechanisms contributing to tumorigenesis and 

disease progression in PDAC. However, further investigation is needed to validate and 

understand the functional significance of these novel driver events. While our driver 

analysis focused on SNV/INDEL-level alterations, we acknowledge that our ability to 

assess drivers at the CNA level was limited due to the quality of copy number calls obtained 

for the cohort. Future studies should aim to incorporate both SNV/INDEL and CNA 

alterations, as well as germline mutations, to provide a more comprehensive understanding 

of the genetic landscape of PDAC. Patient consent was not obtained for germline analyses 

in this cohort.  

 We identified subtruncal KRAS drivers in two patients, indicating that alternative 

pathways can drive tumorigenesis in PDAC. This finding suggests that targeting multiple 

pathways may be necessary for developing effective treatment strategies, especially 

considering ongoing clinical trials of KRAS inhibitors46,47. A recent study demonstrated 

that dual inhibition of ERBB and KRAS signaling may be synergistic and help overcome 
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acquired resistance to MRTX1133, a non-covalent inhibitor of KRAS G12D100. 

Furthermore, the authors determined that combining MRTX1133 with downstream 

inhibitors against MEK or ERK did not provide meaningful synergy, suggesting that drugs 

targeting this pathway will not likely provide additional benefit. Additionally, combination 

therapy of commonly used chemotherapeutics 5-FU or Gemcitabine with MRTX1133 did 

not produce synergistic results. However, these results were solely derived from preclinical 

studies, thus necessitating additional human trials to validate these findings. Furthermore, 

investigation into the functional significance of subtruncal KRAS drivers and their impact 

on treatment response is warranted. 

A notable insight from this study was derived from our introduction of the concept 

of truncal density. This metric quantifies the accumulation of somatic alterations in the 

lineage leading to the infiltrating carcinoma and found to be an independent prognostic 

variable, regardless of disease stage, patient age, or smoking history. Truncal density can 

be influenced by various endogenous factors such as age-related clock-like mutagenesis101, 

chronic genotoxic stress induced by ROS102, inflammation and increased cellular 

turnover103, as well as exogenous factors such as carcinogens from tobacco smoke104. 

Conversely, there are mechanisms that could potentially decrease truncal density over an 

individual’s lifetime, including inherent efficiency of DNA repair105,106, immunoediting21, 

or genetic drift107. Notably, smoking history was neither related to truncal density nor was 

it correlated with the presence of a tobacco-related mutational signature. This does not 

imply that smoking is not a risk factor for PDAC, only that its contribution to PDAC 

incidence may extend beyond accumulation of mutations. This finding aligns with recent 

research on smoking and lung carcinogenesis92, presenting significant implications for both 
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early detection and prevention of PDAC. Furthermore, truncal density did not demonstrate 

any relationship with the number or type of driver mutations. This observation could reflect 

a more generalized feature of the PDAC lineage, such as the extent of epigenetic memory 

following the resolution of inflammation or other injuries108.  

We confirmed that the majority of driver mutations were truncal, and subtruncal 

drivers were relatively uncommon109, irrespective of disease stage and treatment. This 

observation lends optimism to the potential application of targeted therapies against 

prevalent driver genes in this disease, including KRAS47,48, as previously mentioned. We 

also found that patients with oligometastatic disease had a median of one fewer driver 

mutations than those with widespread metastasis. This observation might be indicative of 

differences in the number of clonal expansions between these two groups where one such 

expansion in the widespread metastasis group may have encompassed an additional driver 

mutation. These clonal expansions likely occurred prior to diagnosis given that nearly half 

of oligometastatic patients did not experience disease progression between diagnosis and 

death. Moreover, these expansions may have occurred in association with 

microenvironmental cues or cell intrinsic features that provided a survival advantage. 

Validation of this theory may guide surgical management in the setting of oligometastatic 

disease, which remains a controversial topic. 

Subclonal LOH and gains were significantly more common than clonal copy 

number events, suggesting that the majority of CNAs occurred relatively later in tumor 

evolution, as reported previously110, and that they may play a crucial role in driving 

intratumoral heterogeneity and tumor progression. Subclonal CNAs, ranging in size from 

focal events to entire chromosomes, defined distinct populations in polyclonal patients. 
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Notably, some of these events had different numbers of copies of both parental haplotypes 

in different tumor clones, which we refer to as mirrored subclonal CNAs62. While mirrored 

subclonal CNAs were identified genome-wide, their biological significance remains 

unknown. Chromosome 3p had the highest rate of mirrored subclonal CNAs, which may 

indicate that genes in this region are particularly impacted by convergent evolution41.  

Finally, our findings underscore the necessity of analyzing evolutionary features 

within the context of different tumor types and clinical scenarios. The evolutionary 

histories exhibited in our study display profound differences compared to other solid 

tumors, where subtruncal drivers are more prevalent86 and current investigations are 

examining their role in shaping clinical management strategies111. Elucidating these 

patterns in large-scale datasets has the potential to unravel unique, disease-specific 

therapeutic approaches, fostering an era of more personalized and effective cancer 

treatment strategies. 

Future directions 
  
One of the most impactful ways to study the evolutionary dynamics of cancer is through 

longitudinal studies41,112–115. By periodically sampling tumor tissue from the same patient, 

temporal changes can be captured, thus enabling real-time tracking of clonal evolution, 

emergence of resistance mechanisms, and identification of potential therapeutic 

windows116. Moving forward, we plan to conduct evolutionary studies on longitudinal 

samples collected pre- and post-treatment from the Tracking Of Pancreatic Cancer 

RegressiOn and ResisTance (TOPCOAT) program. TOPCOAT was initiated by the David 

M. Rubenstein Center for Pancreatic Cancer Research in March 2020 for the purpose of 
prospectively identifying information on the biology of pancreas cancer. This program has 
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an accrual goal of 160 patients across four hospital services, of which 150 have already 

been consented. This concerted effort will generate the largest tissue bank of longitudinal 

PDAC data to date, enabling researchers to dive deeper into the intricacies of PDAC 

evolution, identify new therapeutic targets, and refine treatment strategies for patients. 

In addition to genomic data, TOPCOAT biospecimens will enable researchers to 

collect data about the transcriptome, metabolome, and tumor microenvironment, which 

together will help provide a more holistic picture of how genetic changes translate to 

functional outcomes. Zhang et al.'s work on the International Cancer Genome Consortium 

Data Portal underscores the importance and potential of such multiomics integrations, 

enabling researchers to find correlations between gene mutations, expression patterns, and 

patient outcomes117. This integrated approach will lead to a better understanding of tumor 

heterogeneity, disease prognosis, and potential therapeutic targets.  

While generating high-quality datasets is incredibly important, methods 

development cannot be overlooked. A truncal status could be determined for only 63% of 

putative driver mutations in our cohort, a result of several technical limitations. Thirty-four 

driver mutations were identified exclusively in targeted sequencing datasets, precluding 

them from analysis with HATCHet on account of insufficient genomic bins for identifying 

heterozygous germline SNPs. Another 58 driver mutations were excluded because they 

either did not harbor reads in all samples within the patient or the reads present in each 

sample did not reach the minimum read depth threshold (mean number of tumor reads per 

site per sample). Furthermore, another 17 driver mutations were excluded because they 

were unable to be assigned well to a cluster and were placed in an outlier file. Finally, 69 

driver mutations had a total copy number greater than 6, which precluded their analysis 
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with DeCiFer on account of the program not being able to finish with high total copy 

number states.  

To address these issues, methods optimization can be performed at the bench and 

computationally. First, higher purity tumors could be collected at the outset with the 

assistance of techniques like laser capture microdissection (LCM)118. However, the 

equipment required for LCM is a costly investment, often exceeding a million dollars119. 

Associated consumables, including nuclease-free membrane slides and collection tubes, 

also come at a premium, costing significantly more than standard items. Additionally, 

exposure of tissue of interest to fixatives and staining agents can compromise their 

suitability for subsequent analyses. Therefore, ample time in training and problem-solving 

is essential to achieve reliable outcomes using this technique. From a computational 

perspective, further development of copy number and clustering tools like HATCHet and 

DeCiFer is imperative to extracting high quality information from subpar samples. These 

tools were originally designed for multiregion, high-depth WGS datasets, which are few 

and far between in practice due to cost limitations. Therefore, it is imperative that these 

tools be adapted to analyze a wider range of sequencing inputs such that existing data can 

be examined more effectively.  

Numerous studies have used phylogenetic trees derived from somatic mutations 

across various anatomical sites to deduce a cancer cell's migratory history within a patient. 

In most cases, these inferences relied on a combination of two flawed assumptions that do 

not generally hold in cancer sequencing data. The first is sample homogeneity, which 

incorrectly assumes genetic uniformity across cells within a sequenced sample. The second 

is that migration history follows directly from the topology and branch lengths of a 
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phylogenetic tree. This is problematic because a tree does not encode the anatomical sites 

of ancestral clones. While somatic mutations can be used as markers for cellular lineage, 

they do not directly model the history of cellular migrations between anatomical sites. To 

infer migration histories in PDAC, future analyses could be performed using 

MACHINA120, which outputs a directed multigraph to describe the migration of cells 

between anatomical sites. The topology of this migration graph differs from a standard 

phylogenetic tree in that it records both the migration number and migration pattern (for 

example, monoclonal versus polyclonal, single source versus multisource seeding). While 

MACHINA has been used to investigate seeding patterns in multiregion PDAC data 

previously, it was performed on data from only ten patients. Therefore, additional analyses 

on a larger number of patients spanning the continuum of clinical contexts are necessary 

to better understand seeding dynamics in PDAC.  

More broadly, recognizing cancer as an evolutionary and ecological process is a 

transformative approach that will offer novel insights into disease progression and 

treatment strategies121. By deciphering the evolutionary trajectories of tumor cells, 

researchers can predict potential treatment outcomes and drug resistances. Tumors are not 

homogeneous masses but rather complex systems of multiple cell populations that 

continuously evolve. These populations compete for resources, adapt to environmental 

pressures, and exhibit both cooperative and competitive interactions44,122. This intratumor 

heterogeneity is a significant challenge in cancer treatment, as different subpopulations 

may respond variably to therapies123. Moreover, the spatial structure of tumors can further 

affect the dynamics of drug resistance and tumor progression124,125. 
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To refine precision medicine strategies, understanding the interplay between 

intratumor heterogeneity and the temporal acquisition of driver events is paramount. 

Collateral sensitivity, the phenomenon in which a population of cells that has evolved 

resistance to a particular drug becomes simultaneously more sensitive to a different drug, 

has garnered attention as a potential strategy against multidrug resistance in cancer126–128. 

Game-theoretical models have been applied to understand these interactions and develop 

strategies that might outmaneuver the evolutionary advantages of the tumor122,129,130. In 

practice, the oncologist would select a treatment based on the disease's state, prompting 

cancer cells to adapt. This resembles the Stackelberg game131, where the oncologist leads, 

and the cancer cells respond to the therapeutic pressures. 

