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ABSTRACT

The evolutionary features of pancreatic ductal adenocarcinoma (PDAC) have not been
systematically studied to date. Here, we assembled a cohort of 90 PDAC patients to
investigate the genomic landscape and clonal composition across the full spectrum of
clinical disease contexts. The timing of driver mutations, including truncal and subtruncal
events, did not differ significantly across clinical contexts. However, higher truncal
densities were significantly associated with worse overall survival after adjusting for stage
at diagnosis, age and smoking history, representing a potential prognostic biomarker.
While we observed clonal mixing in most patients, distinct clones were also identified in
different samples from the same patient, highlighting intratumoral heterogeneity.
Treatment status and disease stage were associated with the clonal composition of PDAC
with treated and late-stage patients having increased odds of being polyclonal.
Oligometastatic patients had fewer drivers and loss of heterozygosity (LOH) events
compared to those with widespread metastatic disease, suggesting more genomically stable
tumors that may impact management. In sum, our findings reveal novel insights into

subclonal evolution in PDAC beyond established genetic paradigms.
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CHAPTER ONE: INTRODUCTION

Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplasm of the pancreas,
accounting for >90% of all pancreatic malignancies'. This tumor type poses a significant
health problem globally, with 495,773 (262,865 male and 232,908 female) new cases
diagnosed in 2020 and an associated 466,003 (246,840 male and 219,163 female) deaths
in the same year?. While the incidence rate for pancreatic cancer has increased by about
1% per year since 2000, the death rate has increased only slightly by 0.2% per year’.
Furthermore, the incidence rate increases with age, with the average age at diagnosis being
70 years®. According to GLOBOCAN 2020 estimates, pancreatic cancer ranks as the
twelfth most common malignancy (2.6% of all cancers) and the seventh leading cause of
cancer mortality (4.7% of all cancers)*. If outcomes do not improve, the disease is projected
to surpass breast cancer as the third leading cause of cancer death by 2025 in the European
Union and become the second leading cause of cancer-related death in the United States
by 20306, Despite significant advances in understanding the biology of PDAC and
numerous clinical trials, the prognosis for patients with pancreatic cancer remains poor

with a 5-year relative survival of 11% for all stages and only 3% for metastatic disease’.

Treatment

Therapeutic options in PDAC are lacking. Surgical resection in early stage (Stage I/II)
patients offers the only opportunity for cure. However, only 10-20% of patients with PDAC
have resectable disease!. The primary surgical treatment for PDAC is a
pancreaticoduodenectomy (Whipple procedure), which involves the removal of the head

of the pancreas, most of the duodenum, the gallbladder and a portion of the bile duct’. For
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tumors of the pancreatic tail, a distal pancreatectomy with splenectomy is performed®. A
total pancreatectomy is rarely required except for tumors that are either centrally located
or expand the entire length of the organ®. Overall, pancreatic cancer surgery has acceptably

low mortality rates of <5% thanks to centralization of patient care to high-volume

10,11 tlZ

centers and improved perioperative management'“. However, of those who undergo
resection followed by adjuvant therapy, ~80% will relapse and ultimately die of their
disease®.

For Stage III/IV patients with good performance status, chemotherapy is the first-
line treatment option. Gemcitabine has been the standard chemotherapy drug for many
years, but combination therapies with nab-paclitaxel and FOLFIRINOX have recently
shown better survival outcomes in patients with advanced PDAC!3. Conversely, patients
with a poor performance status generally receive either gemcitabine alone or in
combination with erlotinib or capecitabine integrated with palliative care!®. For select
patients with locally advanced disease, radiation-based therapy is either administered as a
single modality or in combination with chemotherapy!'4. Approximately 10% of PDACs
contain mutations in DNA damage repair genes such as BRCA2 and PALB2Y,
Consequently, these tumors exhibit large numbers of structural variants (SVs), exceeding
200 per genome!'®. For patients with this scale of genomic instability, platinum salts (e.g.
cisplatin and oxaliplatin) and PARP inhibitors are becoming important therapeutic
strategies!’. Although mismatch repair deficiency only occurs in <1% of PDACs!®, it
confers favorable responses to immune checkpoint inhibitors, likely owing to a higher

neoantigen burden. Overall, improvements in patient outcomes have been modest and

incremental compared to the prior treatment standard, single agent gemcitabine.
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Novel and innovative treatment approaches are urgently needed to improve clinical
outcomes in patients with PDAC. One promising area of research is the development of
mRNA vaccines against pancreatic cancer. These vaccines work by delivering mRNA
molecules that encode tumor-associated antigens, which stimulate an immune response
against the cancer'”. In a recent Phase 1 trial, Balachandran et al. tested an mRNA vaccine
encoding neoantigens in PDAC patients. They found the vaccine was safe and generated
functional T cell responses against multiple neoantigens in patients?’. In a follow-up study,
they analyzed neoantigen quality in long-term survivors versus short-term survivors?!.
Survivors had T cells targeting neoantigens with higher MHC binding affinity. However,
over time, clones targeting these high-quality neoantigens were selectively lost. This
reveals a process of immunoediting, where cancer cells expressing high affinity
neoantigens are eliminated, leading to outgrowth of cells with lower quality neoantigens
no longer targeted by T cells. These findings provide insights into PDAC immune escape
and have implications for mRNA vaccine design and T cell monitoring approaches.
Optimizing neoantigen selection and combatting T cell exhaustion may be key to

improving mRNA vaccine efficacy in PDAC.

PDAC genetics

PDAC is characterized by a high prevalence of mutations in KRAS, TP53, CDKN2A, and
SMADA4. Oncogenic KRAS mutations occur in over 90% of PDACs and are considered a
key early event in pancreatic tumorigenesis'>!%22, Multiple oncogenic KRAS alleles have
been identified, including G12D, G12V, and G12R, as well as numerous other hotspot
codon 12 and 61 mutant alleles at a lower prevalence!>!622-24 Somatic TP53 mutations are

also detected in up to 85% of PDACs? with as many as 66% of TP53 mutations being
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missense mutations that affect the DNA binding domain??.Inactivation of the CDKN2A
tumor suppressor, which regulates pl 6INK4A and p19AREF, is found in >90% of PDACs
through mutation, deletion, or promoter methylation?¢. Finally, inactivation of SMAD4
occurs in approximately 55% of PDACs either by homozygous deletion (30%) or by an
intragenic mutation coupled with loss of the second copy (25%)*".

Furthermore, PDAC also harbors extensive copy number alterations (CNAs). In a
TCGA study of 150 pancreatic cancers, arm-level CNAs were identified in over a third of
PDAC tumors using both SNP microarrays and whole-exome sequencing (WES)',
Amplifications of 1q (33%) and deletions of several chromosomal regions such as 6p
(41%), 6q (51%), 8p (28%), 9p (48%), 17p (64%), 17q (31%), 18p (32%), and 18q (71%)
were consistent with previous studies!'62%2, GISTIC analysis of focal amplifications and
deletions in the high-purity group of tumors revealed recurrent events containing known
oncogenic drivers including amplifications of GATA6, ERBB2, KRAS, AKT2, and MYC,
as well as deletions of CDKN2A, SMAD4, ARID1A, and PTEN.

In addition to these common single nucleotide variants (SNVs) and CNAs, PDAC
genomes exhibit complex structural variations such as deletions, inversions,
interchromosomal translocations and tandem duplications '°. Analysis of whole-genome
sequencing data from 100 PDACs by Waddell et al. revealed that pancreatic cancers
contained an average of 119 SVs per tumor (range 15-558) and the majority of structural
variants were intra-chromosomal. The authors defined four subgroups of PDAC based on
the frequency and distribution of structural rearrangements found within a sample,
including stable, locally rearranged, scattered and unstable. The stable subtype (20% of all

samples) contained < 50 structural variation events and often exhibited widespread
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aneuploidy, which suggested defects in cell cycle/mitosis. In the locally rearranged subtype
(30% of all samples), the genome exhibited a significant focal event on either one or two
chromosomes. Roughly one third of locally rearranged genomes contained regions of copy
number gain that harbor known oncogenes, KRAS, SOX9, and GATA6, as well as in
therapeutic targets such as ERBB2, MET, CDK6, PIK3CA, and PIK3R3 at low prevalence.
These data suggest that there is a significant diversity of mechanisms involved in PDAC
progression. The remaining local rearrangements involved complex genomic events such
as breakage—fusion-bridge or chromothripsis®*3!. In the scattered subtype (36% of all
samples), tumors exhibited a moderate range of non-random chromosomal damage and
<200 structural variation events. Lastly, the unstable subtype (14% of all samples)
exhibited a large number of structural variation events (>200; maximum of 558), indicative
of defects in DNA maintenance. Upon further analysis, the authors found that unstable
tumors were associated with a high BRCA mutation signature and deleterious mutations in
BRCA pathway genes. While mutations in other genes involved in DNA maintenance such
as ATM, FANCM, XRCC4, and XRCC6 were also detected in tumors with an unstable
genome, these events had not been causally linked to these genomic events at the time of

the authors’ analysis.

Genetic intratumoral heterogeneity

PDAC exhibits multiple types of genetic Intratumoral Heterogeneity (gITH). In solid
tumors, gITH can be categorized into three types®?; Type 1 gITH refers to genomic
differences between any two cells within the primary tumor; Type 2 gITH refers to
genomic differences between any two cells within a metastasis; and Type 3 gITH refers to

genomic differences between two different metastasis-initiating cells within the primary
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tumor. An additional distinction to be made is whether gITH corresponds to any mutation
(silent and non-silent) or to deleterious driver gene alterations specifically. From a clinical
perspective, gITH is associated with cancer progression and contributes to therapeutic
resistance®’.

In a multiregion study of treatment-naive Stage IV PDAC, identical driver
mutations were identified in every metastatic lesion for each patient studied with respect
to pathogenic SNVs, focal CNAs, and SVs**. The only Type 3 gITH identified
corresponded to passenger (silent and non-deleterious) mutations, which when quantified
yielded higher (i.e., more related) Jaccard relatedness indices compared to those of normal
tissue. These findings suggest that at least one clonal sweep occurred in all the PDACs
examined, resulting in a genetically homogeneous tumor prior to metastatic dissemination.
Furthermore, these results have encouraging clinical implications for the success of future
potential targeted therapies against clonal drivers in advanced-stage PDAC, suggesting that
they could provide an initial clinical benefit. This rationale is believed to underlie
exceptional responses to cisplatin or PARP inhibitors in patients with germline or somatic
BRCA2 mutations'’.

By contrast, in a separate study of patients that were originally diagnosed with
Stage I/II resectable PDAC who recurred after adjuvant therapy, all primary tumors
exhibited evidence of Type 1 gITH with respect to driver genes®>. These primary tumors
were further categorized according to their phylogenetic relationship to the recurrent
disease. “Outgroup” primaries were distantly related to the recurrent disease, suggesting
that recurrence was the product of the expansion of a single residual clone (monophyletic).

Conversely, “ingroup” primaries were as related to the recurrent disease as any other
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sample in the patient, suggesting that recurrence arose from clonally diverse (polyphyletic)
residual disease. Irrespective of phylogenetic category, recurrent disease was enriched for
functionally deleterious SNVs and CNAs that activate MAPK/ERK and PI3K/AKT
signaling. Notably, droplet digital PCR confirmed the presence of these SNVs in the
primary tumor. Cumulatively, these findings demonstrate that gITH for deleterious driver
gene alterations exists in Stage I/l PDAC upon which treatment imposes a genetic
bottleneck. Not only are these results significant because they support investigation into
the role for MAPK and PI3K inhibitors in the adjuvant setting, but when considered in
tandem with other multiregion studies**, they demonstrate that clinically relevant gITH is

stage and context dependent.

PDAC from an evolutionary perspective
Stages of PDAC evolution

PDAC is a highly aggressive cancer that arises from the exocrine cells of the pancreas and
its evolution can be characterized into three general stages. These stages are tumor
initiation via the acquisition of a driver gene mutation, clonal expansion of the cell carrying
the initiating mutation, and dissemination of the neoplastic population into foreign
microenvironments*2. While the occurrence of the initiating driver gene mutation is
necessary for PDAC progression, this event alone is insufficient; it is not until the initiating
mutation becomes fixed in the epithelial cell population that PDAC can develop. The
subsequent clonal expansion stage corresponds to the development of PDAC precursor
lesions called pancreatic intraepithelial neoplasia (PanINs)*¢, during which high frequency
(KRAS, CDKN2A4, TP53, SMAD4) and low frequency (KMT2C, ARIDIA and SF3BI)

somatic mutations'® accumulate. These mutations commonly accumulate in a stepwise
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manner®’, but in rare cases multiple alterations can be acquired simultaneously in the
aftermath of a catastrophic genome-wide event such as chromothripsis*®. Once cells break
through the basement membrane into the surrounding stroma, various selective pressures

shape them into subclonal populations with varying degrees of fitness.

Timeline of PDAC evolution

The timeline of PDAC evolution spans multiple decades. Quantitative analyses of the
timing of the genetic evolution of PDAC suggest that at least a decade passes between the
occurrence of the initiating mutation and the birth of the non-metastatic founder cell*®. The
same model also predicts that at least five more years are required for the acquisition of
metastatic ability, after which most patients die a few years later. Therefore, the time from
tumor initiation to death of the patient has been estimated to take >20 years, providing a
large window of opportunity for early detection of PDAC while it is still in its early, curable

stage.