To date, a handful of novel clinical strategies informed by evolutionary game theory 

have been devised to enhance the treatment of cancer. The intermittent dosing method 

employs sporadic treatment courses, capitalizing on the competition between sensitive 

tumor cells and resistant clones, thereby potentially extending the efficacy of a therapeutic 

agent. In a clinical trial involving patients with metastatic castration-resistant prostate 

cancer, median time to progression extended to at least 27 months, compared to 16.5 

months under continuous treatment131. In adaptive therapy, drug doses are dynamically 

adjusted based on the tumor's response. Preclinical studies in mice have shown that this 

approach can keep the tumor size stable and hinder the swift emergence of resistant clones 

ovarian and breast cancer132,133. Another tactic involves cycling among different drugs or 

classes of drugs, which could prevent the tumor from becoming too resistant to any single 

treatment. Theoretically, the goal of an alternating schedule would be to have two distinct 

clone populations competing, each uniquely sensitive to one of two drugs. By monitoring 
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the allele frequency of mutations linked to drug sensitivity in these innovative regimens, 

we can gain insights in real-time. 

A significant hurdle with any of these strategies is monitoring the various clones to 

determine the optimal timing for treatment modifications. While continuously collecting 

biopsies after each treatment cycle is not feasible, evaluating mutation allele frequencies 

in circulating tumor DNA is a practical alternative. Notably, such approaches will 

introduce technical challenges related to quality control of acquisition and analysis of data 

across multiple clinical sites as well as increased costs132. However, considering PDAC’s 

abysmal survival rate coupled with our finding that two-thirds of cases harbored multiple 

clones, a deeper exploration into the disease's evolutionary dynamics is essential. Strategies 

grounded in evolutionary game theory may pave the way for transformative therapeutic 

interventions in this disease type, pending rigorous clinical trials. 
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APPENDIX 

Supplemental Table 1. Patient clinical information. 

PAM ID Gender Chemo Radiation Surgery Stage at Dx Oligometastatic 
Age 
at Dx 

Overall 
Survival (mo) 

Type II 
Diabetes Smoking Hx 

MPAM01 M 1 0 1 IIB 0 70 30.0 1 Ever-Former 
MPAM03 F 1 0 0 IV 0 71 24.0 0 Ever-Current 
MPAM05 M 1 1 0 IV 0 73 21.0 0 Ever-Former 
MPAM06 F 1 0 0 IV 0 67 9.0 1 Ever-Former 
MPAM07 M 1 0 0 III 0 61 54.0 0 Ever-Former 
MPAM08 F 0 0 0 IV 0 70 1.0 0 Ever-Former 
MPAM09 F 0 0 1 III  66 62.4 0 Never 
MPAM10 M 0 0 1 III  60 60.3 0 Ever-Former 
MPAM11 M 0 0 1 IIB  71 45.8 0 Never 
MPAM12 M 0 0 1 IB  72 33.2 1 Ever-Former 
MPAM13 M 0 0 1 III  71 17.2 0 Ever-Former 
MPAM14 F 0 0 1 IIB  72 16.0 1 Never 
MPAM15 F 0 0 1 IIB  86 54.4 0 Never 
MPAM16 F 0 0 1 IIB  79 38.6 1 Ever-Current 
MPAM17 M 0 0 1 III  74 15.4 0 Ever-Current 
MPAM18 M 0 0 1 III  77 27.5 1 Never 
MPAM19 M 0 0 1 IIB  72 31.3 0 Ever-Current 
MPAM20 F 0 0 1 IB  53 19.3 1 Never 
MPAM21 M 0 0 1 IIA  34 55.9 0 Ever-Current 
MPAM22 M 0 0 1 IB  74 19.2 0 Never 
MPAM23 M 0 0 1 IB  59 18.4 0 Never 
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Supplemental Table 1 (continued) 

PAM ID Gender Chemo Radiation Surgery Stage at Dx Oligometastatic 
Age 
at Dx 

Overall 
Survival (mo) 

Type II 
Diabetes Smoking Hx 

MPAM24 F 0 0 1 IB  46 38.0 0 Never 
MPAM25 M 0 0 1 IB  79 44.7 1 Never 
MPAM26 M 0 0 1 IB  86 3.7 1 Never 
MPAM27 M 0 0 1 IB  68 93.8 1 Never 
MPAM28 M 0 0 1 IIA  68 86.1 1 Never 
MPAM29 F 0 0 1 IIA  52 20.3 0 Ever-Current 
MPAM30 M 0 0 1 IB  80 11.8 1 Ever-Current 
MPAM31 F 0 0 1 IB  77 33.5 0 Ever-Current 
MPAM32 F 1 0 0 IV 0 34 9.0 0 Never 
PAM01 M 0 0 0 IV 1 59 7.0 1 Ever-Current 
PAM02 F 0 0 0 IV 0 69 0.5 0 Ever-Former 
PAM03 M 0 0 0 IV 0 79 10.0 1 Never 
PAM04 M 0 0 0 IV 0 74 3.0 1 Ever-Former 
PAM10 F 0 0 0 IV 0 50 5.0 Unknown Unknown 
PAM104 F 1 1 1 IIB 0 76 53.0  Ever-Former 
PAM112 F 1 0 0 IV 0 54 41.0 0 Never 
PAM119 M 1 1 0 III 0 64 3.0 1 Ever-Current 
PAM12 M 0 0 0 IV 0 49 1.0 Unknown Unknown 
PAM13 F 0 0 0 IV 0 85 2.0 0 Never 
PAM135 F 1 1 1 IIA 0 49 69.0 0 Never 
PAM14 F 0 0 0 IV 1 78 1.0  Ever-Former 
PAM15 F 0 0 0 III 1 84 3.0 1 Ever-Former 
PAM16 F 0 0 0 IV 0 88 0.8 0 Never 
PAM17 F 0 0 0 IV 0 67 1.0 0 Never 
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Supplemental Table 1 (continued) 

PAM ID Gender Chemo Radiation Surgery Stage at Dx Oligometastatic 
Age 
at Dx 

Overall 
Survival (mo) 

Type II 
Diabetes Smoking Hx 

PAM18 F 0 0 1 IIA 1 83 12.0 0 Never 
PAM19 M 1 1 0 III 0 51 8.0 0 Never 
PAM20 F 1 1 0 III 0 81 3.0 0 Never 
PAM21 M 1 1 0 III 1 36 17.0 0 Never 
PAM22 M 1 1 0 III 1 57 17.0 0 Ever-Current 
PAM23 M 1 1 0 III 1 77 10.0 1 Ever-Former 
PAM24 F 1 1 0 III 0 61 24.0 1 Never 

PAM25 M 1 1 0 III 1 64 14.0 
Borderline 
Hyperglycemia Ever-Former 

PAM26 M 1 1 0 III 0 53 14.0  Ever-Current 
PAM27 M 1 1 0 III 1 71 29.0 0 Ever-Former 
PAM28 F 1 1 0 III 0 65 7.5 0 Never 
PAM29 F 1 1 0 III 0 83 9.0 0 Ever-Former 
PAM31 F 1 1 0 III 1 85 38.0 0 Never 
PAM32 M 1 1 1 IIB 0 50 25.0 0 Never 
PAM33 F 1 0 0 III 0 54 11.0 0 Ever-Current 
PAM36 F 1 1 1 IIB 0 61 64.0 0 Ever-Former 
PAM37 M 1 1 1 IIB 0 66 24.0 1 Never 
PAM38 F 1 1 1 III 0 54 8.0 0 Never 
PAM39 M 1 0 1 IIA 0 60 11.0 0 Ever-Current 
PAM40 F 1 0 1 IIB 0 55 18.0 0 Ever-Former 
PAM41 F 1 1 1 IIB 0 60 12.0 0 Ever-Former 
PAM42 M 1 1 1 IIA 1 65 58.0 1 Never 
PAM43 M 1 1 1 IIB 0 69 24.0 0 Ever-Former 
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Supplemental Table 1 (continued) 

PAM ID Gender Chemo Radiation Surgery Stage at Dx Oligometastatic 
Age 
at Dx 

Overall 
Survival (mo) 

Type II 
Diabetes Smoking Hx 

PAM44 M 1 1 1 IIB 0 74 20.0 0 Ever-Former 
PAM45 F 1 1 1 IIB 0 56 33.0 0 Ever-Former 
PAM46 M 1 1 1 IIB 1 44 34.0 0 Never 
PAM47 F 1 0 0 IV 0 68 4.0 0 Never 
PAM48 F 1 0 0 IV 0 64 3.0 0 Never 
PAM49 M 1 0 0 IV 0 42 8.0 0 Never 
PAM50 F 1 0 0 IV 0 56 11.0 1 Never 
PAM51 F 1 0 0 IV 0 76 7.0 0 Never 
PAM52 M 1 0 0 IV 0 53 6.0 0 Never 
PAM53 M 1 0 0 IV 0 55 15.0 0 Never 
PAM54 M 1 0 0 IV 0 63 7.0 0 Never 
PAM55 M 1 0 0 IV 0 65 10.0 0 Ever-Former 
PAM56 F 1 0 0 IV 0 41 6.0 0 Never 
PAM57 M 1 1 1 IIB 0 51 28.0 0 Never 
PAM66 M 1 1 0 III 1 67 48.0 0 Never 
PAM67 F 1 0 0 IV 0 60 3.0 1 Ever-Former 
PAM88 F 1 1 0 IV 0 51 3.0 1 Ever-Former 
PAM97 F 1 1 1 IIB 0 69 9.0 0 Never 
PAM98 F 1 0 1 IIB 0 74 9.0 0 Never 
MPAM33 M 1 0 0 IV 0 57 9.0 0 Never 
MPAM34 M 1 1 1 III 0 38 34.0 0 Never 
MPAM35 F 1 0 0 IV 0 73 17.0 0 Ever-Former 

 
Abbreviations: Dx, Diagnosis; Hx, History 
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Supplemental Table 2. Samples per patient summary. 
 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM01 MPAM01N Normal Heart     IV  
MPAM01 MPAM01PT1 Metastasis Peritoneal Cavity Direct Seeding 0.10 3.52 TETRAPLOID IV monoclonal 
MPAM01 MPAM01PT2 Metastasis Liver Hematogenous 0.37 3.50 TETRAPLOID IV monoclonal 
MPAM01 MPAM01PT3 Metastasis Liver Hematogenous 0.23 3.52 TETRAPLOID IV monoclonal 
MPAM01 MPAM01PT4 Metastasis Liver Hematogenous 0.32 3.52 TETRAPLOID IV monoclonal 
MPAM01 MPAM01PT5 Metastasis Liver Hematogenous 0.51 3.30 TETRAPLOID IV monoclonal 
MPAM03 MPAM03N Normal Skeletal Muscle     IV  
MPAM03 MPAM03PT1 Metastasis Peritoneal Cavity Direct Seeding 0.27 2.92 DIPLOID IV polyclonal 
MPAM03 MPAM03PT2 Primary Pancreas Primary  0.18 2.85 DIPLOID IV polyclonal 
MPAM03 MPAM03PT3 Primary Pancreas Primary  0.22 2.87 DIPLOID IV polyclonal 
MPAM03 MPAM03PT4 Primary Pancreas Primary  0.33 2.83 DIPLOID IV polyclonal 
MPAM03 MPAM03PT5 Metastasis Peritoneal Cavity Direct Seeding 0.22 2.86 DIPLOID IV polyclonal 
MPAM03 MPAM03PT6 Metastasis Diaphragm Unknown    IV  
MPAM03 MPAM03PT7 Metastasis Peritoneal Cavity Direct Seeding    IV  
MPAM05 MPAM05N Normal Skeletal Muscle     IV  
MPAM05 MPAM05PT1 Metastasis Pleural Cavity Unknown 0.21 5.15 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT10 Metastasis Liver Hematogenous 0.15 5.12 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT11 Metastasis Liver Hematogenous 0.55 5.50 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT2 Metastasis Peritoneal Cavity Direct Seeding 0.46 5.05 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT3 Metastasis Lung Hematogenous 0.76 5.54 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT4 Metastasis Lung Hematogenous 0.12 5.16 TETRAPLOID IV monoclonal 
MPAM05 MPAM05PT5 Metastasis Lymph Node Lymphatic 0.40 5.13 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT6 Metastasis Pericardial Sac Unknown 0.72 5.47 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM05 MPAM05PT7 Metastasis Diaphragm Unknown 0.32 5.09 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT8 Metastasis Liver Hematogenous 1.00 5.46 TETRAPLOID IV polyclonal 
MPAM05 MPAM05PT9 Metastasis Liver Hematogenous 0.98 5.28 TETRAPLOID IV polyclonal 
MPAM06 MPAM06N Normal Skeletal Muscle     IV  
MPAM06 MPAM06PT1 Metastasis Lung Hematogenous 0.23 4.19 TETRAPLOID IV monoclonal 
MPAM06 MPAM06PT10 Metastasis Retroperitoneum Direct Seeding 0.38 4.24 TETRAPLOID IV polyclonal 
MPAM06 MPAM06PT11 Primary Pancreas Primary     IV  
MPAM06 MPAM06PT2 Metastasis Lung Hematogenous 0.28 4.19 TETRAPLOID IV monoclonal 
MPAM06 MPAM06PT3 Metastasis Diaphragm Unknown 0.23 4.19 TETRAPLOID IV monoclonal 
MPAM06 MPAM06PT4 Metastasis Liver Hematogenous 0.64 4.27 TETRAPLOID IV polyclonal 
MPAM06 MPAM06PT5 Metastasis Peritoneal Cavity Direct Seeding 0.13 4.19 TETRAPLOID IV monoclonal 
MPAM06 MPAM06PT6 Primary Pancreas Primary     IV  
MPAM06 MPAM06PT7 Primary Pancreas Primary  0.19 4.19 TETRAPLOID IV monoclonal 
MPAM06 MPAM06PT8 Metastasis Liver Hematogenous 0.47 4.27 TETRAPLOID IV polyclonal 
MPAM06 MPAM06PT9 Metastasis Liver Hematogenous 0.25 4.27 TETRAPLOID IV polyclonal 
MPAM07 MPAM07N Normal Skeletal Muscle     IV  
MPAM07 MPAM07PT1 Primary Pancreas Primary  0.37 1.68 DIPLOID IV monoclonal 
MPAM07 MPAM07PT10 Primary Pancreas Primary  0.57 1.64 DIPLOID IV polyclonal 
MPAM07 MPAM07PT2 Metastasis Diaphragm Unknown 0.65 1.56 DIPLOID IV polyclonal 
MPAM07 MPAM07PT3 Metastasis Diaphragm Unknown 0.65 1.60 DIPLOID IV polyclonal 
MPAM07 MPAM07PT4 Metastasis Pleural Cavity Unknown 0.64 1.61 DIPLOID IV polyclonal 
MPAM07 MPAM07PT5 Metastasis Liver Hematogenous 0.60 1.65 DIPLOID IV polyclonal 
MPAM07 MPAM07PT6 Metastasis Liver Hematogenous 0.80 1.64 DIPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM07 MPAM07PT7 Metastasis Lymph Node Lymphatic 0.48 1.58 DIPLOID IV polyclonal 
MPAM07 MPAM07PT8 Metastasis Lymph Node Lymphatic 0.59 1.63 DIPLOID IV polyclonal 
MPAM07 MPAM07PT9 Primary Pancreas Primary     IV  
MPAM08 MPAM08N Normal Skeletal Muscle     IV  
MPAM08 MPAM08PT1 Metastasis Liver Hematogenous 0.46 2.57 DIPLOID IV polyclonal 
MPAM08 MPAM08PT10 Primary Pancreas Primary  0.33 2.61 DIPLOID IV polyclonal 
MPAM08 MPAM08PT11 Metastasis Peritoneal Cavity Direct Seeding    IV  
MPAM08 MPAM08PT12 Metastasis Lymph Node Lymphatic 0.67 2.57 DIPLOID IV polyclonal 
MPAM08 MPAM08PT2 Metastasis Liver Hematogenous 0.60 2.59 DIPLOID IV polyclonal 
MPAM08 MPAM08PT3 Metastasis Peritoneal Cavity Direct Seeding 0.59 2.57 DIPLOID IV polyclonal 
MPAM08 MPAM08PT4 Metastasis Peritoneal Cavity Direct Seeding 0.63 2.59 DIPLOID IV polyclonal 
MPAM08 MPAM08PT5 Metastasis Pericardial Sac Unknown 1.00 2.71 DIPLOID IV polyclonal 
MPAM08 MPAM08PT6 Metastasis Peritoneal Cavity Direct Seeding    IV  
MPAM08 MPAM08PT7 Metastasis Peritoneal Cavity Direct Seeding 0.47 2.54 DIPLOID IV polyclonal 
MPAM08 MPAM08PT8 Primary Pancreas Primary  0.34 2.53 DIPLOID IV monoclonal 
MPAM08 MPAM08PT9 Primary Pancreas Primary  0.26 2.58 DIPLOID IV polyclonal 
MPAM09 MPAM09N Normal Pancreas     III  
MPAM09 MPAM09PT1 Primary Pancreas Primary     III  
MPAM09 MPAM09PT2 Primary Pancreas Primary     III  
MPAM09 MPAM09PT3 Primary Pancreas Primary     III  
MPAM10 MPAM10N Normal Pancreas     III  
MPAM10 MPAM10PT1 Primary Pancreas Primary     III  
MPAM10 MPAM10PT2 Primary Pancreas Primary     III  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM10 MPAM10PT3 Primary Pancreas Primary     III  
MPAM11 MPAM11N Normal Pancreas     IIB  
MPAM11 MPAM11PT1 Primary Pancreas Primary  0.19 1.96 DIPLOID IIB monoclonal 
MPAM11 MPAM11PT2 Primary Pancreas Primary  0.40 1.96 DIPLOID IIB polyclonal 
MPAM11 MPAM11PT3 Primary Pancreas Primary  0.25 1.92 DIPLOID IIB polyclonal 
MPAM11 MPAM11PT4 Primary Pancreas Primary     IIB  
MPAM12 MPAM12N Normal Pancreas     IB  
MPAM12 MPAM12PT1 Primary Pancreas Primary     IB  
MPAM12 MPAM12PT2 Primary Pancreas Primary  0.13 1.84 DIPLOID IB monoclonal 
MPAM12 MPAM12PT3 Primary Pancreas Primary  0.12 1.84 DIPLOID IB monoclonal 
MPAM13 MPAM13N Normal Pancreas     III  
MPAM13 MPAM13PT1 Primary Pancreas Primary  0.30 1.88 DIPLOID III monoclonal 
MPAM13 MPAM13PT2 Primary Pancreas Primary  0.43 1.88 DIPLOID III monoclonal 
MPAM13 MPAM13PT3 Primary Pancreas Primary  0.42 1.88 DIPLOID III monoclonal 
MPAM14 MPAM14N Normal Pancreas     IIB  
MPAM14 MPAM14PT1 Primary Pancreas Primary  0.23 1.94 DIPLOID IIB monoclonal 
MPAM14 MPAM14PT2 Primary Pancreas Primary  0.11 1.94 DIPLOID IIB monoclonal 
MPAM14 MPAM14PT3 Primary Pancreas Primary  0.36 1.94 DIPLOID IIB monoclonal 
MPAM14 MPAM14PT4 Primary Pancreas Primary  0.03 1.94 DIPLOID IIB  
MPAM14 MPAM14PT5 Primary Pancreas Primary  0.29 1.94 DIPLOID IIB monoclonal 
MPAM15 MPAM15N Normal Pancreas     IIB  
MPAM15 MPAM15PT1 Primary Pancreas Primary  0.15 1.96 DIPLOID IIB monoclonal 
MPAM15 MPAM15PT2 Primary Pancreas Primary  0.16 1.96 DIPLOID IIB monoclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM15 MPAM15PT3 Primary Pancreas Primary     IIB  
MPAM16 MPAM16N Normal Pancreas     IIB  
MPAM16 MPAM16PT1 Primary Pancreas Primary     IIB  
MPAM16 MPAM16PT2 Primary Pancreas Primary     IIB  
MPAM16 MPAM16PT3 Primary Pancreas Primary     IIB  
MPAM16 MPAM16PT4 Primary Pancreas Primary     IIB  
MPAM17 MPAM17N Normal Pancreas     III  
MPAM17 MPAM17PT1 Primary Pancreas Primary  0.34 3.41 TETRAPLOID III monoclonal 
MPAM17 MPAM17PT2 Primary Pancreas Primary  0.34 3.41 TETRAPLOID III monoclonal 
MPAM17 MPAM17PT3 Primary Pancreas Primary  0.35 3.41 TETRAPLOID III monoclonal 
MPAM17 MPAM17PT4 Primary Pancreas Primary     III  
MPAM18 MPAM18N Normal Pancreas     III  
MPAM18 MPAM18PT1 Primary Pancreas Primary     III  
MPAM18 MPAM18PT2 Primary Pancreas Primary     III  
MPAM18 MPAM18PT3 Primary Pancreas Primary  0.50 1.82 DIPLOID III monoclonal 
MPAM18 MPAM18PT4 Primary Pancreas Primary     III  
MPAM19 MPAM19N Normal Pancreas     IIB  
MPAM19 MPAM19PT1 Primary Pancreas Primary     IIB  
MPAM19 MPAM19PT2 Primary Pancreas Primary     IIB  
MPAM19 MPAM19PT3 Primary Pancreas Primary     IIB  
MPAM19 MPAM19PT4 Primary Pancreas Primary     IIB  
MPAM19 MPAM19PT5 Primary Pancreas Primary     IIB  
MPAM19 MPAM19PT6 Primary Pancreas Primary     IIB  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM20 MPAM20N Normal Pancreas     IIA  
MPAM20 MPAM20PT1 Primary Pancreas Primary  0.62 2.03 DIPLOID IIA monoclonal 
MPAM20 MPAM20PT2 Primary Pancreas Primary  0.11 2.03 DIPLOID IIA monoclonal 
MPAM20 MPAM20PT3 Primary Pancreas Primary  0.38 2.03 DIPLOID IIA monoclonal 
MPAM20 MPAM20PT4 Primary Pancreas Primary  0.20 2.03 DIPLOID IIA monoclonal 
MPAM21 MPAM21N Normal Pancreas     IIA  
MPAM21 MPAM21PT1 Primary Pancreas Primary     IIA  
MPAM21 MPAM21PT2 Primary Pancreas Primary     IIA  
MPAM21 MPAM21PT3 Primary Pancreas Primary     IIA  
MPAM22 MPAM22N Normal Pancreas     IIA  
MPAM22 MPAM22PT1 Primary Pancreas Primary     IIA  
MPAM22 MPAM22PT2 Primary Pancreas Primary     IIA  
MPAM22 MPAM22PT3 Primary Pancreas Primary     IIA  
MPAM23 MPAM23N Normal Pancreas     IIA  
MPAM23 MPAM23PT1 Primary Pancreas Primary     IIA  
MPAM23 MPAM23PT2 Primary Pancreas Primary  0.36 3.86 TETRAPLOID IIA monoclonal 
MPAM23 MPAM23PT3 Primary Pancreas Primary  0.37 3.86 TETRAPLOID IIA monoclonal 
MPAM23 MPAM23PT4 Primary Pancreas Primary     IIA  
MPAM24 MPAM24N Normal Pancreas     IIA  
MPAM24 MPAM24PT1 Primary Pancreas Primary  0.33 3.29 TETRAPLOID IIA monoclonal 
MPAM24 MPAM24PT2 Primary Pancreas Primary  0.30 3.29 TETRAPLOID IIA monoclonal 
MPAM24 MPAM24PT3 Primary Pancreas Primary  0.22 3.29 TETRAPLOID IIA monoclonal 
MPAM25 MPAM25N Normal Pancreas     IIA  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM25 MPAM25PT1 Primary Pancreas Primary     IIA  
MPAM25 MPAM25PT2 Primary Pancreas Primary     IIA  
MPAM25 MPAM25PT3 Primary Pancreas Primary     IIA  
MPAM26 MPAM26N Normal Pancreas     IIA  
MPAM26 MPAM26PT1 Primary Pancreas Primary  0.48 3.19 TETRAPLOID IIA monoclonal 
MPAM26 MPAM26PT2 Primary Pancreas Primary  0.38 3.18 TETRAPLOID IIA polyclonal 
MPAM26 MPAM26PT3 Primary Pancreas Primary  0.42 3.20 TETRAPLOID IIA polyclonal 
MPAM26 MPAM26PT4 Primary Pancreas Primary  0.49 3.31 TETRAPLOID IIA polyclonal 
MPAM27 MPAM27N Normal Pancreas     IIA  
MPAM27 MPAM27PT1 Primary Pancreas Primary     IIA  
MPAM27 MPAM27PT2 Primary Pancreas Primary     IIA  
MPAM27 MPAM27PT3 Primary Pancreas Primary     IIA  
MPAM28 MPAM28N Normal Pancreas     IIA  
MPAM28 MPAM28PT1 Primary Pancreas Primary     IIA  
MPAM28 MPAM28PT2 Primary Pancreas Primary  0.29 2.06 DIPLOID IIA polyclonal 
MPAM28 MPAM28PT3 Primary Pancreas Primary  0.33 2.04 DIPLOID IIA polyclonal 
MPAM29 MPAM29N Normal Pancreas     IIA  
MPAM29 MPAM29PT1 Primary Pancreas Primary     IIA  
MPAM29 MPAM29PT2 Primary Pancreas Primary  0.23 3.31 TETRAPLOID IIA polyclonal 
MPAM29 MPAM29PT3 Primary Pancreas Primary  0.45 3.58 TETRAPLOID IIA polyclonal 
MPAM29 MPAM29PT4 Primary Pancreas Primary  0.23 3.20 TETRAPLOID IIA polyclonal 
MPAM30 MPAM30N Normal Pancreas     IIA  
MPAM30 MPAM30PT1 Primary Pancreas Primary  0.43 2.23 DIPLOID IIA monoclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM30 MPAM30PT2 Primary Pancreas Primary  0.28 2.23 DIPLOID IIA monoclonal 
MPAM30 MPAM30PT3 Primary Pancreas Primary  0.31 2.23 DIPLOID IIA monoclonal 
MPAM31 MPAM31N Normal Pancreas     IIA  
MPAM31 MPAM31PT1 Primary Pancreas Primary  0.14 3.46 TETRAPLOID IIA monoclonal 
MPAM31 MPAM31PT2 Primary Pancreas Primary  0.30 3.46 TETRAPLOID IIA monoclonal 
MPAM31 MPAM31PT3 Primary Pancreas Primary  0.24 3.46 TETRAPLOID IIA monoclonal 
MPAM32 MPAM32N Normal Heart     IV  
MPAM32 MPAM32PT1 Metastasis Peritoneal Cavity Direct Seeding 0.58 2.65 DIPLOID IV polyclonal 
MPAM32 MPAM32PT10 Metastasis Liver Hematogenous 0.33 2.36 DIPLOID IV polyclonal 
MPAM32 MPAM32PT11 Metastasis Lymph Node Lymphatic 0.42 2.45 DIPLOID IV polyclonal 
MPAM32 MPAM32PT12 Primary Pancreas Primary  0.25 2.72 DIPLOID IV monoclonal 
MPAM32 MPAM32PT13 Primary Pancreas Primary  0.18 2.72 DIPLOID IV monoclonal 
MPAM32 MPAM32PT2 Metastasis Peritoneal Cavity Direct Seeding 0.84 2.66 DIPLOID IV polyclonal 
MPAM32 MPAM32PT3 Metastasis Diaphragm Unknown 0.35 2.51 DIPLOID IV polyclonal 
MPAM32 MPAM32PT4 Metastasis Peritoneal Cavity Direct Seeding 0.51 2.59 DIPLOID IV polyclonal 
MPAM32 MPAM32PT5 Metastasis Diaphragm Unknown 0.36 2.55 DIPLOID IV polyclonal 
MPAM32 MPAM32PT6 Metastasis Peritoneal Cavity Direct Seeding 0.45 2.73 DIPLOID IV polyclonal 
MPAM32 MPAM32PT7 Metastasis Peritoneal Cavity Direct Seeding 0.75 2.68 DIPLOID IV polyclonal 
MPAM32 MPAM32PT8 Metastasis Liver Hematogenous 0.47 2.50 DIPLOID IV polyclonal 
MPAM32 MPAM32PT9 Metastasis Liver Hematogenous 0.50 2.48 DIPLOID IV polyclonal 
MPAM33 MPAM33N Normal Heart     IV  
MPAM33 MPAM33PT1 Metastasis Lung Hematogenous 0.54 3.35 TETRAPLOID IV polyclonal 
MPAM33 MPAM33PT2 Metastasis Lung Hematogenous 0.66 3.27 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