Evolutionary trajectories in PDAC

There is a range of evolutionary trajectories in cancer, both within and across tumor types.
At one end of the spectrum, tumors follow a classical Darwinian growth pattern, displaying
extensive gITH that is characterized by heterogeneous subclonal driver mutations and
CNAs*. Clear cell renal cell carcinoma (ccRCC) typifies this end of the spectrum and
clinically is characterized by having a more indolent growth pattern, oligometastatic
disease and relatively long-term survival*!. At the other end of the spectrum, PDAC
patients typically have multiple clonal (truncal) driver gene alterations consisting of both
somatic coding mutations and CNAs, and their subsequent evolutionary trajectories are
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relatively monoclonal®®. From a clinical perspective, these patients usually suffer from

22



rapid progression and dissemination across multiple metastatic sites, succumbing to their
disease early. However, a minority of advanced stage PDAC patients exhibit an indolent

142, similar to patients with ccRCC*. Deep

disease course and relatively long-term surviva
genomic profiling of one such unusual patient revealed a truncal CTNNA2 deletion as the
sole genetic event.

How and why these different evolutionary growth patterns emerge remains unclear.
Moreover, it is unknown if the clinical timepoint at which samples are collected represents
the full scope of evolutionary trajectories that can occur within a particular disease. For
patients with ccRCC, surgery plays a major role in disease management*!. This clinical
paradigm has supported evolutionary studies in this tumor type because both the primary
tumor and matched synchronous metastases can be sampled as a byproduct of delivering
routine care. Conversely, surgical management plays a more limited role in patients
diagnosed with PDAC. Not only is surgical resection difficult because the pancreas lies
deep within the abdomen adjacent to vital veins and arteries, but PDAC is commonly
asymptomatic until it progresses to more advanced stages. Consequently, most patients
present with unresectable disease that is either locally advanced at diagnosis or has
metastasized to distant organs®. As a result, multiregion studies of PDAC have been
performed on samples that have been obtained primarily through post-mortem

collection3#33:43

. It is unknown whether there are underappreciated biases from these tissue
sampling practices related to the extent and prevalence of gITH both between and within
tumor types. Furthermore, multiple factors including the pathogenicity of driver event(s),

disease latency, cell of origin and tumor microenvironment, as well as exogenous and

endogenous mutational processes, may also contribute*.
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Evolutionarily informed therapies

From a therapeutic perspective, targeting the evolutionary mechanisms of PDAC
has emerged as a promising strategy to improve patient outcomes. One example of an
evolutionary-based therapy is inhibition of the KRAS pathway, which has been a
longstanding challenge due to the lack of druggable targets*’. However, recent advances
have led to the development of novel KRAS inhibitors, such as AMG510 (sotorasib) and
MRTX849 (adagrasib), which have shown promising results in preclinical and early-phase
clinical trials***7. AMG510 and MRTX849 are covalent inhibitors that lock KRAS G12C
in an inactivated GDP-bound state, thus decreasing functional KRAS and ultimately
leading to cell cycle arrest and apoptosis in KRAS-mutant tumors. Unlike other tumor
types including non-small-cell lung cancer and colorectal cancer, KRAS G12C is a rare
mutation that only occurs in 1-2% of pancreatic cancers patients, thus limiting its utility in
this clinical context. Excitingly, a non-covalent inhibitor of KRAS G12D, MRTX1133, has
recently demonstrated potent inhibition of KRAS G12D-dependent signaling and tumor
regression in xenograft models*®. While phase I/II clinical trials have only recently
launched in early 2023, MRTX1133 could have a far greater impact on PDAC patients as
KRAS G12D is present in approximately 34% of cases®. Targeting early events like KRAS
that drive tumorigenesis is widely considered to be an optimal therapeutic strategy because
most if not all the tumor cells will harbor the alteration of interest. However, subclonal
mutations may also be useful targets in combination therapies if they play a functional role

in subclones influencing tumor progression.

24



Scope of thesis

gITH has been associated with cancer progression and is thought to be a major contributor
to treatment resistance. However, the extent to which different genetic drivers that arise
during carcinogenesis specifically influence subsequent evolutionary trajectories and
clinical course remains unknown. Ultimately, a deeper understanding of evolutionary
trajectories within and across multiple tumor types, as well as before and after treatment
may distinguish patients with more indolent disease biology or oligometastatic progression
from those with more rapid dissemination and clinical courses. Such insights have the
potential to facilitate clinical trial stratification and disease management. The aim of this
project is to determine the extent to which diversity and evolutionary timing of driver gene
mutations impacts clinical disease course in a single cancer type, PDAC. While there are
known driver genes in PDAC, the extent to which the quantity, quality, or chronology of

these drivers impacts tumor evolution remains unclear.
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CHAPTER TWO: MATERIALS AND METHODS

Tissue sample collection and processing

Tumor and matched normal tissues were collected through the Gastrointestinal Cancer
Rapid Medical Donation Program at the Johns Hopkins Hospital and the Medical Donation
Program at Memorial Sloan Kettering Cancer Center. Pre-mortem informed consent was
obtained from all subjects. Following their demise, a research autopsy was conducted and
samples from any primary tumor (if not already resected), local recurrence, or metastasis
were harvested. All samples were split into two equal halves for snap freezing in liquid
nitrogen and formalin fixing respectively, such that the fresh frozen sample is a mirror
image of the formalin-fixed, paraffin embedded (FFPE) sample. H&E sections were
prepared from either frozen or FFPE tissues and reviewed by a gastrointestinal pathologist
(A.H. and C.A.L.-D.) and tumor rich regions were identified for DNA purification. Either
serial 20 pm sections were cut and the area of interest scraped from the slide using a blade

or alternatively a core was directly punched from the tissue block.

DNA sequencing

Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) following
the manufacturer’s protocol. DNA quantification, library preparation, and sequencing were
performed in the Integrated Genomics Operation and preliminary bioinformatics analysis
was performed by the Bioinformatics Core at Memorial Sloan Kettering Cancer Center
(New York, NY). Briefly, an [llumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq
6000 platform was used. The majority of samples (n=545) underwent whole exome

sequencing (WES) at 250X coverage, 34 samples underwent WES at 150X coverage, and
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77 samples underwent whole genome sequencing (WGS) at 60X coverage. The resulting
sequencing reads were analyzed in silico to assess quality and overall coverage, and
alignment to the human reference genome hg19 was performed with BWA v0.7.17°°. Read
deduplication, base quality recalibration, and multiple sequence realignment were
performed using the Picard Suite and GATK v.3.1°!. Somatic single-nucleotide variants
and insertion—deletion mutations were detected using Mutect2 (v4.1.2.0) and
HaplotypeCaller v.2.4°2, To validate the mutations found from WES and WGS datasets,
one of two different targeted sequencing approaches were used. The majority of samples
(n = 347) were sequenced with one of multiple versions of the MSK IMPACT panel
(IMPACT 410, n = 68; IMPACT 468, n = 105; IMPACT 505, n = 174), with a mean
coverage of 500-1000x. Another 285 samples were sequenced using a custom targeted
panel described elsewhere [Hong et al. in preparation]. BAM files and associated metadata
have been uploaded to the FEuropean Genome-phenome Archive (EGA;

http://www.ebi.acu.uk/ega) under the accession number EGAS0000100737933,

Filtering and annotation of variants

For each patient, somatic variants were filtered using the following criteria: patient-
matched normal coverage > 10 reads, variant count in patient-matched normal < 2 reads,
patient-matched normal variant frequency < 0.02, tumor coverage > 20 reads, and tumor
variant allele frequency (VAF) > 0.05 in at least one tumor sample. Variants were further
filtered to include those present in coding regions only. Mutations located in blacklisted
regions defined by ENCODE and RepeatMasker (https://github.com/mskcc/ngs-

filters/blob/master/data/source.txt) were ignored. In FFPE samples, if a mutation exhibited
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VAF < 0.1 and was identified as a C>T substitution, it was considered an FFPE artifact

and thus, excluded from subsequent analyses.

Table 1. OpenCRAVAT module versions.

Annotator Local version Local data version
CHASMplus 1.3.0 v1.0.0

ClinVar 2023.02.01 2023.02.01
COSMIC 94.0.0 vo4

OncoKB 1.1.3 09.06.22

REVEL 2022.11.29 v4.3a

Filtered variants were then annotated by OpenCRAVAT v2.2.7°* to identify likely
functional driver mutations. When available, criteria for determining whether a mutation
should be considered a driver by a given module were informed by recommendations made
for interpreting results from the module in the OpenCRAVAT store. For CHASMplus™,
the adjusted p-value needed to be < 0.05. For COSMIC?S, variants needed to be present at
least four times in the database to be considered a driver. For ClinVar®’, the Clinical Sig-
nificance value needed to be “Pathogenic”, Pathogenic/Likely pathogenic”, “Likely
pathogenic”, ”Pathogenic, drug response, other”, or ”drug response” and the Review Status
needed to be “criteria provided, multiple submitters, no conflicts” or ’reviewed by expert
panel”. For OncoKB>8, a mutation needed to be labeled as either "Oncogenic” or “Likely
Oncogenic”. For REVEL, the Score needed to be > 0.7°%°, These modules were selected
based on a survey of commonly used variant annotators in the scientific literature. Module
versions are detailed in Table 1. A final driver score for each mutation was calculated by

tallying how many annotators classified the mutation as a driver event (max score = 5).
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Mutations with a score of 2 or higher were considered driver mutations and those with a

score of 1 or lower were not.

Copy number analysis and WGD prediction

Whole genome duplication (WGD) and allele-specific copy number alterations were
inferred for WES and WGS datasets using HATCHet v1.2.0%12, Only autosomes were
used for copy number analysis and phasing was performed with SHAPEIT v2.r90%. Upon
manual review of computed read-depth ratios, B-allele frequencies, and -clusters,
parameters for clustering refinement were reviewed for consensus by four of the authors
(K.M.M,, B.J.A., M. AM., B.J.R). Copy number calls of sufficient quality could not be

obtained for 20 patients, as indicated in Supplemental Table 2.

Evolutionary analysis of driver mutations

To identify clusters of SNVs which occur in the same phylogenetic branch of tumor
evolution, we used DeCiFer v2.1.3%. HATCHet output was used as the copy number input
for this analysis. Therefore, only the subset of 70 patients with HATCHet results underwent
analysis with DeCiFer. To ensure timely run completion, we required a minimum VAF of
0.05 for WES datasets and 0.1 for WGS datasets. To generate custom state trees, a
maximum copy number of 6 was used for each patient. When the total copy number profile
of a given mutation was > 6 or read depths were not > 1 across all samples, mutations could
not be analyzed by DeCiFer. Furthermore, the timing of driver mutations identified
exclusively in targeted sequencing datasets could not be analyzed with DeCiFer because

HATCHet could not be performed on these datasets. Truncal and subtruncal densities were
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calculated by dividing the number of truncal or subtruncal SNVs at sites with > 10X depth

by the number of genomic positions using the same depth threshold.

De novo mutational signature analysis

De novo mutational signatures including Single Base Substitution (SBS), Double Base
Substitution (DBS) and Insertion and Deletion (ID) were evaluated in comparison with
COSMIC Mutational signatures version 3 (https://cancer.sanger.ac.uk/signatures/) using
the R package Palimpsest®®. Only somatic variants that met the filtering criteria outlined in
the Filtering and annotation of variants section above, as well as those located within 5’ or
3’ UTR regions, were included in this analysis. Additionally, FFPE tumor samples were
excluded as they induce massively unique signatures that are not relevant with cancer
progression. Significant de novo mutational signatures were extracted using the Non-
negative Matrix Factorization (NMF) algorithm®. The maximum number of NMF runs
and de novo signatures were set to 30 and 20, respectively. Finally, we assigned the most
representative de novo signature of the SBS, DBS and ID types among all those extracted

to each variant based on probability scores generated by Palimpsest.

Data Visualizations

The oncoprint was created with CoMut®’. Anatomic and other cartoons were created using

BioRender (https://biorender.com/)
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CHAPTER THREE: THE EVOLUTIONARY FOREST OF PDAC

Introduction

The genetic basis of pancreatic ductal adenocarcinoma has been well documented
throughout the era of next-generation sequencing. Through the International Cancer
Genome Consortium'®?4?°, The Cancer Genome Atlas'>, PCAWG®®%° and others?>?3,
whole-genome (WGS) and whole-exome sequencing (WES) has been performed on
hundreds of samples to reveal the complex mutational landscape of primary tumors. These
studies have revealed both common and infrequent drivers associated with PDAC and
clarified the genetic basis of responsiveness to different standard-of-care therapies!>:!®,
Notably, most samples used in these studies were obtained from surgical resections. This
is rational given the amount of material needed for sequencing and that surgical resection
is the most common mode of obtaining PDAC tissue for research purposes. However,
patients with resectable disease comprise only 12% of newly diagnosed PDAC cases
(seer.cancer.gov). Furthermore, of those who undergo resection followed by adjuvant
therapy, more than 80% relapse and ultimately die of their disease’®72. These statistics
highlight the need to better understand the more common clinical contexts of PDAC,
including patients with locally advanced or metastatic disease.