MPAM33 MPAM33PT3 Metastasis Lymph Node Lymphatic 0.43 3.20 TETRAPLOID IV polyclonal 
MPAM33 MPAM33PT4 Metastasis Liver Hematogenous 0.33 2.61 DIPLOID IV monoclonal 
MPAM33 MPAM33PT5 Metastasis Liver Hematogenous 0.74 3.28 TETRAPLOID IV polyclonal 
MPAM33 MPAM33PT6 Metastasis Liver Hematogenous 0.72 3.21 TETRAPLOID IV monoclonal 
MPAM33 MPAM33PT7 Primary Pancreas Primary  0.46 2.69 DIPLOID IV polyclonal 
MPAM33 MPAM33PT8 Primary Pancreas Primary  0.54 2.96 DIPLOID IV polyclonal 
MPAM34 MPAM34PT1 Normal Skeletal Muscle     IV  
MPAM34 MPAM34PT2 Metastasis Pleural Cavity Unknown 0.62 1.85 DIPLOID IV polyclonal 
MPAM34 MPAM34PT3 Metastasis Lymph Node Lymphatic 0.37 1.89 DIPLOID IV polyclonal 
MPAM34 MPAM34PT4 Metastasis Peritoneal Cavity Direct Seeding 0.39 1.90 DIPLOID IV polyclonal 
MPAM34 MPAM34PT5 Metastasis Diaphragm Unknown 0.32 1.91 DIPLOID IV polyclonal 
MPAM34 MPAM34PT6 Metastasis Lung Hematogenous 0.48 1.83 DIPLOID IV polyclonal 
MPAM34 MPAM34PT7 Metastasis Peritoneal Cavity Direct Seeding    IV  
MPAM34 MPAM34PT8 Metastasis Peritoneal Cavity Direct Seeding 0.48 1.88 DIPLOID IV polyclonal 
MPAM34 MPAM34PT9 Metastasis Adrenal Unknown    IV  
MPAM35 MPAM35PT1 Normal Skeletal Muscle     IV  
MPAM35 MPAM35PT2 Metastasis Peritoneal Cavity Direct Seeding 0.34 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT3 Primary Pancreas Primary  0.36 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT4 Primary Pancreas Primary  0.10 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT5 Metastasis Lymph Node Lymphatic 0.37 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT6 Metastasis Peritoneal Cavity Direct Seeding 0.28 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT7 Metastasis Pelvis Direct Seeding 0.21 2.80 DIPLOID IV monoclonal 
MPAM35 MPAM35PT8 Metastasis Peritoneal Cavity Direct Seeding 0.28 2.80 DIPLOID IV monoclonal 

91 



 
 

 
 

 
 
 

Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM01 PAM01N Normal Lung     IV  
PAM01 PAM01PT1 Metastasis Liver Hematogenous 0.65 3.16 TETRAPLOID IV polyclonal 
PAM01 PAM01PT2 Metastasis Lymph Node Lymphatic 0.49 3.19 TETRAPLOID IV polyclonal 
PAM01 PAM01PT3 Metastasis Lymph Node Lymphatic 0.69 3.18 TETRAPLOID IV polyclonal 
PAM01 PAM01PT4 Metastasis Liver Hematogenous 0.33 3.18 TETRAPLOID IV monoclonal 
PAM02 PAM02N Normal Skin     IV  
PAM02 PAM02PT1 Metastasis Liver Hematogenous 0.19 3.59 TETRAPLOID IV polyclonal 
PAM02 PAM02PT10 Primary Pancreas Primary  0.30 3.60 TETRAPLOID IV polyclonal 
PAM02 PAM02PT11 Primary Pancreas Primary  0.58 3.52 TETRAPLOID IV polyclonal 
PAM02 PAM02PT2 Metastasis Liver Hematogenous 0.37 3.55 TETRAPLOID IV polyclonal 
PAM02 PAM02PT3 Metastasis Liver Hematogenous 0.34 3.61 TETRAPLOID IV polyclonal 
PAM02 PAM02PT4 Metastasis Liver Hematogenous 0.45 3.57 TETRAPLOID IV polyclonal 
PAM02 PAM02PT5 Metastasis Liver Hematogenous 0.42 3.57 TETRAPLOID IV polyclonal 
PAM02 PAM02PT6 Metastasis Liver Hematogenous 0.22 3.60 TETRAPLOID IV polyclonal 
PAM02 PAM02PT7 Metastasis Liver Hematogenous 0.55 3.57 TETRAPLOID IV polyclonal 
PAM02 PAM02PT8 Metastasis Liver Hematogenous 0.41 3.51 TETRAPLOID IV monoclonal 
PAM02 PAM02PT9 Primary Pancreas Primary  0.40 3.61 TETRAPLOID IV polyclonal 
PAM03 PAM03N Normal Skeletal Muscle     IV  
PAM03 PAM03PT1 Metastasis Lung Hematogenous 0.12 3.78 TETRAPLOID IV monoclonal 
PAM03 PAM03PT10 Primary Pancreas Primary  0.26 3.78 TETRAPLOID IV polyclonal 
PAM03 PAM03PT11 Primary Pancreas Primary  0.17 3.78 TETRAPLOID IV monoclonal 
PAM03 PAM03PT2 Metastasis Lung Hematogenous 0.09 3.79 TETRAPLOID IV monoclonal 
PAM03 PAM03PT3 Metastasis Liver Hematogenous 0.21 3.81 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM03 PAM03PT4 Metastasis Liver Hematogenous 0.31 3.89 TETRAPLOID IV polyclonal 
PAM03 PAM03PT5 Metastasis Liver Hematogenous 0.28 3.90 TETRAPLOID IV monoclonal 
PAM03 PAM03PT6 Metastasis Liver Hematogenous 0.22 3.88 TETRAPLOID IV polyclonal 
PAM03 PAM03PT7 Metastasis Liver Hematogenous 0.32 3.89 TETRAPLOID IV polyclonal 
PAM03 PAM03PT8 Metastasis Lung Hematogenous 0.12 3.78 TETRAPLOID IV monoclonal 
PAM03 PAM03PT9 Primary Pancreas Primary  0.29 3.81 TETRAPLOID IV monoclonal 
PAM04 PAM04N Normal Skin     IV  
PAM04 PAM04PT1 Metastasis Liver Hematogenous 0.27 1.89 DIPLOID IV polyclonal 
PAM04 PAM04PT2 Metastasis Peritoneal Cavity Direct Seeding 0.23 1.89 DIPLOID IV monoclonal 
PAM04 PAM04PT3 Metastasis Peritoneal Cavity Direct Seeding 0.24 1.88 DIPLOID IV polyclonal 
PAM04 PAM04PT4 Metastasis Peritoneal Cavity Direct Seeding 0.23 1.89 DIPLOID IV polyclonal 
PAM04 PAM04PT5 Metastasis Peritoneal Cavity Direct Seeding 0.12 1.89 DIPLOID IV monoclonal 
PAM04 PAM04PT6 Metastasis Peritoneal Cavity Direct Seeding 0.29 1.87 DIPLOID IV polyclonal 
PAM04 PAM04PT7 Primary Pancreas Primary  0.12 1.89 DIPLOID IV polyclonal 
PAM04 PAM04PT8 Primary Pancreas Primary  0.10 1.88 DIPLOID IV monoclonal 
PAM04 PAM04PT9 Primary Pancreas Primary  0.34 1.89 DIPLOID IV polyclonal 
PAM10 PAM10N Normal Spleen     IV  
PAM10 PAM10PT1 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM10 PAM10PT2 Primary Pancreas Primary     IV  
PAM10 PAM10PT3 Primary Pancreas Primary     IV  
PAM10 PAM10PT5 Metastasis Liver Hematogenous    IV  
PAM104 PAM104N Normal Skeletal Muscle     IV  
PAM104 PAM104PT1 Primary Pancreas Primary  0.21 3.89 TETRAPLOID IV monoclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM104 PAM104PT2 Metastasis Liver Hematogenous    IV  
PAM112 PAM112N Normal Skin     IV  
PAM112 PAM112PT1 Metastasis Lung Hematogenous    IV  
PAM112 PAM112PT3 Primary Pancreas Primary     IV  
PAM119 PAM119N Normal Skeletal Muscle     IV  
PAM119 PAM119PT1 Metastasis Liver Hematogenous 0.19 2.07 DIPLOID IV monoclonal 
PAM119 PAM119PT2 Metastasis Liver Hematogenous 0.33 2.07 DIPLOID IV polyclonal 
PAM119 PAM119PT3 Metastasis Peritoneal Cavity Direct Seeding 0.38 2.03 DIPLOID IV monoclonal 
PAM119 PAM119PT4 Metastasis Liver Hematogenous 0.21 2.07 DIPLOID IV polyclonal 
PAM119 PAM119PT5 Primary Pancreas Primary     IV  
PAM12 PAM12N Normal Spleen     IV  
PAM12 PAM12PT1 Primary Pancreas Primary  0.59 5.86 TETRAPLOID IV monoclonal 
PAM12 PAM12PT3 Metastasis Lymph Node Lymphatic 0.60 5.86 TETRAPLOID IV monoclonal 
PAM13 PAM13N Normal Spleen     IV  
PAM13 PAM13PT1 Primary Pancreas Primary     IV  
PAM13 PAM13PT2 Metastasis Liver Hematogenous 0.94 1.75 DIPLOID IV polyclonal 
PAM13 PAM13PT3 Metastasis Liver Hematogenous 0.67 2.01 DIPLOID IV polyclonal 
PAM13 PAM13PT4 Metastasis Liver Hematogenous 0.88 1.58 DIPLOID IV polyclonal 
PAM135 PAM135N Normal Skeletal Muscle     IV  
PAM135 PAM135PT1 Metastasis Pericardial Sac Unknown 0.25 2.77 DIPLOID IV monoclonal 
PAM135 PAM135PT2 Metastasis Lung Hematogenous 0.27 3.45 TETRAPLOID IV monoclonal 
PAM135 PAM135PT3 Metastasis Liver Hematogenous 0.35 2.87 DIPLOID IV polyclonal 
PAM135 PAM135PT4 Metastasis Diaphragm Unknown 0.47 2.82 DIPLOID IV monoclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM14 PAM14N Normal Spleen     IV  
PAM14 PAM14PT1 Metastasis Lung Hematogenous 0.27 2.52 DIPLOID IV monoclonal 
PAM14 PAM14PT2 Primary Pancreas Primary  0.21 2.52 DIPLOID IV monoclonal 
PAM14 PAM14PT3 Primary Pancreas Primary  0.33 2.52 DIPLOID IV monoclonal 
PAM15 PAM15N Normal Spleen     III  
PAM15 PAM15PT1 Primary Pancreas Primary     III  
PAM15 PAM15PT2 Primary Pancreas Primary     III  
PAM16 PAM16N Normal Pancreas     IV  
PAM16 PAM16PT1 Primary Pancreas Primary  0.38 3.25 TETRAPLOID IV monoclonal 
PAM16 PAM16PT2 Primary Pancreas Primary  0.44 3.25 TETRAPLOID IV monoclonal 
PAM16 PAM16PT3 Metastasis Liver Hematogenous 0.53 3.25 TETRAPLOID IV monoclonal 
PAM16 PAM16PT4 Metastasis Lymph Node Lymphatic 0.54 3.25 TETRAPLOID IV monoclonal 
PAM17 PAM17N Normal Pancreas     IV  
PAM17 PAM17PT1 Primary Pancreas Primary  0.22 3.11 TETRAPLOID IV polyclonal 
PAM17 PAM17PT2 Primary Pancreas Primary  0.41 3.14 TETRAPLOID IV polyclonal 
PAM17 PAM17PT3 Metastasis Liver Hematogenous 0.46 3.41 TETRAPLOID IV polyclonal 
PAM17 PAM17PT4 Metastasis Peritoneal Cavity Direct Seeding 0.33 3.21 TETRAPLOID IV polyclonal 
PAM17 PAM17PT5 Primary Pancreas Primary  0.27 3.13 TETRAPLOID IV polyclonal 
PAM18 PAM18N Normal Skeletal Muscle     III  
PAM18 PAM18PT1 Metastasis Liver Hematogenous 0.19 3.35 TETRAPLOID III monoclonal 
PAM18 PAM18PT2 Primary Pancreas Primary  0.31 3.35 TETRAPLOID III monoclonal 
PAM19 PAM19N Normal Liver     IV  
PAM19 PAM19N Normal Skeletal Muscle     IV  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM19 PAM19PT1 Primary Pancreas Primary     IV  
PAM19 PAM19PT10 Metastasis Lung Hematogenous    IV  
PAM19 PAM19PT11 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT12 Metastasis Diaphragm Unknown    IV  
PAM19 PAM19PT14 Metastasis Liver Hematogenous    IV  
PAM19 PAM19PT15 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT16 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT17 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT2 Metastasis Lung Hematogenous    IV  
PAM19 PAM19PT3 Metastasis Lung Hematogenous    IV  
PAM19 PAM19PT4 Metastasis Lymph Node Lymphatic    IV  
PAM19 PAM19PT5 Metastasis Liver Hematogenous    IV  
PAM19 PAM19PT6 Metastasis Lung Hematogenous    IV  
PAM19 PAM19PT7 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT8 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM19 PAM19PT9 Metastasis Lung Hematogenous    IV  
PAM20 PAM20N Normal Liver     IV  
PAM20 PAM20PT1 Primary Pancreas Primary     IV  
PAM20 PAM20PT2 Primary Pancreas Primary     IV  
PAM20 PAM20PT3 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM20 PAM20PT4 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM20 PAM20PT5 Metastasis Diaphragm Unknown    IV  
PAM20 PAM20PT6 Metastasis Peritoneal Cavity Direct Seeding    IV  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM21 PAM21N Normal Spleen     III  
PAM21 PAM21PT1 Primary Pancreas Primary     III  
PAM21 PAM21PT2 Primary Pancreas Primary     III  
PAM21 PAM21PT3 Primary Pancreas Primary     III  
PAM21 PAM21PT5 Primary Pancreas Primary     III  
PAM21 PAM21PT6 Primary Pancreas Primary     III  
PAM22 PAM22N Normal Skeletal Muscle     IV  
PAM22 PAM22PT1 Primary Pancreas Primary     IV  
PAM22 PAM22PT2 Primary Pancreas Primary     IV  
PAM22 PAM22PT3 Primary Pancreas Primary     IV  
PAM22 PAM22PT4 Primary Pancreas Primary     IV  
PAM22 PAM22PT5 Primary Pancreas Primary     IV  
PAM22 PAM22PT6 Primary Pancreas Primary     IV  
PAM22 PAM22PT7 Primary Pancreas Primary     IV  
PAM22 PAM22PT8 Primary Pancreas Primary     IV  
PAM22 PAM22PT9 Primary Pancreas Primary     IV  
PAM23 PAM23N Normal Spleen     IV  
PAM23 PAM23PT1 Primary Pancreas Primary     IV  
PAM23 PAM23PT2 Primary Pancreas Primary     IV  
PAM23 PAM23PT3 Primary Pancreas Primary     IV  
PAM23 PAM23PT4 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM23 PAM23PT5 Metastasis Liver Hematogenous    IV  
PAM24 PAM24N Normal Spleen     IV  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM24 PAM24PT1 Primary Pancreas Primary  0.20 2.10 DIPLOID IV polyclonal 
PAM24 PAM24PT10 Metastasis Liver Hematogenous 0.64 2.11 DIPLOID IV polyclonal 
PAM24 PAM24PT11 Metastasis Liver Hematogenous 0.55 2.09 DIPLOID IV polyclonal 
PAM24 PAM24PT12 Metastasis Liver Hematogenous 0.51 2.08 DIPLOID IV polyclonal 
PAM24 PAM24PT13 Metastasis Liver Hematogenous 0.43 2.09 DIPLOID IV polyclonal 
PAM24 PAM24PT14 Metastasis Liver Hematogenous 0.37 2.11 DIPLOID IV polyclonal 
PAM24 PAM24PT2 Primary Pancreas Primary  0.13 2.12 DIPLOID IV monoclonal 
PAM24 PAM24PT3 Primary Pancreas Primary  0.14 2.12 DIPLOID IV monoclonal 
PAM24 PAM24PT4 Primary Pancreas Primary  0.21 2.09 DIPLOID IV polyclonal 
PAM24 PAM24PT5 Primary Pancreas Primary  0.11 2.12 DIPLOID IV monoclonal 
PAM24 PAM24PT6 Primary Pancreas Primary  0.22 2.10 DIPLOID IV polyclonal 
PAM24 PAM24PT7 Primary Pancreas Primary  0.29 2.12 DIPLOID IV monoclonal 
PAM24 PAM24PT8 Primary Pancreas Primary  0.36 2.10 DIPLOID IV polyclonal 
PAM24 PAM24PT9 Metastasis Liver Hematogenous 0.40 2.09 DIPLOID IV polyclonal 
PAM25 PAM25N Normal Spleen     III  
PAM25 PAM25PT1 Primary Pancreas Primary  0.33 1.74 DIPLOID III monoclonal 
PAM25 PAM25PT2 Primary Pancreas Primary  0.31 1.74 DIPLOID III monoclonal 
PAM25 PAM25PT3 Primary Pancreas Primary  0.33 1.74 DIPLOID III monoclonal 
PAM26 PAM26N Normal Spleen     IV  
PAM26 PAM26PT1 Primary Pancreas Primary  0.63 3.09 TETRAPLOID IV polyclonal 
PAM26 PAM26PT2 Primary Pancreas Primary  0.58 3.17 TETRAPLOID IV polyclonal 
PAM26 PAM26PT3 Primary Pancreas Primary  0.67 3.14 TETRAPLOID IV polyclonal 
PAM26 PAM26PT4 Primary Pancreas Primary  0.62 3.25 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM26 PAM26PT5 Primary Pancreas Primary  0.61 3.31 TETRAPLOID IV polyclonal 
PAM26 PAM26PT6 Metastasis Liver Hematogenous 0.78 3.22 TETRAPLOID IV polyclonal 
PAM26 PAM26PT7 Metastasis Liver Hematogenous 0.84 3.27 TETRAPLOID IV polyclonal 
PAM27 PAM27N Normal Spleen     III  
PAM27 PAM27PT1 Primary Pancreas Primary  0.24 1.97 DIPLOID III monoclonal 
PAM27 PAM27PT2 Primary Pancreas Primary  0.25 1.97 DIPLOID III monoclonal 
PAM27 PAM27PT3 Primary Pancreas Primary  0.25 1.97 DIPLOID III monoclonal 
PAM27 PAM27PT4 Primary Pancreas Primary  0.26 1.97 DIPLOID III monoclonal 
PAM27 PAM27PT5 Primary Pancreas Primary  0.25 1.97 DIPLOID III monoclonal 
PAM27 PAM27PT6 Primary Pancreas Primary  0.14 1.97 DIPLOID III monoclonal 
PAM28 PAM28N Normal Liver     IV  
PAM28 PAM28PT1 Primary Pancreas Primary  0.52 3.05 TETRAPLOID IV polyclonal 
PAM28 PAM28PT2 Primary Pancreas Primary  0.56 2.61 DIPLOID IV polyclonal 
PAM28 PAM28PT3 Primary Pancreas Primary  0.48 2.67 DIPLOID IV polyclonal 
PAM28 PAM28PT4 Metastasis Liver Hematogenous 0.69 1.91 DIPLOID IV monoclonal 
PAM28 PAM28PT5 Metastasis Liver Hematogenous 0.59 2.02 DIPLOID IV polyclonal 
PAM29 PAM29N Normal Liver     IV  
PAM29 PAM29PT1 Primary Pancreas Primary  0.20 1.90 DIPLOID IV polyclonal 
PAM29 PAM29PT2 Primary Pancreas Primary  0.17 1.84 DIPLOID IV monoclonal 
PAM29 PAM29PT3 Primary Pancreas Primary  0.26 1.88 DIPLOID IV polyclonal 
PAM29 PAM29PT4 Primary Pancreas Primary  0.38 1.91 DIPLOID IV polyclonal 
PAM29 PAM29PT5 Metastasis Peritoneal Cavity Direct Seeding 0.47 1.89 DIPLOID IV monoclonal 
PAM29 PAM29PT6 Metastasis Peritoneal Cavity Direct Seeding 0.36 1.96 DIPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM29 PAM29PT7 Metastasis Peritoneal Cavity Direct Seeding 0.34 1.95 DIPLOID IV polyclonal 
PAM29 PAM29PT8 Metastasis Peritoneal Cavity Direct Seeding 0.53 1.95 DIPLOID IV polyclonal 
PAM31 PAM31N Normal Spleen     IV  
PAM31 PAM31PT1 Primary Pancreas Primary  0.22 1.80 DIPLOID IV monoclonal 
PAM31 PAM31PT2 Metastasis Peritoneal Cavity Direct Seeding 0.19 1.80 DIPLOID IV monoclonal 
PAM31 PAM31PT3 Metastasis Lymph Node Lymphatic 0.51 1.80 DIPLOID IV monoclonal 
PAM32 PAM32N Normal Liver     IV  
PAM32 PAM32PT1 Primary Pancreas Primary  0.28 4.10 TETRAPLOID IV polyclonal 
PAM32 PAM32PT2 Primary Pancreas Primary  0.69 4.10 TETRAPLOID IV monoclonal 
PAM32 PAM32PT3 Metastasis Lung Hematogenous    IV  
PAM32 PAM32PT4 Metastasis Lung Hematogenous 0.32 3.90 TETRAPLOID IV monoclonal 
PAM32 PAM32PT5 Metastasis Adrenal Unknown 0.54 3.92 TETRAPLOID IV polyclonal 
PAM32 PAM32PT6 Metastasis Liver Hematogenous    IV  
PAM33 PAM33N Normal Liver     IV  
PAM33 PAM33PT1 Primary Pancreas Primary     IV  
PAM33 PAM33PT2 Primary Pancreas Primary     IV  
PAM33 PAM33PT3 Metastasis Liver Hematogenous    IV  
PAM33 PAM33PT4 Metastasis Liver Hematogenous    IV  
PAM36 PAM36N Normal Breast     IV  
PAM36 PAM36PT1 Primary Pancreas Primary     IV  
PAM36 PAM36PT2 Primary Pancreas Primary     IV  
PAM36 PAM36PT3 Metastasis Lung Hematogenous    IV  
PAM37 PAM37N Normal Lung     IV  