Nonetheless, collecting tumor tissue from patients with stage III or IV disease has
proven to be challenging. Unlike early-stage patients, late-stage patients do not undergo
surgical resection as part of their disease management; therefore, samples are typically
collected using either a small tumor core biopsy or fine-needle aspiration. Frequently, these
specimens are mixed with a high proportion of stromal tissue, yielding low-purity tumors

that make comprehensive genomic assessment difficult, if not impossible’. Owing to these
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technical challenges, PDAC has been underrepresented in recent studies of metastatic
cancer genomes across tumor types’*”°. Conversely, the MSK-MET pan-cancer cohort
contains nearly 1800 PDAC samples, the largest study of metastatic PDAC to date’®. While
this cohort is sizable, genomic characterization is limited due to the use of a targeted
sequencing approach. Furthermore, only a single metastatic sample was studied for most
patients. Single-sample analyses can underestimate intratumoral heterogeneity because
variants identified as clonal in one sample may be subclonal or even absent in another,
giving rise to the “illusion of clonality””’.

To circumvent some of these obstacles, sampling can be conducted postmortem via
research autopsies to enable more extensive sampling than otherwise possible in a living
patient’®. Although it remains unclear how many samples are required to conclusively
determine the composition and clonality of drivers present in a patient’s tumor, a
multiregion study of clear cell renal cell carcinoma suggests that for larger tumors, 4-8
samples are sufficient to capture the majority of events*!. Thus far, a handful of multiregion
studies have been published addressing specific clinical contexts of PDAC, including
treatment-naive stage IV patients*, patients with recurrent disease after resection and
adjuvant therapy’®, and treated late-stage patients [Hong et al. in preparation]. Additionally,
the genetic correlates of transcriptional phenotypes in metastatic patients have been
explored®-*°, Cumulatively, these cohorts contained relatively few patients** and focused
on transcriptional and genomic features during metastatic progression®’, thus limiting the
statistical power for a broader investigation of the evolutionary histories of PDAC.
Consequently, we believe that a comprehensive analysis of PDAC, including all stages of

diagnosis and major treatment paradigms, is lacking. To this end, we clarify the extent to
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which genetic features of PDAC are stage-and/or context-dependent using a multiregion
sampling approach, permitting us to define the genetics and evolutionary histories of

PDAC on a scale that has not yet been attempted.

Results
Overview of cohort

We screened 364 research autopsies to identify PDAC patients for inclusion in this study.
Inclusion and exclusion criteria for patients and samples are detailed in Figure 2. WES or
WGS sequencing data from 53 patients have been previously reported in multiple
studies***>7°, Thirty-seven patients were newly sequenced for the purposes of this study,
including 14 research autopsies and 23 multiregion sampled surgical resections.
Collectively, our cohort included 270 primary tumor samples, 295 metastatic samples, and
one normal tissue sample from each of the 90 patients. The median number of tumor
samples per patient was five, three of which were derived from spatially distinct regions
within the primary tumor, and the other two from distinct metastatic sites (Figure 1A). All
samples derived from surgically resected patients were treatment-naive and came from
distinct regions of the primary tumor at least 0.5 cm apart. The cohort contained a broad
spatial representation of metastases encompassing 12 distinct metastatic sites (Figure 1B).
Fourteen patients were oligometastatic, which we defined as having no more than five
metastatic lesions cumulatively from diagnosis to death, as detected by the latest scan
results and comprehensive sampling at autopsy®'#2. All stages of diagnosis were
represented with 36 (40%), 24 (27%), and 30 (33%) patients initially presenting with stage
I/IT, 111, and IV disease, respectively. The overall survival of the patients was consistent

with the expected outcomes based on the clinical stage at diagnosis®} (Figure 1C). Male
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Figure 1. Overview of cohort.

(A) Overview of somatic alterations detected in tumor samples of 90 PDAC cases. Mutations were annotated by
OpenCRAVAT (Methods). A complete list of genes harboring likely functional drivers is in Supplemental Table 3.
Multiple indicates three or more mutations, treatment modalities, or sequencing methods. Split mutation patches
containing Multiple indicate that a patient contained multiple mutations in a gene, one of which had a Support Level of
3 or higher. (B) Overview of different tumor sites sampled. (C) Survival statistics of cohort with respect to stage at
diagnosis. (D) Frequency of CNAs in the multiregion PDAC cohort. Copy number gains and losses are indicated in red
and blue respectively. Clonal CNAs are shown in darker and subclonal CNAs in lighter shades of their respective

colors. Genomic regions containing known driver mutations are annotated.
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Figure 2. Cohort inclusion and exclusion criteria.
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and female patients were nearly equally represented, with the average age at diagnosis for
females being 66+13 years and 63+12 years for males, respectively. Forty-one patients
(46% of cohort) reported a former or current history of smoking, and 24 patients (27% of
cohort) had a history of Type 2 Diabetes Mellitus, both of which are common risk factors
for PDAC3*%, Additional detailed clinical annotations for each patient are provided in

Supplemental Table 1.

Annotation of driver events in PDAC

When selecting a sequencing assay, there is a trade-off between depth and breadth; a high
depth is required to accurately recover clone frequency, whereas genome-wide detection
of passenger mutations helps identify distinct clones®®. To maximize our ability to both
assess the clonal architecture of patients’ tumors and identify likely functional driver
mutations with high fidelity, we sequenced samples using at least two different methods
(Figure 1A, Supplemental Table 2, Methods) when sufficient tissue was available. To build
upon previous PDAC studies that highlighted all non-silent variants for a subset of genes,
here, we report which SNVs and INDELs are predicted to be likely functional drivers.
Using a multi-tool annotation approach (Methods), we identified 231 unique driver
mutations across 121 genes (Supplemental Table 3), where the most frequently observed
PDAC drivers (i.e., KRAS, TP53) generally yielded the highest support values (Figure
1A). Fourteen percent of drivers were identified exclusively in the targeted sequencing
dataset, including major drivers such as KRAS, TP53, CDKN2A, and SMADA4,
highlighting the importance of using orthogonal methods to detect driver mutations,
especially in lower-purity samples. The median number of driver mutations identified per

patient was three (range 1-15), in line with other recent reports®’. Of the five patients with
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eight or more driver mutations, four harbored somatic mutations in mismatch repair genes,
including MSH6 and MSH2, of which 50% concurrently demonstrated loss of
heterozygosity (LOH). An additional patient harbored a somatic mutation in ATM,
indicating a defect in homologous recombination. The median number of driver mutations
identified per sample was three (range 1-7), indicating a degree of driver gene
heterogeneity within the cohort.

To address whether the genomic landscape of end-stage PDAC differs from that of
early stage PDAC, we compared our findings to other published datasets that contain a
predominance of resectable PDAC!%#, Common driver genes, including KRAS, TP53, and
SMADA4, among others, were mutated at similar frequencies across TCGA, ICGC, and our
multiregion cohort (Figure 3A). KRAS mutations were identified in 84/90 (93%) patients,

in line with previous reports!>2°

, although we identified a broader spectrum of mutant
alleles, including E31K, G13P, and G12L (Figure 3C). We did not observe meaningful
differences in survival with respect to different KRAS alleles (Figure 3D). KRAS WT
patients harbored driver mutations in TP53, SMAD4, BRAF, BRCA2, and RBM10. An
additional 19 known driver genes were common between our cohort and TCGA (n=14) or
the ICGC (n=5), whereas 92 genes were found to harbor driver mutations unique to our
cohort, including U2AF1 and SMAD?2 (Figure 3B).

Nine patients in our cohort contained longitudinal data, with one sample collected
at surgical resection and the rest collected after disease recurrence at autopsy. Seven
patients acquired additional driver mutations following treatment, including alterations in

PIK3CA, PDGFRB, HLA-B, and MSH2. While we did not have longitudinal data for most

patients, we compared drivers identified in patients with early- and late-stage disease with
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Figure 3. Driver mutations in large PDAC cohorts.

(A) Mutational frequency of common driver genes in multiregion cohort and two large scale PDAC studies, the ICGC
and TCGA. Mutational frequencies represent only mutations identified as likely drivers, not all mutations identified in
the indicated genes. (B) Number of unique driver genes identified per cohort. (C) Prevalence of KRAS alleles in
multiregion cohort, the ICGC, and TCGA. (D) Survival of patients in multiregion cohort with respect to the most
common KRAS alleles.
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respect to different therapeutic interventions to determine the extent to which drivers were
stage-and/or treatment-dependent. The majority of drivers identified were only observed
in a single patient; however, SMAD3 and NF1 were the only recurrent driver genes
exclusively found in treatment-naive patients who underwent surgical resection as part of
their clinical management. Furthermore, we did not identify a significant difference in
driver counts between treated and treatment-naive patients (Wilcoxon rank-sum test, P =
0.55).

Given the range of driver mutations identified, we also explored whether there was
any relationship between the quantity or quality of drivers with respect to tissue type. To
account for correlations within samples and between patients, we used a generalized linear
mixed model with random intercept and unconstructed covariance structure to model the
number of distinct driver mutations with respect to sample type (Primary vs Metastasis).
In a univariate analysis, we observed a significant increase in the expected mean driver
mutation count in metastatic samples compared to primary samples (Figure 4A,
beta=0.178, 95% CI: 0.027-0.32, P = 0.02). Given this observation, we further investigated
whether there was any relationship between the driver count and different metastatic routes
(lymphatic, hematogenous, and directly seeded). Using the model outlined above, we found
no significant association between the route of metastasis and number of driver genes
(Figure 4B, P = 0.60). Although multiple driver genes were identified across distinct
metastatic sites or routes, some were only observed in the context of specific sites or routes.
However, these mutations were rare events, and we did not find any significant associations
between gene enrichment of different core signaling pathways and routes of metastasis

(Table 2). Cumulatively, these data suggest that the expansion of a subclone, potentially
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Figure 4. Driver counts with respect to metastasis.

(A) Driver mutation counts with respect to sample type. (B) Driver mutation counts of different metastases with respect
to different routes to metastasis. Unknown encompasses sites whose metastatic route is uncertain (e.g., diaphragm,
pleural cavity, pericardial sac, adrenal gland). Metastatic sites and their corresponding routes to metastasis are located

in Supplemental Table 2.

Table 2. Prevalence of driver genes grouped by functional pathways with respect to route of metastasis.

Pathway Direct Hematogenous Lymphatic Unknown Total
seeding

RAS RTK

Yes 86 (32.2%) 160 (35.2%) 24 (35.3%) 30 (31.9%) 300 (34.9%)

Cell cycle

Yes 64 (23.9%) 140 (30.8%) 16 (23.5%) 25 (26.6%) 245 (27.7%)

TGFpB

Yes 43 (16.1%) 30 (6.6%) 5(7.4%) 8 (8.5%) 86 (9.7%)

Chromatin

Modification

Yes 5 (1.8%) 5(1.1%) 1(1.5%) 1 (1.1%) 12 (1.3%)

DDR

Yes 5 (1.8%) 16 (3.5%) 4 (5.8%) 4 (4.2%) 29 (3.2%)

RNA

processing

Yes 1 (0.3%) 7 (1.5%) 0 (0%) 1 (1.0%) 9 (1.0%)
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containing one or more additional driver alterations, precedes its dissemination and growth
in secondary sites. However, the lack of association between any specific gene or pathway
and a particular metastatic route suggests that alternative genetic, epigenetic, or post-

translational mechanisms promote organ-specific colonization, as previously reported®®-%°,

Somatic copy number alterations

Previous genomic analyses of PDAC have revealed numerous somatic copy number
alterations (CNAs) affecting key oncogenes and tumor suppressor genes, including KRAS,
TP53, SMAD4, and CDKN2A, among others!>!%222°_ To this end, we used HATCHet
(Methods) to infer both allele-and clone-specific CNAs and their relative proportions
across multiple samples from a subset of 70 patients for which these metrics could be
reliably derived®!%2, Our analysis revealed a notably high frequency of both clonal and
subclonal gains in KRAS and MYC compared to the rest of the genome (Figure 1D,
Supplemental Table 4). Moreover, these regions were distinguished by a relatively high
proportion of subclonal gains. Similarly, other genes on chromosome 8 demonstrated the
highest frequencies of subclonal gains in the cohort, including C8orf31, AK3P2, LY6E,
ZNF16, NRBP2, BAIl, MROH4P, and ARC. The prevalence of LOH of 8p, TP53,
CDKN2A, SMAD4, and SMAD?2 was also remarkably high compared with that observed
at other loci; however, these events were disproportionately clonal. Additionally,
homozygous deletions in the latter genes were identified in 3-9% of patients, the majority
of which were subclonal and co-occurred with LOH events in the same gene. Of the four
KRAS WT patients, we were able to obtain CNA calls for (MPAM11, MPAM12, PAM26,

and PAM32), two exhibited gains in KRAS (PAM26 and PAM32). All four patients
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demonstrated LOH of SMAD4 and CDKN2A, whereas PAM26 and PAM32 also exhibited
LOH of TP53.

Overall, both clonal (Wilcoxon rank-sum test, P =2e-11) and subclonal (Wilcoxon
rank-sum test, P = 0.0001) LOH events were significantly more common than gains in our
cohort (Figure 5A). LOH was detected in all patients, however PAM25 was the sole patient
without any copy number gains. Furthermore, both subclonal gains (Wilcoxon rank-sum
test, P =4.7e-14) and LOH events (Wilcoxon rank-sum test, P = 7.3e-12) were significantly
more common than clonal copy number events (Figure 5A), suggesting that the majority
of CNA events occurred relatively later in tumor evolution, as reported previously24, and
that they may play a crucial role in driving intratumoral heterogeneity and tumor
progression.

Whole-genome duplication (WGD) was identified in nearly two-thirds (45/70) of
patients (Figure 1A). This exceeds previously reported rates of WGD in metastatic
PDAC®7, likely due to more comprehensive sampling per patient. No significant
association was found between the number of driver mutations and tetraploid status (odds
ratio [OR]:1.11, 95% CI:0.88-1.51, P = 0.4). We observed that tetraploid patients had a
significantly higher number of clonal (Wilcoxon rank-sum test, P = 0.013) and subclonal
(Wilcoxon rank-sum test, P =2.99e-6) LOH events (i.e., fractional allelic loss) than diploid
patients, likely due to increased genomic instability (Figure 5B). Neither the proportion of
clonal nor subclonal gain events differed significantly with respect to WGD status (Figure
5B). Furthermore, we found that WGD did not occur more frequently in treated than in

treatment-naive patients (Fisher’s exact test, P = 0.23).
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Timing of somatic events

A previous study of patients with late-stage PDAC demonstrated limited intratumoral
heterogeneity of driver mutations in the absence of therapeutic pressure®*, indicating that
they were acquired prior to the formation of metastatic subclones. To determine the
evolutionary timing of driver alterations across the spectrum of PDAC clinical contexts,
we analyzed the subset of our cohort (n = 70) for which we obtained CNA calls using
DeCiFer (Methods). SNVs were classified as truncal if they were inferred to occur before
the most recent common ancestor and subtruncal otherwise®'. Of the 63% of putative
drivers for which a truncal status could be determined (Methods), 79% were classified as
truncal and the other 21% were subtruncal (Figure 6A). To compare our results to
traditional CCF methods, we ran DeCiFer in CCF mode to determine whether truncal
mutations were consistently clonal. Overall, we found that most truncal driver mutations
were considered clonal based on CCF calculations. Notably, we identified two KRAS
mutations and one TP53 mutation that were all found to be truncal yet had variant allele
frequencies that were consistent with subclonality. Upon further investigation, we found
that subclonal deletions and gains likely contributed to these truncal mutations having
subclonal mutation frequencies, leading to erroneous conclusions regarding the
evolutionary timing of somatic mutations from CCF estimates alone.

Notably, KRAS driver mutations were not universally determined to be truncal
events. Of the two patients harboring subtruncal KRAS mutations, one had alternative
truncal driver events in AKT1 and GNAS (PAM40). The second patient, PAM46,
underwent surgical resection followed by adjuvant chemoradiation before passing away
from locally recurrent disease. Both the original surgical resection and all samples of

recurrent disease harbored a G12R mutation, which was determined to be truncal.
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Conversely, a subtruncal G12D mutation was identified in two of the eight samples of the
locoregional recurrence. Two additional patients, MPAM26 and PAM44, also harbored
multiple KRAS mutations. Similar to PAM46, PAM44 also experienced locoregional
recurrence after surgical resection. Unlike PAM46, PAM44 harbored a G12D mutation in
every sample of recurrent disease and only harbored a G12R mutation in the original
surgically resected sample. Additional mutational analysis revealed that the original
resection was an independent primary tumor; thus, the timing of this event could not be
inferred”. Both KRAS G12D and E31K mutations identified in MPAM26 were inferred
to be truncal; however, they were found on different alleles. Cumulatively, these patients
demonstrated convergent evolution toward increased KRAS signaling in the context of
patients diagnosed with early-stage disease followed by surgical resection. Additional
functional studies investigating the differences in downstream signaling and the efficacy
of pan-KRAS inhibitors in this context are warranted.

Given the spectrum of clinical management represented in our dataset, we aimed to
determine whether the timing of driver mutations differed across these contexts. We found
no differences in the number of truncal or subtruncal drivers between treatment-naive
patients with early- versus late-stage disease, patients with treatment-naive versus treated
late-stage disease, or patients pre- versus post-surgical resection (Figure 6B). Furthermore,
patients with WGD did not have a significantly different number of truncal or subtruncal
driver mutations compared to diploid patients. The median number of truncal drivers per
patient was 2. Using this cutoff, we did not observe any difference in OS between those
with more vs less than 2 truncal drivers (Log rank test, P = 0.2, Figure 6C). Although we

found that a one-unit increase in the number of truncal drivers increased all-cause mortality
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Figure 6. Timing of somatic events.

(A) Proportion of truncal vs subtruncal drivers in multiregion cohort. (B) Number of truncal and subtruncal drivers
with respect to different clinical contexts. Samples from early-stage treatment naive patients were collected pre-surgical
resection. (C) Overall survival with respect to number of truncal driver mutations. (D) Truncal and subtruncal densities
per patient. Data points are scaled by the number of samples per patient and colored by treatment and stage
information. The top and bottom 1% of outliers are annotated. (E) Overall survival with respect to truncal density.
Patients were categorized into quartiles based on their truncal densities.

46



by 20% (HR:1.20, 95% CI:0.95-1.53), this association did not reach statistical significance
(P =0.14). Given how few subtruncal drivers were identified, we could not predict whether
truncal alterations in specific genes were associated with an increased or decreased
likelihood of subsequent subtruncal alterations®?.

In light of these observations, we expanded our scope to assess the timing of
all SNV/INDEL events. To do this, we calculated truncal and subtruncal densities for each
patient (Methods). Across the cohort, we observed that subtruncal densities were
significantly larger than truncal densities (Wilcoxon rank-sum test, P = 2.17e-09). No
relationship was observed between subtruncal density and the number of samples per
patient (Figure 6D). The majority of patient outliers harbored mutations in genes associated
with DNA damage response, including MSH2, MSH3, ATM and POLQ. When comparing
early- versus late-stage treatment-naive patients, we found that late-stage patients had
larger truncal densities compared to early-stage patients (Wilcoxon rank-sum test, P =
0.02); however, no significant differences were observed with respect to subtruncal
densities between these two groups (Wilcoxon rank-sum test, P = 0.74). There were no
significant differences in the truncal or subtruncal densities between patients pre- versus
post-surgical resection. While there were no significant differences between the subtruncal
densities of late-stage treatment-naive versus late-stage treated groups (Wilcoxon rank-
sum test, P = 0.53), treatment-naive patients had significantly larger truncal densities
(Wilcoxon rank-sum test, P = 0.03). Moreover, we did not observe a relationship between
truncal density and the number of truncal drivers identified per patient.

Given these findings, we determined the relationship between truncal and

subtruncal density and survival. We found a significant association between truncal
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densities (per 1 unit increase in log-scale) and overall survival (OS) (HR:1.67, 95%
CI:1.16-2.42, P =0.006). Upon categorizing truncal densities into quartiles and adjusting
for stage at diagnosis, age at diagnosis, and smoking history, we continued to observe
worse survival for patients with higher truncal densities (Q4) compared to the reference
group (Q1) with the lowest truncal densities [HR:2.91, 95% CI:1.42-5.99, P =0.004]
(Figure 6E). Conversely, we did not observe any association between subtruncal density
and OS (HR:1.07, 95% CI:0.81-1.42, P = 0.64). Cumulatively, these data suggest that the
extent of accumulation of coding somatic alterations prior to the MRCA is a prognostic
marker for PDAC.

Smoking is a common risk factor for PDAC, contributing to the development of up
to 25% of cases”*%*. Therefore, we investigated the relationship between smoking and the
mutational landscape of patients’ tumors. We did not observe a significant association
between smoking status and truncal density (Fisher’s exact test, P = 0.2). We did not
observe a significant association between smoking status and truncal density (Fisher's exact
test, P = 0.2) thus we investigated the relationship between smoking and the mutational
signatures prevalent within each sample. De novo extraction of mutational signatures from
134,772 somatic alterations identified seven double base substitutions signatures, two indel
signatures and six SBS (single base substitution) signatures. SBSs accounted for 92.3% of
all somatic mutations identified, thus we focused solely on this subset for evaluating the
relationship of smoking related mutational signatures to PDAC evolutionary features. SBS
de novo signature 4, representing 21.0% of all SBSs, was found to be most similar to
COSMIC signature SBS29, whose etiology is tobacco-related®, though it also showed

similarity to COSMIC SBS4 (Figure 7 and Methods). To account for correlations within
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Figure 7. De novo mutational signature analysis reveals tobacco-related signature in multiregion cohort.
(A) Mutational signature SBS29 (COSMIC Version 3) has been identified in cancer samples from individuals with a

tobacco chewing habit. (B) Mutational signature of de novo SBS signature 4. (C) Cosign similarity of each de novo SBS
signature compared to COSMIC V3 signatures. Mutational signature SBS_denovo_4 is very similar to that of SBS29.
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samples, we used a GLMM with random intercept and unconstructed covariance structure
to model the number of SBS de novo signature 4 mutations with respect to smoking history
status. In a univariate analysis, we did not observe any relationship between smoking
history and the number of mutations attributed to the de novo SBS4 signature (P = 0.72).
Similar to previous reports’?, some patients with smoking histories (current or former)
contained samples that did not harbor any smoking related mutations. Conversely, several
never-smokers harbored mutations attributed to SBS de novo signature 4. These findings
suggest that despite substantial tobacco exposure in some patients, PDAC initiation may

be independent of smoking-mediated mutagenesis.

Quantification of subclones and clinical correlates

To date, the clonal composition of PDAC remains poorly understood. To this end, we used
HATCHet®"%? to infer clonal populations and their relative proportions jointly across
multiple samples from the same patient. The number of subclones identified per patient
ranged from one to five with 34% of patients being classified as monoclonal (Figure 8A).
Patients with polyclonal disease demonstrated varying degrees of clonal mixing, with some
patients exclusively comprising polyclonal samples (26%) and others harboring a mix of
monoclonal and polyclonal samples (39%).

We identified a single polyclonal patient who did not exhibit any clonal mixing
with two clones identified across five monoclonal samples (Figure 8A, B). Notably, all
samples collected from the right liver and the abdominal wall metastasis were composed
of one clone and the metastasis from the left liver (MPAMOI1PTS) was comprised
exclusively of a different clone (Figure 9). While all five of the driver mutations identified

in MPAMO1 were truncal and present in every sample, we observed mirrored-subclonal

50



Monoclonal Polyclonal

(a a Ca A
533 4% 4% o

&) ) ™y =l ) &)
(I o B e @

monoclonal samples only

polyclonal samples only

monoclonal samples,
polyclonal patient

mono- and polyclonal samples
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Figure 9. Polyclonal patients can comprise monoclonal samples with distinct copy number profiles.

(A) Distribution of metastatic disease in patient MPAMO1. All lesions are monoclonal. (B) Inferred copy-number
states for clone 1 and clone 2 in samples PT4 and PT5, respectively. Each point is a genomic bin whose position
corresponds to its inferred mirrored haplotype BAF (mhBAF, x-axis) and fractional copy number (y-axis). Each bin
is colored by its inferred copy-number state. Points labeled (A, B) are the expected position of the corresponding
haplotype-specific copy-number state with A copies of the major haplotype and B copies of the minor haplotype.
Bolded copy-number states are clonal events that are present in all tumor clones. (C) mhBAF values across the
genome. Black lines indicate the expected mhBAF of the assigned copy-number state (analogous to labeled points
in panel B).
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Figure 10. Polyclonal patients can comprise both mono- and polyclonal lesions.

(A) Distribution of metastatic disease in patient PAMO1. Some lesions are monoclonal (PT2, PT4) and others are
polyclonal (PT1, PT3). (B) Inferred copy-number states for samples PT1 and PT3, respectively. Each point is a
genomic bin whose position corresponds to its inferred mirrored haplotype BAF (mhBAF, x-axis) and fractional
copy number (y-axis). Each bin is colored by its inferred copy-number state. Points labeled (A, B) are the expected
position of the corresponding haplotype-specific copy-number state with A copies of the major haplotype and B
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sample. (C) mhBAF values across the genome. Black lines indicate the expected mhBAF of the assigned copy-
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CNAs, or differential gains or losses of the maternal and paternal chromosomes in distinct
tumor clones®?. We found that clone 1 had a copy state (1,2) or (2,4) across regions of
chromosome 12 totaling 46.3 Mb, excluding KRAS (Figure 9B, C). Within these same
regions, clone 2 demonstrated LOH and amplifications of the opposite allele with copy-
states (2,0) and (4,2). Numerous additional subclonal CNA events were also observed on
chromosomes 1, 4, 5, 13, 15, 19, 20 and 21.

Similarly, PAMO1 demonstrated an abundance of subclonal CNAs spanning across
all chromosomes and totaling 1.7Gb (Figure 10B, C). These events varied in size, ranging
from relatively focal events (8q, olive green) to entire chromosomes (chromosome 4,
goldenrod) (Figure 10C). The copy number state of KRAS differed in each of the three
identified clones; however, all clones exhibited LOH of the B-allele (clone 1: 3,0; clone 2:
12,0; clone 3: 5,0). Notably, mirrored subclonal CNAs were observed on different
chromosomes compared to MPAMO1, including 5p and 18p. Overall, 51% (36/70) of
patients harbored mirrored-subclonal CNAs and the average frequency of any genomic bin
harboring such an event was 5.4%. This phenomenon was observed on every chromosome,
with chromosomes 3, 7 and 21 being the most commonly altered across patients. Notable
genes exhibiting the highest frequencies of mirrored subclonal CNAs included TGFBR2,
MLH]1, and SETD2, all of which localize to chromosome 3p?°.