100 



 
 

 
 

 
 
 

Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM37 PAM37PT1 Primary Pancreas Primary     IIB  
PAM37 PAM37PT3 Metastasis Liver Hematogenous    IV  
PAM37 PAM37PT4 Metastasis Liver Hematogenous    IV  
PAM37 PAM37PT5 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM37 PAM37PT6 Metastasis Liver Hematogenous    IV  
PAM38 PAM38N Normal Kidney     IV  
PAM38 PAM38PT1 Primary Pancreas Primary     III  

PAM38 PAM38PT2 Primary 
Locoregional 
recurrence     IV  

PAM38 PAM38PT3 Metastasis Lung Hematogenous    IV  
PAM38 PAM38PT4 Metastasis Liver Hematogenous    IV  
PAM39 PAM39N Normal Kidney     IV  
PAM39 PAM39PT1 Primary Pancreas Primary  0.44 3.21 TETRAPLOID IIA polyclonal 

PAM39 PAM39PT2 Primary 
Locoregional 
recurrence  0.35 3.13 TETRAPLOID IV polyclonal 

PAM39 PAM39PT3 Primary 
Locoregional 
recurrence  0.19 3.52 TETRAPLOID IV polyclonal 

PAM39 PAM39PT4 Metastasis Lymph Node Lymphatic    IV  
PAM39 PAM39PT5 Metastasis Lymph Node Lymphatic 0.50 2.98 DIPLOID IV polyclonal 
PAM39 PAM39PT6 Metastasis Liver Hematogenous 0.64 3.66 TETRAPLOID IV polyclonal 
PAM39 PAM39PT7 Metastasis Diaphragm Unknown 0.52 3.04 TETRAPLOID IV polyclonal 
PAM39 PAM39PT8 Metastasis Peritoneal Cavity Direct Seeding 0.36 3.13 TETRAPLOID IV polyclonal 
PAM39 PAM39PT9 Metastasis Pelvis Direct Seeding 0.37 3.10 TETRAPLOID IV polyclonal 
PAM40 PAM40N Normal Kidney     IV  
PAM40 PAM40PT1 Primary Pancreas Primary     IIB  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM40 PAM40PT2 Primary 
Locoregional 
recurrence  0.29 1.98 DIPLOID IV polyclonal 

PAM40 PAM40PT3 Primary 
Locoregional 
recurrence  0.44 1.99 DIPLOID IV polyclonal 

PAM40 PAM40PT4 Metastasis Liver Hematogenous 0.59 2.01 DIPLOID IV polyclonal 
PAM40 PAM40PT5 Metastasis Liver Hematogenous 0.18 1.98 DIPLOID IV monoclonal 
PAM40 PAM40PT6 Metastasis Liver Hematogenous 0.25 1.99 DIPLOID IV polyclonal 
PAM40 PAM40PT7 Metastasis Liver Hematogenous 0.40 1.98 DIPLOID IV polyclonal 
PAM40 PAM40PT8 Metastasis Liver Hematogenous 0.46 2.02 DIPLOID IV monoclonal 
PAM41 PAM41N Normal Heart     IV  
PAM41 PAM41PT1 Primary Pancreas Primary     IV  
PAM41 PAM41PT10 Metastasis Liver Hematogenous 0.74 2.01 DIPLOID IV polyclonal 
PAM41 PAM41PT11 Metastasis Liver Hematogenous 0.69 1.77 DIPLOID IV polyclonal 

PAM41 PAM41PT2 Primary 
Locoregional 
recurrence  0.75 2.76 DIPLOID IV polyclonal 

PAM41 PAM41PT3 Metastasis Liver Hematogenous 0.83 2.81 DIPLOID IV polyclonal 
PAM41 PAM41PT4 Metastasis Liver Hematogenous 0.92 2.12 DIPLOID IV polyclonal 
PAM41 PAM41PT5 Metastasis Lung Hematogenous 0.62 2.40 DIPLOID IV polyclonal 
PAM41 PAM41PT6 Metastasis Lung Hematogenous 0.57 2.42 DIPLOID IV polyclonal 
PAM41 PAM41PT7 Metastasis Peritoneal Cavity Direct Seeding 0.86 2.10 DIPLOID IV polyclonal 
PAM41 PAM41PT8 Metastasis Liver Hematogenous 0.71 2.47 DIPLOID IV polyclonal 
PAM41 PAM41PT9 Metastasis Liver Hematogenous 0.59 2.13 DIPLOID IV polyclonal 
PAM42 PAM42N Normal Kidney     IV  
PAM42 PAM42PT1 Primary Pancreas Primary  0.11 3.66 TETRAPLOID IIA monoclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM42 PAM42PT2 Primary 
Locoregional 
recurrence  0.14 3.66 TETRAPLOID IV monoclonal 

PAM42 PAM42PT3 Primary 
Locoregional 
recurrence  0.20 3.66 TETRAPLOID IV monoclonal 

PAM42 PAM42PT4 Metastasis Lung Hematogenous 0.30 3.66 TETRAPLOID IV monoclonal 
PAM42 PAM42PT5 Metastasis Lung Hematogenous 0.28 3.66 TETRAPLOID IV monoclonal 
PAM42 PAM42PT6 Metastasis Pericardial Sac Unknown    IV  
PAM43 PAM43N Normal Spleen     IV  
PAM43 PAM43PT1 Primary Pancreas Primary  0.30 3.22 TETRAPLOID IIB polyclonal 

PAM43 PAM43PT2 Primary 
Locoregional 
recurrence  0.32 3.00 DIPLOID IV polyclonal 

PAM43 PAM43PT3 Metastasis Liver Hematogenous 0.51 2.85 DIPLOID IV polyclonal 
PAM43 PAM43PT4 Metastasis Retroperitoneum Direct Seeding 0.52 2.86 DIPLOID IV polyclonal 
PAM43 PAM43PT5 Metastasis Peritoneal Cavity Direct Seeding 0.50 2.88 DIPLOID IV polyclonal 
PAM43 PAM43PT6 Metastasis Lung Hematogenous 0.44 2.99 DIPLOID IV polyclonal 
PAM44 PAM44N Normal Heart     IV  
PAM44 PAM44PT1 Primary Pancreas Primary     IIB  

PAM44 PAM44PT2 Primary 
Locoregional 
recurrence  0.45 2.03 DIPLOID IV polyclonal 

PAM44 PAM44PT3 Primary 
Locoregional 
recurrence  0.46 2.00 DIPLOID IV polyclonal 

PAM44 PAM44PT4 Metastasis Liver Hematogenous 0.44 2.04 DIPLOID IV polyclonal 
PAM44 PAM44PT5 Metastasis Liver Hematogenous 0.38 2.00 DIPLOID IV polyclonal 
PAM45 PAM45N Normal Spleen     IV  
PAM45 PAM45PT1 Primary Pancreas Primary  0.22 3.25 TETRAPLOID IIB polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM45 PAM45PT2 Primary 
Locoregional 
recurrence  0.27 3.25 TETRAPLOID IV polyclonal 

PAM45 PAM45PT3 Metastasis Peritoneal Cavity Direct Seeding 0.42 3.25 TETRAPLOID IV polyclonal 
PAM45 PAM45PT4 Metastasis Peritoneal Cavity Direct Seeding 0.52 3.25 TETRAPLOID IV monoclonal 
PAM45 PAM45PT5 Metastasis Lymph Node Lymphatic 0.20 3.25 TETRAPLOID IV monoclonal 
PAM45 PAM45PT6 Metastasis Lymph Node Lymphatic 0.18 3.25 TETRAPLOID IV monoclonal 
PAM45 PAM45PT7 Metastasis Diaphragm Unknown 0.29 3.25 TETRAPLOID IV polyclonal 
PAM45 PAM45PT8 Metastasis Pelvis Direct Seeding 0.14 3.25 TETRAPLOID IV monoclonal 
PAM46 PAM46N Normal Spleen     IV  
PAM46 PAM46PT1 Primary Pancreas Primary     IIB  

PAM46 PAM46PT2 Metastasis 
Locoregional 
recurrence  0.55 3.11 TETRAPLOID IV polyclonal 

PAM46 PAM46PT3 Metastasis 
Locoregional 
recurrence  0.33 3.08 TETRAPLOID IV polyclonal 

PAM46 PAM46PT4 Metastasis 
Locoregional 
recurrence  0.57 3.02 TETRAPLOID IV polyclonal 

PAM46 PAM46PT5 Metastasis 
Locoregional 
recurrence  0.71 3.11 TETRAPLOID IV polyclonal 

PAM46 PAM46PT6 Metastasis 
Locoregional 
recurrence  0.70 3.00 DIPLOID IV polyclonal 

PAM46 PAM46PT7 Metastasis 
Locoregional 
recurrence  0.43 3.07 TETRAPLOID IV polyclonal 

PAM46 PAM46PT8 Metastasis 
Locoregional 
recurrence  0.42 3.07 TETRAPLOID IV polyclonal 

PAM46 PAM46PT9 Metastasis 
Locoregional 
recurrence  0.53 3.05 TETRAPLOID IV polyclonal 