With respect to treatment, we found that treated patients had increased odds of
being polyclonal compared to treatment-naive patients in a multivariable adjusted analysis
(OR: 4.54, 95% CI:1.33-17.3, P = 0.019) (Table 3). No significant association was found
between the number of driver genes and polyclonal status (OR:1.08, 95% CI:0.86-1.45, P

= 0.6). Among treatment-naive patients, we found that those with early-stage disease were
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Table 3. Factors associated with polyclonal status.

Characteristic N OR' 95% CI'  p-value  OR! 95% CI'  p-value
Number of distinct driver mutation 70 1.08 0.86, 1.45 0.6
AGE_AT_DIAGNOSIS 70 094 0.89,0.98  0.011 0.95 0.90,1.00  0.075
Smoking History 70

Never/Unknown — —

Yes 1.28 0.48,3.54 0.6
type2.diabetes 70

No/Unknown — —

Yes 0.63 021,190 04
PRIMARY_REGIONS_PER PATIENT 70 1.02 0.80,1.31  >09
Stage at diagnosis 70

Stage I-1I — — — —

Stage IIT 0.75 0.20,2.75 0.7 0.54 0.12,2.34 04

Stage IV 3.45 1.06,12.7  0.047 4.07 1.08,18.1  0.047
TREATED 70

Not treated — — — —

Treated 445 1.58,13.3  0.006 4.54 1.33,17.3  0.019
GENDER 70

F J— J—

M 1.29 0.48,3.52 0.6
race 70

All Other — —

Caucasian non-Hispanic White 2.29 0.69, 7.73 0.2

'OR = Odds Ratio, CI = Confidence Interval
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Figure 11. Prevalence of polyclonality with respect to disease stage and treatment.

EmE monoclonal
B polyclonal

(A) Proportions of patients with mono- vs polyclonal disease with respect to different clinical contexts. Samples from
carly-stage treatment naive patients were collected pre-surgical resection.
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more often monoclonal compared to those with late-stage disease (Fisher’s exact test; P =
0.049; Figure 11). Furthermore, we found that treatment-naive samples collected from
patients who underwent surgical resection were more often monoclonal compared to
samples collected from patients with late-stage disease who subsequently received
adjuvant therapy and ultimately relapsed (Figure 11, Fisher’s exact test, P = 0.004).
Amongst patients with late-stage disease, we did not find a significant difference in the
proportion of patients with mono-vs polyclonal disease (Fisher’s exact test, P = 0.7). After
correcting for age at diagnosis and treatment status, we observed that patients with stage
IV disease had increased odds of being polyclonal compared to patients with stage I/I
disease (Figure 11A, OR: 4.07, 95% CI: 1.08-18.1, P = 0.047). Cumulatively, our findings
indicate that the clonal composition of PDAC is significantly associated with both
advanced stage at diagnosis and treatment status.

Expanding upon these observations, we considered the diversity of metastatic sites
represented in our cohort and investigated the prevalence of polyclonality with respect to
different tissues. While we found that metastases were frequently polyclonal with respect
to different sites and routes of metastatic dissemination (Supplemental Table 2, Figure
12A, B), none of these observations reached statistical significance. However, the number
of metastatic samples sequenced was significantly higher in polyclonal patients compared
with monoclonal patients (Wilcoxon rank-sum test, P = 0.00096; Figure 12C).
Additionally, we observed a higher proportion of polyclonal disease in tetraploid patients
(33/45) compared to diploid patients (13/25), however this did not reach statistical

significance (Figure 12D, Fisher’s exact test, P =0.11).
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Features of oligometastatic patients

While chemotherapy is the standard of care for patients with metastatic disease, clinical
management strategies remain poorly defined for patients with oligometastatic disease””-%%,
To this end, we determined the extent to which oligometastatic patients harbored genetic
differences compared to patients with widespread metastatic disease. We found that
oligometastatic patients have a median of one fewer drivers compared to patients with
metastatic disease, but this did not reach statistical significance (Wilcoxon rank-sum test,
P =0.081) (Figure 13A). No significant associations between gene enrichment of various
core signaling pathways and oligometastatic status were found. Furthermore, we found no
differences in the number of truncal or subtruncal drivers or densities between patients with
oligometastatic versus metastatic disease.

With respect to CNAs, oligometastatic patients contained significantly fewer LOH
events compared to metastatic patients (Wilcoxon rank-sum test, P = 0.02), though no
differences were observed with respect to gains (Figure 13B). Notably, LOH in both TP53
and SMAD4 was significantly less common in oligometastatic patients (Fisher’s exact test,
P = 0.49), however no difference was observed in other common tumor suppressor genes.
While MYC gains were less prevalent in oligometastatic patients, this did not reach
statistical significance (Fisher’s exact test, P = 0.16). Extending upon these findings, we
found that patients with oligometastatic disease were more often monoclonal compared to
patients with widespread metastatic disease (Fisher’s exact test, P < 0.001, Figure 13C).
Cumulatively, these data suggest that patients with oligometastatic disease have more

genomically stable tumors, which in turn may restrain metastatic efficiency®.
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CHAPTER FOUR: DISCUSSION

Summary

This study both corroborates and enriches existing knowledge of the PDAC genome!>16:34,
Collectively, our multiregion sampling approach’® and broad spectrum of disease
presentations enabled us to quantify the diversity of evolutionary features in this tumor
type and correlate them with clinical attributes. Comparing our findings to previously
published datasets, we observed recurrent alterations in the genomic landscape of PDAC
across different disease stages, supporting the notion that key genetic events occur early in
the course of the disease. Our analysis identified 122 driver genes, with 92 being unique to
our cohort, suggesting a diverse array of mechanisms contributing to tumorigenesis and
disease progression in PDAC. However, further investigation is needed to validate and
understand the functional significance of these novel driver events. While our driver
analysis focused on SNV/INDEL-level alterations, we acknowledge that our ability to
assess drivers at the CNA level was limited due to the quality of copy number calls obtained
for the cohort. Future studies should aim to incorporate both SNV/INDEL and CNA
alterations, as well as germline mutations, to provide a more comprehensive understanding
of the genetic landscape of PDAC. Patient consent was not obtained for germline analyses
in this cohort.

We identified subtruncal KRAS drivers in two patients, indicating that alternative
pathways can drive tumorigenesis in PDAC. This finding suggests that targeting multiple
pathways may be necessary for developing effective treatment strategies, especially
considering ongoing clinical trials of KRAS inhibitors***7. A recent study demonstrated

that dual inhibition of ERBB and KRAS signaling may be synergistic and help overcome
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acquired resistance to MRTX1133, a non-covalent inhibitor of KRAS G12D!%,
Furthermore, the authors determined that combining MRTX1133 with downstream
inhibitors against MEK or ERK did not provide meaningful synergy, suggesting that drugs
targeting this pathway will not likely provide additional benefit. Additionally, combination
therapy of commonly used chemotherapeutics 5-FU or Gemcitabine with MRTX1133 did
not produce synergistic results. However, these results were solely derived from preclinical
studies, thus necessitating additional human trials to validate these findings. Furthermore,
investigation into the functional significance of subtruncal KRAS drivers and their impact
on treatment response is warranted.

A notable insight from this study was derived from our introduction of the concept
of truncal density. This metric quantifies the accumulation of somatic alterations in the
lineage leading to the infiltrating carcinoma and found to be an independent prognostic
variable, regardless of disease stage, patient age, or smoking history. Truncal density can
be influenced by various endogenous factors such as age-related clock-like mutagenesis!'®!,
chronic genotoxic stress induced by ROS!%2, inflammation and increased cellular
turnover'®, as well as exogenous factors such as carcinogens from tobacco smoke!%,
Conversely, there are mechanisms that could potentially decrease truncal density over an

105,106 " immunoediting?!,

individual’s lifetime, including inherent efficiency of DNA repair
or genetic drift'’’. Notably, smoking history was neither related to truncal density nor was
it correlated with the presence of a tobacco-related mutational signature. This does not
imply that smoking is not a risk factor for PDAC, only that its contribution to PDAC

incidence may extend beyond accumulation of mutations. This finding aligns with recent

research on smoking and lung carcinogenesis®?, presenting significant implications for both
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early detection and prevention of PDAC. Furthermore, truncal density did not demonstrate
any relationship with the number or type of driver mutations. This observation could reflect
a more generalized feature of the PDAC lineage, such as the extent of epigenetic memory
following the resolution of inflammation or other injuries!®,

We confirmed that the majority of driver mutations were truncal, and subtruncal
drivers were relatively uncommon!®, irrespective of disease stage and treatment. This
observation lends optimism to the potential application of targeted therapies against
prevalent driver genes in this disease, including KRAS*"*8, as previously mentioned. We
also found that patients with oligometastatic disease had a median of one fewer driver
mutations than those with widespread metastasis. This observation might be indicative of
differences in the number of clonal expansions between these two groups where one such
expansion in the widespread metastasis group may have encompassed an additional driver
mutation. These clonal expansions likely occurred prior to diagnosis given that nearly half
of oligometastatic patients did not experience disease progression between diagnosis and
death. Moreover, these expansions may have occurred in association with
microenvironmental cues or cell intrinsic features that provided a survival advantage.
Validation of this theory may guide surgical management in the setting of oligometastatic
disease, which remains a controversial topic.

Subclonal LOH and gains were significantly more common than clonal copy
number events, suggesting that the majority of CNAs occurred relatively later in tumor

110 and that they may play a crucial role in driving

evolution, as reported previously
intratumoral heterogeneity and tumor progression. Subclonal CNAs, ranging in size from

focal events to entire chromosomes, defined distinct populations in polyclonal patients.
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Notably, some of these events had different numbers of copies of both parental haplotypes
in different tumor clones, which we refer to as mirrored subclonal CNAs®2. While mirrored
subclonal CNAs were identified genome-wide, their biological significance remains
unknown. Chromosome 3p had the highest rate of mirrored subclonal CNAs, which may
indicate that genes in this region are particularly impacted by convergent evolution*!.
Finally, our findings underscore the necessity of analyzing evolutionary features
within the context of different tumor types and clinical scenarios. The evolutionary
histories exhibited in our study display profound differences compared to other solid
tumors, where subtruncal drivers are more prevalent®® and current investigations are
examining their role in shaping clinical management strategies'!!. Elucidating these
patterns in large-scale datasets has the potential to unravel unique, disease-specific
therapeutic approaches, fostering an era of more personalized and effective cancer

treatment strategies.

Future directions

One of the most impactful ways to study the evolutionary dynamics of cancer is through
longitudinal studies*!-!!2-115, By periodically sampling tumor tissue from the same patient,
temporal changes can be captured, thus enabling real-time tracking of clonal evolution,
emergence of resistance mechanisms, and identification of potential therapeutic
windows!!6, Moving forward, we plan to conduct evolutionary studies on longitudinal
samples collected pre- and post-treatment from the Tracking Of Pancreatic Cancer
RegressiOn and ResisTance (TOPCOAT) program. TOPCOAT was initiated by the David
M. Rubenstein Center for Pancreatic Cancer Research in March 2020 for the purpose of

prospectively identifying information on the biology of pancreas cancer. This program has
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an accrual goal of 160 patients across four hospital services, of which 150 have already
been consented. This concerted effort will generate the largest tissue bank of longitudinal
PDAC data to date, enabling researchers to dive deeper into the intricacies of PDAC
evolution, identify new therapeutic targets, and refine treatment strategies for patients.

In addition to genomic data, TOPCOAT biospecimens will enable researchers to
collect data about the transcriptome, metabolome, and tumor microenvironment, which
together will help provide a more holistic picture of how genetic changes translate to
functional outcomes. Zhang et al.'s work on the International Cancer Genome Consortium
Data Portal underscores the importance and potential of such multiomics integrations,
enabling researchers to find correlations between gene mutations, expression patterns, and

patient outcomes!'!’

. This integrated approach will lead to a better understanding of tumor
heterogeneity, disease prognosis, and potential therapeutic targets.

While generating high-quality datasets is incredibly important, methods
development cannot be overlooked. A truncal status could be determined for only 63% of
putative driver mutations in our cohort, a result of several technical limitations. Thirty-four
driver mutations were identified exclusively in targeted sequencing datasets, precluding
them from analysis with HATCHet on account of insufficient genomic bins for identifying
heterozygous germline SNPs. Another 58 driver mutations were excluded because they
either did not harbor reads in all samples within the patient or the reads present in each
sample did not reach the minimum read depth threshold (mean number of tumor reads per
site per sample). Furthermore, another 17 driver mutations were excluded because they

were unable to be assigned well to a cluster and were placed in an outlier file. Finally, 69

driver mutations had a total copy number greater than 6, which precluded their analysis
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with DeCiFer on account of the program not being able to finish with high total copy
number states.

To address these issues, methods optimization can be performed at the bench and
computationally. First, higher purity tumors could be collected at the outset with the

)18, However, the

assistance of techniques like laser capture microdissection (LCM
equipment required for LCM is a costly investment, often exceeding a million dollars!!?.
Associated consumables, including nuclease-free membrane slides and collection tubes,
also come at a premium, costing significantly more than standard items. Additionally,
exposure of tissue of interest to fixatives and staining agents can compromise their
suitability for subsequent analyses. Therefore, ample time in training and problem-solving
is essential to achieve reliable outcomes using this technique. From a computational
perspective, further development of copy number and clustering tools like HATCHet and
DeCiFer is imperative to extracting high quality information from subpar samples. These
tools were originally designed for multiregion, high-depth WGS datasets, which are few
and far between in practice due to cost limitations. Therefore, it is imperative that these
tools be adapted to analyze a wider range of sequencing inputs such that existing data can
be examined more effectively.