PAM47 PAM47N Normal Pancreas     IV  
PAM47 PAM47PT1 Metastasis Liver Hematogenous 0.42 3.16 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM47 PAM47PT2 Metastasis Liver Hematogenous 0.44 3.16 TETRAPLOID IV polyclonal 
PAM47 PAM47PT3 Metastasis Liver Hematogenous 0.28 3.18 TETRAPLOID IV monoclonal 
PAM47 PAM47PT4 Primary Pancreas Primary  0.29 3.11 TETRAPLOID IV polyclonal 
PAM47 PAM47PT5 Primary Pancreas Primary  0.32 3.23 TETRAPLOID IV monoclonal 
PAM47 PAM47PT6 Primary Pancreas Primary  0.24 3.14 TETRAPLOID IV polyclonal 
PAM47 PAM47PT7 Primary Pancreas Primary  0.42 3.08 TETRAPLOID IV polyclonal 
PAM48 PAM48N Normal Heart     IV  
PAM48 PAM48PT1 Metastasis Liver Hematogenous 0.67 2.98 DIPLOID IV polyclonal 
PAM48 PAM48PT2 Metastasis Liver Hematogenous    IV  
PAM48 PAM48PT3 Metastasis Liver Hematogenous 0.54 2.75 DIPLOID IV polyclonal 
PAM48 PAM48PT4 Metastasis Liver Hematogenous 0.28 3.10 TETRAPLOID IV polyclonal 
PAM48 PAM48PT5 Metastasis Liver Hematogenous 0.52 2.52 DIPLOID IV polyclonal 
PAM48 PAM48PT6 Primary Pancreas Primary  0.27 3.12 TETRAPLOID IV polyclonal 
PAM48 PAM48PT7 Primary Pancreas Primary  0.20 3.03 TETRAPLOID IV polyclonal 
PAM48 PAM48PT8 Primary Pancreas Primary  0.58 2.63 DIPLOID IV polyclonal 
PAM49 PAM49N Normal Heart     IV  
PAM49 PAM49PT1 Metastasis Liver Hematogenous 0.53 1.96 DIPLOID IV polyclonal 
PAM49 PAM49PT2 Metastasis Liver Hematogenous 0.35 1.95 DIPLOID IV monoclonal 
PAM49 PAM49PT3 Metastasis Peritoneal Cavity Direct Seeding 0.56 2.07 DIPLOID IV monoclonal 
PAM49 PAM49PT4 Metastasis Diaphragm Unknown 0.35 2.03 DIPLOID IV polyclonal 
PAM49 PAM49PT5 Primary Pancreas Primary  0.53 2.06 DIPLOID IV polyclonal 
PAM49 PAM49PT6 Primary Pancreas Primary  0.38 1.95 DIPLOID IV polyclonal 
PAM49 PAM49PT7 Primary Pancreas Primary  0.38 1.97 DIPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM50 PAM50N Normal Skeletal Muscle     IV  
PAM50 PAM50PT1 Metastasis Lymph Node Lymphatic 0.07 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT2 Primary Pancreas Primary  0.12 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT3 Primary Pancreas Primary  0.09 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT4 Primary Pancreas Primary  0.06 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT5 Metastasis Peritoneal Cavity Direct Seeding 0.12 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT6 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM50 PAM50PT7 Metastasis Peritoneal Cavity Direct Seeding 0.26 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT8 Metastasis Peritoneal Cavity Direct Seeding 0.33 3.10 TETRAPLOID IV monoclonal 
PAM50 PAM50PT9 Metastasis Peritoneal Cavity Direct Seeding 0.28 3.10 TETRAPLOID IV monoclonal 
PAM51 PAM51N Normal Heart     IV  
PAM51 PAM51PT1 Metastasis Diaphragm Unknown 0.21 1.92 DIPLOID IV polyclonal 
PAM51 PAM51PT10 Primary Pancreas Primary  0.54 1.88 DIPLOID IV polyclonal 
PAM51 PAM51PT11 Primary Pancreas Primary  0.34 1.93 DIPLOID IV polyclonal 
PAM51 PAM51PT12 Primary Pancreas Primary     IV  
PAM51 PAM51PT13 Primary Pancreas Primary     IV  
PAM51 PAM51PT2 Metastasis Peritoneal Cavity Direct Seeding 0.34 1.86 DIPLOID IV polyclonal 
PAM51 PAM51PT3 Metastasis Lung Hematogenous    IV  
PAM51 PAM51PT4 Metastasis Pelvis Direct Seeding 0.37 1.88 DIPLOID IV polyclonal 
PAM51 PAM51PT5 Primary Pancreas Primary  0.49 1.86 DIPLOID IV polyclonal 
PAM51 PAM51PT6 Primary Pancreas Primary  0.27 1.88 DIPLOID IV polyclonal 
PAM51 PAM51PT7 Primary Pancreas Primary  0.51 1.89 DIPLOID IV polyclonal 
PAM51 PAM51PT8 Primary Pancreas Primary  0.57 1.87 DIPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM51 PAM51PT9 Primary Pancreas Primary  0.52 1.86 DIPLOID IV polyclonal 
PAM52 PAM52N Normal Kidney     IV  
PAM52 PAM52PT1 Metastasis Liver Hematogenous 0.40 3.05 TETRAPLOID IV polyclonal 
PAM52 PAM52PT10 Metastasis Liver Hematogenous 0.68 3.19 TETRAPLOID IV polyclonal 
PAM52 PAM52PT11 Metastasis Lung Hematogenous 0.16 3.01 TETRAPLOID IV polyclonal 
PAM52 PAM52PT12 Metastasis unknown Unknown 0.16 3.22 TETRAPLOID IV monoclonal 
PAM52 PAM52PT13 Primary Pancreas Primary  0.26 2.99 DIPLOID IV polyclonal 
PAM52 PAM52PT14 Primary Pancreas Primary  0.10 2.80 DIPLOID IV monoclonal 
PAM52 PAM52PT15 Primary Pancreas Primary  0.19 2.89 DIPLOID IV polyclonal 
PAM52 PAM52PT16 Primary Pancreas Primary  0.14 2.99 DIPLOID IV polyclonal 
PAM52 PAM52PT17 Primary Pancreas Primary  0.15 2.80 DIPLOID IV polyclonal 
PAM52 PAM52PT18 Primary Pancreas Primary  0.19 3.07 TETRAPLOID IV polyclonal 
PAM52 PAM52PT19 Primary Pancreas Primary  0.10 2.80 DIPLOID IV monoclonal 
PAM52 PAM52PT2 Metastasis Liver Hematogenous 0.47 2.99 DIPLOID IV polyclonal 
PAM52 PAM52PT20 Primary Pancreas Primary  0.12 3.00 TETRAPLOID IV polyclonal 
PAM52 PAM52PT21 Primary Pancreas Primary  0.28 3.01 TETRAPLOID IV polyclonal 
PAM52 PAM52PT3 Metastasis Liver Hematogenous 0.51 3.23 TETRAPLOID IV polyclonal 
PAM52 PAM52PT4 Metastasis Liver Hematogenous 0.68 3.10 TETRAPLOID IV polyclonal 
PAM52 PAM52PT5 Metastasis Liver Hematogenous 0.57 3.18 TETRAPLOID IV polyclonal 
PAM52 PAM52PT6 Metastasis Liver Hematogenous 0.57 3.23 TETRAPLOID IV polyclonal 
PAM52 PAM52PT7 Metastasis Adrenal Unknown 0.12 2.80 DIPLOID IV polyclonal 
PAM52 PAM52PT8 Metastasis Diaphragm Unknown 0.20 2.97 DIPLOID IV polyclonal 
PAM52 PAM52PT9 Metastasis Peritoneal Cavity Direct Seeding 0.13 3.20 TETRAPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM53 PAM53N Normal Heart     IV  
PAM53 PAM53PT1 Metastasis Liver Hematogenous 0.33 2.77 DIPLOID IV polyclonal 
PAM53 PAM53PT2 Metastasis Liver Hematogenous 0.73 2.77 DIPLOID IV polyclonal 
PAM53 PAM53PT3 Metastasis Peritoneal Cavity Direct Seeding 0.26 3.12 TETRAPLOID IV polyclonal 
PAM53 PAM53PT4 Primary Pancreas Primary  0.54 2.65 DIPLOID IV polyclonal 
PAM53 PAM53PT5 Primary Pancreas Primary  0.51 2.44 DIPLOID IV polyclonal 
PAM54 PAM54N Normal Heart     IV  
PAM54 PAM54PT1 Metastasis Lung Hematogenous 0.45 2.62 DIPLOID IV polyclonal 
PAM54 PAM54PT10 Primary Pancreas Primary  0.60 2.63 DIPLOID IV polyclonal 
PAM54 PAM54PT11 Primary Pancreas Primary  0.58 2.61 DIPLOID IV polyclonal 
PAM54 PAM54PT12 Primary Pancreas Primary  0.61 2.61 DIPLOID IV polyclonal 
PAM54 PAM54PT13 Primary Pancreas Primary  0.50 2.61 DIPLOID IV polyclonal 
PAM54 PAM54PT14 Primary Pancreas Primary     IV  
PAM54 PAM54PT15 Primary Pancreas Primary  0.24 2.57 DIPLOID IV polyclonal 
PAM54 PAM54PT2 Metastasis Liver Hematogenous 0.57 2.62 DIPLOID IV polyclonal 
PAM54 PAM54PT3 Metastasis Liver Hematogenous 0.35 2.58 DIPLOID IV polyclonal 
PAM54 PAM54PT4 Metastasis Liver Hematogenous 0.31 2.57 DIPLOID IV polyclonal 
PAM54 PAM54PT5 Metastasis Liver Hematogenous 0.72 2.57 DIPLOID IV monoclonal 
PAM54 PAM54PT6 Metastasis Peritoneal Cavity Direct Seeding 0.59 2.57 DIPLOID IV polyclonal 
PAM54 PAM54PT7 Primary Pancreas Primary  0.56 2.62 DIPLOID IV polyclonal 
PAM54 PAM54PT8 Primary Pancreas Primary  0.41 2.59 DIPLOID IV polyclonal 
PAM54 PAM54PT9 Primary Pancreas Primary  0.54 2.59 DIPLOID IV polyclonal 
PAM55 PAM55N Normal Heart     IV  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM55 PAM55PT1 Metastasis Liver Hematogenous 0.34 3.51 TETRAPLOID IV polyclonal 
PAM55 PAM55PT10 Primary Pancreas Primary  0.20 3.45 TETRAPLOID IV polyclonal 
PAM55 PAM55PT11 Primary Pancreas Primary  0.25 3.53 TETRAPLOID IV polyclonal 
PAM55 PAM55PT12 Primary Pancreas Primary     IV  
PAM55 PAM55PT2 Metastasis Retroperitoneum Direct Seeding 0.62 3.56 TETRAPLOID IV polyclonal 
PAM55 PAM55PT3 Metastasis Retroperitoneum Direct Seeding 0.52 3.55 TETRAPLOID IV polyclonal 
PAM55 PAM55PT4 Metastasis Retroperitoneum Direct Seeding 0.65 3.56 TETRAPLOID IV polyclonal 
PAM55 PAM55PT5 Primary Pancreas Primary  0.29 3.50 TETRAPLOID IV polyclonal 
PAM55 PAM55PT6 Primary Pancreas Primary  0.81 3.54 TETRAPLOID IV polyclonal 
PAM55 PAM55PT7 Primary Pancreas Primary  0.16 3.53 TETRAPLOID IV polyclonal 
PAM55 PAM55PT8 Primary Pancreas Primary  0.18 3.53 TETRAPLOID IV polyclonal 
PAM55 PAM55PT9 Primary Pancreas Primary  0.28 3.49 TETRAPLOID IV polyclonal 
PAM56 PAM56N Normal Skeletal Muscle     IV  
PAM56 PAM56PT1 Metastasis Lung Hematogenous    IV  
PAM56 PAM56PT2 Metastasis Liver Hematogenous 0.58 2.52 DIPLOID IV monoclonal 
PAM56 PAM56PT3 Metastasis Liver Hematogenous 0.51 2.73 DIPLOID IV polyclonal 
PAM56 PAM56PT4 Metastasis Liver Hematogenous 0.61 2.71 DIPLOID IV polyclonal 
PAM56 PAM56PT5 Primary Pancreas Primary  0.52 2.74 DIPLOID IV polyclonal 
PAM56 PAM56PT6 Primary Pancreas Primary  0.53 2.72 DIPLOID IV polyclonal 
PAM56 PAM56PT7 Primary Pancreas Primary  0.59 2.60 DIPLOID IV polyclonal 
PAM56 PAM56PT8 Primary Pancreas Primary  0.61 2.64 DIPLOID IV polyclonal 
PAM57 PAM57N Normal Skeletal Muscle     IV  
PAM57 PAM57PT1 Metastasis Lymph Node Lymphatic 0.44 1.78 DIPLOID IV polyclonal 
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM57 PAM57PT2 Metastasis Lung Hematogenous    IV  
PAM57 PAM57PT3 Metastasis Lung Hematogenous 0.17 1.81 DIPLOID IV monoclonal 
PAM57 PAM57PT4 Metastasis Liver Hematogenous 0.40 1.85 DIPLOID IV polyclonal 
PAM57 PAM57PT5 Metastasis Liver Hematogenous 0.31 1.80 DIPLOID IV polyclonal 
PAM57 PAM57PT6 Metastasis Liver Hematogenous 0.23 1.84 DIPLOID IV polyclonal 
PAM57 PAM57PT7 Primary Pancreas Primary  0.21 1.86 DIPLOID IV polyclonal 
PAM66 PAM66N Normal Liver     IV  
PAM66 PAM66PT1 Primary Pancreas Primary     IV  
PAM66 PAM66PT2 Primary Pancreas Primary  0.49 4.20 TETRAPLOID IV monoclonal 
PAM66 PAM66PT3 Metastasis Pelvis Direct Seeding    IV  
PAM66 PAM66PT4 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM66 PAM66PT5 Primary Pancreas Primary     IV  
PAM66 PAM66PT6 Primary Pancreas Primary     IV  
PAM66 PAM66PT7 Primary Pancreas Primary     IV  
PAM66 PAM66PT8 Primary Pancreas Primary     IV  
PAM67 PAM67N Normal Kidney     IV  
PAM67 PAM67PT1 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM67 PAM67PT2 Primary Pancreas Primary  0.26 2.91 DIPLOID IV polyclonal 
PAM67 PAM67PT3 Metastasis Diaphragm Unknown    IV  
PAM67 PAM67PT4 Metastasis Lung Hematogenous 0.15 2.88 DIPLOID IV polyclonal 
PAM67 PAM67PT5 Metastasis Liver Hematogenous    IV  
PAM67 PAM67PT6 Metastasis Peritoneal Cavity Direct Seeding 0.23 2.71 DIPLOID IV polyclonal 
PAM88 PAM88N Normal Skeletal Muscle     IV  
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Supplemental Table 2 (continued) 

PAM ID PAM Sample ID Sample 
Class Tissue Site Metastatic 

Route Purity Ploidy WGD status Stage Sample 
Collected 

Clonal 
Composition 

PAM88 PAM88PT1 Primary Pancreas Primary     IV  
PAM88 PAM88PT2 Primary Pancreas Primary  0.27 3.35 TETRAPLOID IV polyclonal 
PAM88 PAM88PT3 Primary Pancreas Primary  0.29 3.33 TETRAPLOID IV polyclonal 
PAM88 PAM88PT4 Metastasis Liver Hematogenous 0.82 3.43 TETRAPLOID IV polyclonal 
PAM88 PAM88PT5 Metastasis Liver Hematogenous 0.69 3.29 TETRAPLOID IV polyclonal 
PAM88 PAM88PT6 Metastasis Liver Hematogenous 0.53 3.32 TETRAPLOID IV polyclonal 
PAM97 PAM97N Normal Liver     IV  
PAM97 PAM97PT1 Metastasis Peritoneal Cavity Direct Seeding 0.25 1.85 DIPLOID IV monoclonal 
PAM97 PAM97PT2 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM97 PAM97PT3 Primary Pancreas Primary     IV  
PAM97 PAM97PT4 Metastasis Peritoneal Cavity Direct Seeding 0.23 1.85 DIPLOID IV monoclonal 
PAM97 PAM97PT5 Metastasis Peritoneal Cavity Direct Seeding 0.22 1.85 DIPLOID IV monoclonal 
PAM97 PAM97PT6 Metastasis Peritoneal Cavity Direct Seeding    IV  
PAM98 PAM98N Normal Heart     IV  
PAM98 PAM98PT1 Metastasis Lymph Node Lymphatic 0.44 3.65 TETRAPLOID IV monoclonal 
PAM98 PAM98PT2 Metastasis Lymph Node Lymphatic 0.38 3.63 TETRAPLOID IV polyclonal 
PAM98 PAM98PT3 Metastasis Diaphragm Unknown 0.52 3.66 TETRAPLOID IV polyclonal 
PAM98 PAM98PT4 Metastasis Peritoneal Cavity Direct Seeding 0.59 3.67 TETRAPLOID IV polyclonal 
PAM98 PAM98PT5 Metastasis Peritoneal Cavity Direct Seeding 0.47 3.69 TETRAPLOID IV polyclonal 
PAM98 PAM98PT6 Metastasis Peritoneal Cavity Direct Seeding 0.61 3.63 TETRAPLOID IV polyclonal 
PAM98 PAM98PT7 Metastasis Liver Hematogenous 0.72 3.63 TETRAPLOID IV polyclonal 
PAM98 PAM98PT8 Metastasis Peritoneal Cavity Direct Seeding 0.48 3.62 TETRAPLOID IV polyclonal 

 
Patients with a ploidy value > 3 were considered tetraploid. Cells without purity, ploidy, or a WGD status indicate samples that could not be analyzed by 
HATCHet. 
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