Numerous studies have used phylogenetic trees derived from somatic mutations
across various anatomical sites to deduce a cancer cell's migratory history within a patient.
In most cases, these inferences relied on a combination of two flawed assumptions that do
not generally hold in cancer sequencing data. The first is sample homogeneity, which
incorrectly assumes genetic uniformity across cells within a sequenced sample. The second

is that migration history follows directly from the topology and branch lengths of a
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phylogenetic tree. This is problematic because a tree does not encode the anatomical sites
of ancestral clones. While somatic mutations can be used as markers for cellular lineage,
they do not directly model the history of cellular migrations between anatomical sites. To
infer migration histories in PDAC, future analyses could be performed using
MACHINA'?, which outputs a directed multigraph to describe the migration of cells
between anatomical sites. The topology of this migration graph differs from a standard
phylogenetic tree in that it records both the migration number and migration pattern (for
example, monoclonal versus polyclonal, single source versus multisource seeding). While
MACHINA has been used to investigate seeding patterns in multiregion PDAC data
previously, it was performed on data from only ten patients. Therefore, additional analyses
on a larger number of patients spanning the continuum of clinical contexts are necessary
to better understand seeding dynamics in PDAC.

More broadly, recognizing cancer as an evolutionary and ecological process is a
transformative approach that will offer novel insights into disease progression and

treatment strategies'?!.

By deciphering the evolutionary trajectories of tumor cells,
researchers can predict potential treatment outcomes and drug resistances. Tumors are not
homogeneous masses but rather complex systems of multiple cell populations that
continuously evolve. These populations compete for resources, adapt to environmental
pressures, and exhibit both cooperative and competitive interactions**!22, This intratumor
heterogeneity is a significant challenge in cancer treatment, as different subpopulations

may respond variably to therapies!?. Moreover, the spatial structure of tumors can further

affect the dynamics of drug resistance and tumor progression!?+123,
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To refine precision medicine strategies, understanding the interplay between
intratumor heterogeneity and the temporal acquisition of driver events is paramount.
Collateral sensitivity, the phenomenon in which a population of cells that has evolved
resistance to a particular drug becomes simultaneously more sensitive to a different drug,
has garnered attention as a potential strategy against multidrug resistance in cancer!26-128,
Game-theoretical models have been applied to understand these interactions and develop
strategies that might outmaneuver the evolutionary advantages of the tumor!'?>12%130 In
practice, the oncologist would select a treatment based on the disease's state, prompting
cancer cells to adapt. This resembles the Stackelberg game!3!, where the oncologist leads,
and the cancer cells respond to the therapeutic pressures.

To date, a handful of novel clinical strategies informed by evolutionary game theory
have been devised to enhance the treatment of cancer. The intermittent dosing method
employs sporadic treatment courses, capitalizing on the competition between sensitive
tumor cells and resistant clones, thereby potentially extending the efficacy of a therapeutic
agent. In a clinical trial involving patients with metastatic castration-resistant prostate
cancer, median time to progression extended to at least 27 months, compared to 16.5
months under continuous treatment!'3!. In adaptive therapy, drug doses are dynamically
adjusted based on the tumor's response. Preclinical studies in mice have shown that this
approach can keep the tumor size stable and hinder the swift emergence of resistant clones
ovarian and breast cancer'*>!33, Another tactic involves cycling among different drugs or
classes of drugs, which could prevent the tumor from becoming too resistant to any single

treatment. Theoretically, the goal of an alternating schedule would be to have two distinct

clone populations competing, each uniquely sensitive to one of two drugs. By monitoring
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the allele frequency of mutations linked to drug sensitivity in these innovative regimens,
we can gain insights in real-time.

A significant hurdle with any of these strategies is monitoring the various clones to
determine the optimal timing for treatment modifications. While continuously collecting
biopsies after each treatment cycle is not feasible, evaluating mutation allele frequencies
in circulating tumor DNA is a practical alternative. Notably, such approaches will
introduce technical challenges related to quality control of acquisition and analysis of data
across multiple clinical sites as well as increased costs!*2. However, considering PDAC’s
abysmal survival rate coupled with our finding that two-thirds of cases harbored multiple
clones, a deeper exploration into the disease's evolutionary dynamics is essential. Strategies
grounded in evolutionary game theory may pave the way for transformative therapeutic

interventions in this disease type, pending rigorous clinical trials.
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APPENDIX

Supplemental Table 1. Patient clinical information.

Age Overall Type 11
PAM ID Gender Chemo Radiation Surgery Stage at Dx  Oligometastatic _at Dx  Survival (mo) Diabetes Smoking Hx
MPAMO1 1 0 1 IIB 0 70 30.0 1 Ever-Former
MPAMO3 F 1 0 0 v 0 71 24.0 0 Ever-Current
MPAMO5 M 1 1 0 v 0 73 21.0 0 Ever-Former
MPAMO6 F 1 0 0 v 0 67 9.0 1 Ever-Former
MPAMO7 M 1 0 0 I 0 61 54.0 0 Ever-Former
MPAMOS F 0 0 0 v 0 70 1.0 0 Ever-Former
MPAMO0O9 F 0 0 1 I 66 62.4 0 Never
MPAMIO M 0 0 1 I 60 60.3 0 Ever-Former
MPAMII M 0 0 1 1IB 71 45.8 0 Never
MPAMI12 M 0 0 1 IB 72 33.2 1 Ever-Former
MPAM13 M 0 0 1 I 71 17.2 0 Ever-Former
MPAM14 F 0 0 1 1B 72 16.0 1 Never
MPAMI15 F 0 0 1 1IB 86 54.4 0 Never
MPAMI16 F 0 0 1 IIB 79 38.6 1 Ever-Current
MPAM17 M 0 0 1 I 74 15.4 0 Ever-Current
MPAMI18 M 0 0 1 I 77 27.5 1 Never
MPAM19 M 0 0 1 1B 72 313 0 Ever-Current
MPAM20 F 0 0 1 IB 53 19.3 1 Never
MPAM21 M 0 0 1 ITA 34 55.9 0 Ever-Current
MPAM22 M 0 0 1 IB 74 19.2 0 Never
MPAM23 M 0 0 1 IB 59 18.4 0 Never
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Supplemental Table 1 (continued)

Age Overall Type 11

PAM ID Gender Chemo Radiation Surgery Stage at Dx  Oligometastatic _at Dx  Survival (mo) Diabetes Smoking Hx
MPAM24 F 0 0 1 IB 46 38.0 0 Never
MPAM25 M 0 0 1 IB 79 44.7 1 Never
MPAM26 M 0 0 1 IB 86 3.7 1 Never
MPAM27 M 0 0 1 IB 68 93.8 1 Never
MPAM28 M 0 0 1 ITA 68 86.1 1 Never
MPAM29 F 0 0 1 ITA 52 20.3 0 Ever-Current
MPAM30 M 0 0 1 IB 80 11.8 1 Ever-Current
MPAM31 F 0 0 1 IB 77 335 0 Ever-Current
MPAM32 F 1 0 0 v 0 34 9.0 0 Never
PAMO1 M 0 0 0 v 1 59 7.0 1 Ever-Current
PAMO2 F 0 0 0 v 0 69 0.5 0 Ever-Former
PAMO3 M 0 0 0 v 0 79 10.0 1 Never
PAMO04 M 0 0 0 v 0 74 3.0 1 Ever-Former
PAM10 F 0 0 0 v 0 50 5.0 Unknown Unknown
PAMI104 F 1 1 1 1B 0 76 53.0 Ever-Former
PAMI112 F 1 0 0 v 0 54 41.0 0 Never
PAMII9 M 1 1 0 I 0 64 3.0 1 Ever-Current
PAMI12 M 0 0 0 v 0 49 1.0 Unknown Unknown
PAM13 F 0 0 0 v 0 &5 2.0 0 Never
PAMI135 F 1 1 1 ITA 0 49 69.0 0 Never
PAMI14 F 0 0 0 v 1 78 1.0 Ever-Former
PAMIS F 0 0 0 I 1 84 3.0 1 Ever-Former
PAM16 F 0 0 0 v 0 88 0.8 Never
PAM17 F 0 0 0 v 0 67 1.0 Never
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Supplemental Table 1 (continued)

Age Overall Type 11
PAM ID Gender Chemo Radiation Surgery Stage at Dx  Oligometastatic _at Dx  Survival (mo) Diabetes Smoking Hx
PAM18 F 0 0 1 ITA 1 83 12.0 0 Never
PAMI19 M 1 1 0 I 0 51 8.0 0 Never
PAM20 F 1 1 0 I 0 81 3.0 0 Never
PAM21 M 1 1 0 I 1 36 17.0 0 Never
PAM22 M 1 1 0 I 1 57 17.0 0 Ever-Current
PAM?23 M 1 1 0 I 1 77 10.0 1 Ever-Former
PAM24 F 1 1 0 I 0 61 24.0 1 Never
Borderline
PAM25 M 1 1 0 1 1 64 14.0 Hyperglycemia Ever-Former
PAM26 M 1 1 0 I 0 53 14.0 Ever-Current
PAM27 M 1 1 0 I 1 71 29.0 0 Ever-Former
PAM28 F 1 1 0 I 0 65 7.5 0 Never
PAM29 F 1 1 0 I 0 83 9.0 0 Ever-Former
PAM31 F 1 1 0 I 1 &5 38.0 0 Never
PAM32 M 1 1 1 IIB 0 50 25.0 0 Never
PAM33 F 1 0 0 I 0 54 11.0 0 Ever-Current
PAM36 F 1 1 1 IIB 0 61 64.0 0 Ever-Former
PAM37 M 1 1 1 IIB 0 66 24.0 1 Never
PAM38 F 1 1 1 I 0 54 8.0 0 Never
PAM39 M 1 0 1 ITA 0 60 11.0 0 Ever-Current
PAMA40 F 1 0 1 IIB 0 55 18.0 0 Ever-Former
PAM41 F 1 1 1 1B 0 60 12.0 0 Ever-Former
PAMA42 M 1 1 1 ITA 1 65 58.0 1 Never
PAMA43 M 1 1 1 IIB 0 69 24.0 0 Ever-Former
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Supplemental Table 1 (continued)

Age Overall Type 11
PAM ID Gender Chemo Radiation Surgery Stage at Dx  Oligometastatic _at Dx  Survival (mo) Diabetes Smoking Hx
PAM44 M 1 1 1 1IB 0 74 20.0 0 Ever-Former
PAM45 F 1 1 1 IIB 0 56 33.0 0 Ever-Former
PAM46 M 1 1 1 1IB 1 44 34.0 0 Never
PAM47 F 1 0 0 v 0 68 4.0 0 Never
PAM48 F 1 0 0 v 0 64 3.0 0 Never
PAM49 M 1 0 0 v 0 42 8.0 0 Never
PAMS0 F 1 0 0 v 0 56 11.0 1 Never
PAMSI1 F 1 0 0 v 0 76 7.0 0 Never
PAMS52 M 1 0 0 v 0 53 6.0 0 Never
PAMS3 M 1 0 0 v 0 55 15.0 0 Never
PAMS54 M 1 0 0 v 0 63 7.0 0 Never
PAMSS M 1 0 0 v 0 65 10.0 0 Ever-Former
PAMS56 F 1 0 0 v 0 41 6.0 0 Never
PAMS7 M 1 1 1 1B 0 51 28.0 0 Never
PAMG66 M 1 1 0 I 1 67 48.0 0 Never
PAMG67 F 1 0 0 v 0 60 3.0 1 Ever-Former
PAMSS F 1 1 0 v 0 51 3.0 1 Ever-Former
PAM97 F 1 1 1 1IB 0 69 9.0 0 Never
PAMO98 F 1 0 1 1B 0 74 9.0 0 Never
MPAM33 M 1 0 0 v 0 57 9.0 0 Never
MPAM34 M 1 1 1 I 0 38 34.0 0 Never
MPAM35 F 1 0 0 v 0 73 17.0 0 Ever-Former

Abbreviations: Dx, Diagnosis; Hx, History



€8

Supplemental Table 2. Samples per patient summary.

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAMO! MPAMOIN Normal Heart v

MPAMO1 MPAMOIPTI Metastasis  Peritoneal Cavity Direct Seeding  0.10 3.52 TETRAPLOID IV monoclonal
MPAMO1 MPAMOI1PT2 Metastasis ~ Liver Hematogenous 0.37 3.50 TETRAPLOID IV monoclonal
MPAMO1 MPAMOIPT3 Metastasis ~ Liver Hematogenous 0.23 3.52 TETRAPLOID IV monoclonal
MPAMO1 MPAMO1PT4 Metastasis ~ Liver Hematogenous 0.32 3.52 TETRAPLOID IV monoclonal
MPAMO1 MPAMOI1PTS Metastasis ~ Liver Hematogenous 0.51 3.30 TETRAPLOID IV monoclonal
MPAMO3 MPAMO3N Normal Skeletal Muscle v

MPAMO03 MPAMO3PTI Metastasis  Peritoneal Cavity Direct Seeding 0.27 2.92 DIPLOID v polyclonal
MPAMO3 MPAMO3PT2 Primary Pancreas Primary 0.18 2.85 DIPLOID v polyclonal
MPAMO03 MPAMO3PT3 Primary Pancreas Primary 0.22 2.87 DIPLOID v polyclonal
MPAMO3 MPAMO3PT4 Primary Pancreas Primary 0.33 2.83 DIPLOID v polyclonal
MPAMO3 MPAMO3PTS Metastasis  Peritoneal Cavity Direct Seeding 0.22 2.86 DIPLOID v polyclonal
MPAMO3 MPAMO3PT6 Metastasis Diaphragm Unknown v

MPAMO3 MPAMO3PT7 Metastasis  Peritoneal Cavity Direct Seeding v

MPAMO5 MPAMOSN Normal Skeletal Muscle v

MPAMO5 MPAMOSPTI Metastasis  Pleural Cavity Unknown 0.21 5.15 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPTI10 Metastasis  Liver Hematogenous 0.15 5.12 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPT11 Metastasis  Liver Hematogenous  0.55 5.50 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPT2 Metastasis  Peritoneal Cavity Direct Seeding 0.46 5.05 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPT3 Metastasis  Lung Hematogenous 0.76 5.54 TETRAPLOID IV polyclonal
MPAMO5 MPAMOS5PT4 Metastasis  Lung Hematogenous 0.12 5.16 TETRAPLOID IV monoclonal
MPAMO5 MPAMOSPTS Metastasis Lymph Node Lymphatic 0.40 5.13 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPT6 Metastasis  Pericardial Sac Unknown 0.72 5.47 TETRAPLOID IV polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
MPAMO5 MPAMOSPT7 Metastasis Diaphragm Unknown 0.32 5.09 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPTS Metastasis ~ Liver Hematogenous 1.00 5.46 TETRAPLOID IV polyclonal
MPAMO5 MPAMOSPT9 Metastasis ~ Liver Hematogenous 0.98 5.28 TETRAPLOID IV polyclonal
MPAMO06 MPAMO6N Normal Skeletal Muscle v

MPAMO06 MPAMOG6PTI Metastasis  Lung Hematogenous 0.23 4.19 TETRAPLOID IV monoclonal
MPAMO06 MPAMO6PT10 Metastasis  Retroperitoneum Direct Seeding 0.38 4.24 TETRAPLOID IV polyclonal
MPAMO06 MPAMO6PTI11 Primary Pancreas Primary v

MPAMO06 MPAMO6PT2 Metastasis  Lung Hematogenous 0.28 4.19 TETRAPLOID IV monoclonal
MPAMO06 MPAMO6PT3 Metastasis Diaphragm Unknown 0.23 4.19 TETRAPLOID IV monoclonal
MPAMO06 MPAMO6PT4 Metastasis  Liver Hematogenous 0.64 4.27 TETRAPLOID IV polyclonal
MPAMO06 MPAMOG6PTS Metastasis  Peritoneal Cavity Direct Seeding 0.13 4.19 TETRAPLOID IV monoclonal
MPAMO06 MPAMO6PT6 Primary Pancreas Primary v

MPAMO06 MPAMOG6PT7 Primary Pancreas Primary 0.19 4.19 TETRAPLOID IV monoclonal
MPAMO06 MPAMOG6PTS Metastasis  Liver Hematogenous 0.47 4.27 TETRAPLOID IV polyclonal
MPAMO06 MPAMO6PT9 Metastasis  Liver Hematogenous 0.25 4.27 TETRAPLOID IV polyclonal
MPAMO7 MPAMO7N Normal Skeletal Muscle v

MPAMO7 MPAMO7PTI Primary Pancreas Primary 0.37 1.68 DIPLOID v monoclonal
MPAMO7 MPAMO7PTI10 Primary Pancreas Primary 0.57 1.64 DIPLOID v polyclonal
MPAMO7 MPAMO7PT2 Metastasis Diaphragm Unknown 0.65 1.56 DIPLOID v polyclonal
MPAMO7 MPAMO7PT3 Metastasis Diaphragm Unknown 0.65 1.60 DIPLOID v polyclonal
MPAMO07 MPAMO7PT4 Metastasis ~ Pleural Cavity Unknown 064 1.61  DIPLOID I\% polyclonal
MPAMO7 MPAMO7PTS Metastasis ~ Liver Hematogenous 0.60 1.65 DIPLOID v polyclonal
MPAMO7 MPAMO7PT6 Metastasis  Liver Hematogenous 0.80 1.64 DIPLOID v polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
MPAMO7 MPAMO7PT7 Metastasis Lymph Node Lymphatic 0.48 1.58 DIPLOID v polyclonal
MPAMO7 MPAMO7PTS Metastasis Lymph Node Lymphatic 0.59 1.63  DIPLOID v polyclonal
MPAMO7 MPAMO7PT9 Primary Pancreas Primary v

MPAMO8 MPAMOSN Normal Skeletal Muscle v

MPAMO8 MPAMOSPTI Metastasis ~ Liver Hematogenous 0.46 2.57 DIPLOID v polyclonal
MPAMO8 MPAMOSPTI10 Primary Pancreas Primary 0.33 2.61 DIPLOID v polyclonal
MPAMO8 MPAMOSPTI11 Metastasis  Peritoneal Cavity Direct Seeding v

MPAMO8 MPAMOSPTI12 Metastasis Lymph Node Lymphatic 0.67 2.57 DIPLOID v polyclonal
MPAMOS MPAMOSPT2 Metastasis  Liver Hematogenous  0.60 2.59 DIPLOID v polyclonal
MPAMO8 MPAMOSPT3 Metastasis  Peritoneal Cavity Direct Seeding 0.59 2.57 DIPLOID v polyclonal
MPAMO8 MPAMO8SPT4 Metastasis  Peritoneal Cavity Direct Seeding 0.63 2.59 DIPLOID v polyclonal
MPAMO8 MPAMOSPTS Metastasis  Pericardial Sac Unknown 1.00 2.71 DIPLOID v polyclonal
MPAMO8 MPAMO8PT6 Metastasis  Peritoneal Cavity Direct Seeding v

MPAMO8 MPAMOSPT7 Metastasis  Peritoneal Cavity Direct Seeding 0.47 2.54 DIPLOID v polyclonal
MPAMO8 MPAMOSPTS Primary Pancreas Primary 0.34 2.53 DIPLOID v monoclonal
MPAMO8 MPAMOSPT9 Primary Pancreas Primary 0.26 2.58 DIPLOID v polyclonal
MPAM09 MPAMOSN Normal Pancreas I

MPAMO09 MPAMOOPTI Primary Pancreas Primary I

MPAMO09 MPAMO9PT2 Primary Pancreas Primary I

MPAMO09 MPAMO9PT3 Primary Pancreas Primary I

MPAM10 MPAMION Normal Pancreas I

MPAM10 MPAMIO0OPTI Primary Pancreas Primary I

MPAM10 MPAMI0PT2 Primary Pancreas Primary I
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAM10 MPAMI10PT3 Primary Pancreas Primary I

MPAMI11 MPAMIIN Normal Pancreas IIB

MPAM11 MPAMII1PTI Primary Pancreas Primary 0.19 1.96 DIPLOID IIB monoclonal
MPAM11 MPAMI1PT2 Primary Pancreas Primary 0.40 1.96 DIPLOID IIB polyclonal
MPAMI11 MPAMIIPT3 Primary Pancreas Primary 0.25 1.92 DIPLOID IIB polyclonal
MPAM11 MPAMI11PT4 Primary Pancreas Primary IIB

MPAM12 MPAMI2N Normal Pancreas IB

MPAM12 MPAMI2PTI Primary Pancreas Primary IB

MPAM12 MPAMI2PT2 Primary Pancreas Primary 0.13 1.84 DIPLOID IB monoclonal
MPAM12 MPAMI2PT3 Primary Pancreas Primary 0.12 1.84 DIPLOID IB monoclonal
MPAM13 MPAMI3N Normal Pancreas I

MPAM13 MPAMI13PTI Primary Pancreas Primary 0.30 1.88 DIPLOID I monoclonal
MPAM13 MPAMI13PT2 Primary Pancreas Primary 0.43 1.88 DIPLOID I monoclonal
MPAM13 MPAMI13PT3 Primary Pancreas Primary 0.42 1.88 DIPLOID I monoclonal
MPAM14 MPAMI14N Normal Pancreas IIB

MPAM14 MPAMI4PTI Primary Pancreas Primary 0.23 1.94 DIPLOID IIB monoclonal
MPAM14 MPAMI14PT2 Primary Pancreas Primary 0.11 1.94 DIPLOID IIB monoclonal
MPAM14 MPAMI14PT3 Primary Pancreas Primary 0.36 1.94 DIPLOID IIB monoclonal
MPAM14 MPAMI14PT4 Primary Pancreas Primary 0.03 1.94 DIPLOID IIB

MPAM14 MPAMI14PT5 Primary Pancreas Primary 0.29 1.94 DIPLOID IIB monoclonal
MPAM15 MPAMISN Normal Pancreas IIB

MPAM15 MPAMISPTI Primary Pancreas Primary 0.15 1.96 DIPLOID IIB monoclonal
MPAM15 MPAMISPT2 Primary Pancreas Primary 0.16 1.96 DIPLOID IIB monoclonal
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAM15 MPAMI15PT3 Primary Pancreas Primary IIB

MPAM16 MPAMI16N Normal Pancreas IIB

MPAM16 MPAMI6PTI Primary Pancreas Primary IIB

MPAM16 MPAMI16PT2 Primary Pancreas Primary IIB

MPAM16 MPAMI16PT3 Primary Pancreas Primary IIB

MPAM16 MPAMI16PT4 Primary Pancreas Primary IIB

MPAM17 MPAMI7N Normal Pancreas I

MPAM17 MPAMI17PTI Primary Pancreas Primary 0.34 341 TETRAPLOID 1II monoclonal
MPAM17 MPAMI17PT2 Primary Pancreas Primary 0.34 341 TETRAPLOID 1II monoclonal
MPAM17 MPAMI17PT3 Primary Pancreas Primary 0.35 341 TETRAPLOID 1II monoclonal
MPAM17 MPAMI17PT4 Primary Pancreas Primary I

MPAM18 MPAMI8N Normal Pancreas I

MPAM18 MPAMI8PTI Primary Pancreas Primary I

MPAM18 MPAMI8PT2 Primary Pancreas Primary I

MPAM18 MPAMI18PT3 Primary Pancreas Primary 0.50 1.82 DIPLOID I monoclonal
MPAM18 MPAMI18PT4 Primary Pancreas Primary I

MPAM19 MPAMION Normal Pancreas IIB

MPAM19 MPAMIOPTI Primary Pancreas Primary IIB

MPAM19 MPAMI9PT2 Primary Pancreas Primary IIB

MPAM19 MPAMI9PT3 Primary Pancreas Primary IIB

MPAM19 MPAMI19PT4 Primary Pancreas Primary IIB

MPAM19 MPAMI9PTS Primary Pancreas Primary IIB

MPAM19 MPAMI9PT6 Primary Pancreas Primary IIB
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAM20 MPAM20N Normal Pancreas ITA

MPAM20 MPAM20PT]I Primary Pancreas Primary 0.62 2.03 DIPLOID ITA monoclonal
MPAM20 MPAM20PT2 Primary Pancreas Primary 0.11 2.03 DIPLOID ITA monoclonal
MPAM20 MPAM20PT3 Primary Pancreas Primary 0.38 2.03 DIPLOID ITA monoclonal
MPAM20 MPAM20PT4 Primary Pancreas Primary 0.20 2.03 DIPLOID ITA monoclonal
MPAM21 MPAM2IN Normal Pancreas ITA

MPAM21 MPAM21PTI Primary Pancreas Primary ITA

MPAM21 MPAM21PT2 Primary Pancreas Primary ITA

MPAM21 MPAM2IPT3 Primary Pancreas Primary ITA

MPAM22 MPAM22N Normal Pancreas ITA

MPAM22 MPAM22PTI Primary Pancreas Primary ITA

MPAM22 MPAM22PT2 Primary Pancreas Primary ITA

MPAM22 MPAM22PT3 Primary Pancreas Primary ITA

MPAM23 MPAM23N Normal Pancreas ITA

MPAM23 MPAM23PTI Primary Pancreas Primary ITA

MPAM23 MPAM23PT2 Primary Pancreas Primary 0.36 3.86 TETRAPLOID IIA monoclonal
MPAM23 MPAM23PT3 Primary Pancreas Primary 0.37 3.86 TETRAPLOID IIA monoclonal
MPAM23 MPAM23PT4 Primary Pancreas Primary ITA

MPAM24 MPAM24N Normal Pancreas ITA

MPAM24 MPAM24PT]1 Primary Pancreas Primary 0.33 3.29 TETRAPLOID IIA monoclonal
MPAM24 MPAM24PT2 Primary Pancreas Primary 0.30 3.29 TETRAPLOID IIA monoclonal
MPAM24 MPAM24PT3 Primary Pancreas Primary 0.22 3.29 TETRAPLOID IIA monoclonal
MPAM25 MPAM25N Normal Pancreas ITA
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAM25 MPAM25PTI Primary Pancreas Primary ITA

MPAM25 MPAM25PT2 Primary Pancreas Primary ITA

MPAM25 MPAM25PT3 Primary Pancreas Primary ITA

MPAM26 MPAM26N Normal Pancreas ITA

MPAM26 MPAM26PTI Primary Pancreas Primary 0.48 3.19 TETRAPLOID IIA monoclonal
MPAM26 MPAM26PT2 Primary Pancreas Primary 0.38 3.18 TETRAPLOID IIA polyclonal
MPAM26 MPAM26PT3 Primary Pancreas Primary 0.42 3.20 TETRAPLOID IIA polyclonal
MPAM26 MPAM26PT4 Primary Pancreas Primary 0.49 3.31 TETRAPLOID IIA polyclonal
MPAM27 MPAM27N Normal Pancreas ITA

MPAM27 MPAM27PTI Primary Pancreas Primary ITA

MPAM27 MPAM27PT2 Primary Pancreas Primary ITA

MPAM27 MPAM27PT3 Primary Pancreas Primary ITA

MPAM28 MPAM28N Normal Pancreas ITA

MPAM28 MPAM28PTI Primary Pancreas Primary ITA

MPAM28 MPAM28PT2 Primary Pancreas Primary 0.29 2.06 DIPLOID ITA polyclonal
MPAM28 MPAM28PT3 Primary Pancreas Primary 0.33 2.04 DIPLOID ITA polyclonal
MPAM29 MPAM29N Normal Pancreas ITA

MPAM29 MPAM29PTI Primary Pancreas Primary ITA

MPAM29 MPAM29PT2 Primary Pancreas Primary 0.23 3.31 TETRAPLOID IIA polyclonal
MPAM29 MPAM29PT3 Primary Pancreas Primary 0.45 3.58 TETRAPLOID IIA polyclonal
MPAM29 MPAM29PT4 Primary Pancreas Primary 0.23 3.20 TETRAPLOID IIA polyclonal
MPAM30 MPAM3O0ON Normal Pancreas ITA

MPAM30 MPAMB30PTI Primary Pancreas Primary 0.43 2.23 DIPLOID ITA monoclonal
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
MPAM30 MPAMB30PT2 Primary Pancreas Primary 0.28 2.23 DIPLOID ITA monoclonal
MPAM30 MPAM30PT3 Primary Pancreas Primary 0.31 2.23 DIPLOID ITA monoclonal
MPAM31 MPAM3IN Normal Pancreas ITA

MPAM31 MPAMS3IPTI Primary Pancreas Primary 0.14 3.46 TETRAPLOID IIA monoclonal
MPAM31 MPAM3IPT2 Primary Pancreas Primary 0.30 3.46 TETRAPLOID IIA monoclonal
MPAM31 MPAM3IPT3 Primary Pancreas Primary 0.24 3.46 TETRAPLOID IIA monoclonal
MPAM32 MPAM32N Normal Heart v

MPAM32 MPAM32PT1 Metastasis  Peritoneal Cavity Direct Seeding  0.58 2.65 DIPLOID v polyclonal
MPAM32 MPAM32PT10 Metastasis  Liver Hematogenous 0.33 2.36 DIPLOID v polyclonal
MPAM32 MPAM32PTI11 Metastasis Lymph Node Lymphatic 0.42 245 DIPLOID v polyclonal
MPAM32 MPAM32PTI12 Primary Pancreas Primary 0.25 2.72 DIPLOID v monoclonal
MPAM32 MPAMB32PT13 Primary Pancreas Primary 0.18 2.72 DIPLOID v monoclonal
MPAM32 MPAMB32PT2 Metastasis  Peritoneal Cavity Direct Seeding 0.84 2.66 DIPLOID v polyclonal
MPAM32 MPAM32PT3 Metastasis  Diaphragm Unknown 0.35 2.51 DIPLOID v polyclonal
MPAM32 MPAM32PT4 Metastasis  Peritoneal Cavity Direct Seeding  0.51 2.59 DIPLOID v polyclonal
MPAM32 MPAMB32PTS Metastasis Diaphragm Unknown 0.36 2.55 DIPLOID v polyclonal
MPAM32 MPAMB32PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.45 2.73 DIPLOID v polyclonal
MPAM32 MPAM32PT7 Metastasis  Peritoneal Cavity Direct Seeding 0.75 2.68 DIPLOID v polyclonal
MPAM32 MPAM32PT8 Metastasis ~ Liver Hematogenous 0.47 2.50 DIPLOID v polyclonal
MPAM32 MPAMB32PT9 Metastasis ~ Liver Hematogenous 0.50 2.48 DIPLOID v polyclonal
MPAM33 MPAM33N Normal Heart v

MPAM33 MPAMB33PTI Metastasis  Lung Hematogenous 0.54 3.35 TETRAPLOID IV polyclonal
MPAM33 MPAMB33PT2 Metastasis  Lung Hematogenous 0.66 3.27 TETRAPLOID IV polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
MPAM33 MPAM33PT3 Metastasis Lymph Node Lymphatic 0.43 3.20 TETRAPLOID IV polyclonal
MPAM33 MPAM33PT4 Metastasis ~ Liver Hematogenous 0.33 2.61 DIPLOID v monoclonal
MPAM33 MPAMB33PT5 Metastasis ~ Liver Hematogenous 0.74 3.28 TETRAPLOID IV polyclonal
MPAM33 MPAMB33PT6 Metastasis  Liver Hematogenous 0.72 321 TETRAPLOID IV monoclonal
MPAM33 MPAMB33PT7 Primary Pancreas Primary 0.46 2.69 DIPLOID v polyclonal
MPAM33 MPAMB33PTS Primary Pancreas Primary 0.54 2.96 DIPLOID v polyclonal
MPAM34 MPAMB34PT]1 Normal Skeletal Muscle v

MPAM34 MPAMB34PT2 Metastasis  Pleural Cavity Unknown 0.62 1.85 DIPLOID v polyclonal
MPAM34 MPAM34PT3 Metastasis Lymph Node Lymphatic 0.37 1.89 DIPLOID v polyclonal
MPAM34 MPAM34PT4 Metastasis  Peritoneal Cavity Direct Seeding 0.39 1.90 DIPLOID v polyclonal
MPAM34 MPAMB34PT5 Metastasis  Diaphragm Unknown 0.32 1.91 DIPLOID v polyclonal
MPAM34 MPAM34PT6 Metastasis  Lung Hematogenous 0.48 1.83 DIPLOID v polyclonal
MPAM34 MPAMB34PT7 Metastasis  Peritoneal Cavity Direct Seeding v

MPAM34 MPAMB34PTS Metastasis  Peritoneal Cavity Direct Seeding 0.48 1.88 DIPLOID v polyclonal
MPAM34 MPAM34PT9 Metastasis  Adrenal Unknown v

MPAM35 MPAMB35PTI Normal Skeletal Muscle v

MPAM35 MPAMB3S5PT2 Metastasis  Peritoneal Cavity Direct Seeding 0.34 2.80 DIPLOID v monoclonal
MPAM35 MPAM3S5PT3 Primary Pancreas Primary 0.36 2.80 DIPLOID v monoclonal
MPAM35 MPAM35PT4 Primary Pancreas Primary 0.10 2.80 DIPLOID v monoclonal
MPAM35 MPAMB3SPTS Metastasis Lymph Node Lymphatic 0.37 2.80 DIPLOID v monoclonal
MPAM35 MPAMB35PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.28 2.80 DIPLOID v monoclonal
MPAM35 MPAMB3SPT7 Metastasis  Pelvis Direct Seeding  0.21 2.80 DIPLOID v monoclonal
MPAM35 MPAMB3S5PTS Metastasis  Peritoneal Cavity Direct Seeding 0.28 2.80 DIPLOID v monoclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMO1 PAMOIN Normal Lung v

PAMO1 PAMOI1PT1 Metastasis ~ Liver Hematogenous  0.65 3.16 TETRAPLOID IV polyclonal
PAMO1 PAMO1PT2 Metastasis Lymph Node Lymphatic 0.49 3.19 TETRAPLOID IV polyclonal
PAMO1 PAMOIPT3 Metastasis Lymph Node Lymphatic 0.69 3.18 TETRAPLOID IV polyclonal
PAMO1 PAMO1PT4 Metastasis ~ Liver Hematogenous 0.33 3.18 TETRAPLOID IV monoclonal
PAMO2 PAMO2N Normal Skin v

PAMO2 PAMO2PT1 Metastasis  Liver Hematogenous 0.19 3.59 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT10 Primary Pancreas Primary 0.30 3.60 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT11 Primary Pancreas Primary 0.58 3.52 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT2 Metastasis  Liver Hematogenous 0.37 3.55 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT3 Metastasis  Liver Hematogenous 0.34 3.61 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT4 Metastasis  Liver Hematogenous 0.45 3.57 TETRAPLOID IV polyclonal
PAMO2 PAMO2PTS Metastasis  Liver Hematogenous 0.42 3.57 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT6 Metastasis  Liver Hematogenous 0.22 3.60 TETRAPLOID IV polyclonal
PAMO2 PAMO2PT7 Metastasis  Liver Hematogenous  0.55 3.57 TETRAPLOID IV polyclonal
PAMO2 PAMO2PTS Metastasis ~ Liver Hematogenous 0.41 3.51 TETRAPLOID IV monoclonal
PAMO2 PAMO2PT9 Primary Pancreas Primary 0.40 3.61 TETRAPLOID IV polyclonal
PAMO3 PAMO3N Normal Skeletal Muscle v

PAMO3 PAMO3PT1 Metastasis  Lung Hematogenous 0.12 3.78 TETRAPLOID IV monoclonal
PAMO3 PAMO3PT10 Primary Pancreas Primary 0.26 3.78 TETRAPLOID IV polyclonal
PAMO3 PAMO3PT11 Primary Pancreas Primary 0.17 3.78 TETRAPLOID IV monoclonal
PAMO3 PAMO3PT2 Metastasis  Lung Hematogenous 0.09 3.79 TETRAPLOID IV monoclonal
PAMO3 PAMO3PT3 Metastasis  Liver Hematogenous 0.21 3.81 TETRAPLOID IV polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMO3 PAMO3PT4 Metastasis  Liver Hematogenous 0.31 3.89 TETRAPLOID IV polyclonal
PAMO3 PAMO3PTS Metastasis ~ Liver Hematogenous 0.28 3.90 TETRAPLOID IV monoclonal
PAMO3 PAMO3PT6 Metastasis ~ Liver Hematogenous 0.22 3.88 TETRAPLOID IV polyclonal
PAMO3 PAMO3PT7 Metastasis  Liver Hematogenous 0.32 3.89 TETRAPLOID IV polyclonal
PAMO3 PAMO3PTS Metastasis  Lung Hematogenous 0.12 3.78 TETRAPLOID IV monoclonal
PAMO3 PAMO3PT9 Primary Pancreas Primary 0.29 3.81 TETRAPLOID IV monoclonal
PAMO4 PAMO4N Normal Skin v

PAMO4 PAMO4PT]1 Metastasis  Liver Hematogenous 0.27 1.89 DIPLOID v polyclonal
PAMO04 PAMO04PT2 Metastasis  Peritoneal Cavity Direct Seeding 0.23 1.89 DIPLOID v monoclonal
PAMO04 PAMO4PT3 Metastasis  Peritoneal Cavity Direct Seeding 0.24 1.88 DIPLOID v polyclonal
PAMO04 PAMO04PT4 Metastasis  Peritoneal Cavity Direct Seeding 0.23 1.89 DIPLOID v polyclonal
PAMO04 PAMO4PTS Metastasis  Peritoneal Cavity Direct Seeding 0.12 1.89 DIPLOID v monoclonal
PAMO04 PAMO04PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.29 1.87 DIPLOID v polyclonal
PAMO04 PAMO4PT7 Primary Pancreas Primary 0.12 1.89 DIPLOID v polyclonal
PAMO04 PAMO4PTS Primary Pancreas Primary 0.10 1.88 DIPLOID v monoclonal
PAMO04 PAMO4PT9 Primary Pancreas Primary 0.34 1.89 DIPLOID v polyclonal
PAM10 PAM10N Normal Spleen v

PAM10 PAMI10PT1 Metastasis  Peritoneal Cavity Direct Seeding v

PAM10 PAM10PT2 Primary Pancreas Primary v

PAM10 PAMI10PT3 Primary Pancreas Primary v

PAMI10 PAMI0PTS Metastasis  Liver Hematogenous v

PAM104 PAMI104N Normal Skeletal Muscle v

PAM104 PAMIO04PTI Primary Pancreas Primary 0.21 3.89 TETRAPLOID IV monoclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAM104 PAMI104PT2 Metastasis  Liver Hematogenous v

PAMI112 PAMII12N Normal Skin v

PAM112 PAMI12PTI Metastasis  Lung Hematogenous v

PAM112 PAMI112PT3 Primary Pancreas Primary v

PAM119 PAMI1I9N Normal Skeletal Muscle v

PAM119 PAMI19PTI Metastasis  Liver Hematogenous 0.19 2.07 DIPLOID v monoclonal
PAM119 PAMI19PT2 Metastasis  Liver Hematogenous 0.33 2.07 DIPLOID v polyclonal
PAM119 PAMI119PT3 Metastasis  Peritoneal Cavity Direct Seeding 0.38 2.03 DIPLOID v monoclonal
PAM119 PAMI119PT4 Metastasis  Liver Hematogenous 0.21 2.07 DIPLOID v polyclonal
PAM119 PAMI119PT5 Primary Pancreas Primary v

PAM12 PAMI12N Normal Spleen v

PAM12 PAMI12PT1 Primary Pancreas Primary 0.59 5.86 TETRAPLOID IV monoclonal
PAM12 PAMI12PT3 Metastasis Lymph Node Lymphatic 0.60 5.86 TETRAPLOID IV monoclonal
PAM13 PAMI13N Normal Spleen v

PAM13 PAM13PT1 Primary Pancreas Primary v

PAMI3 PAMI13PT2 Metastasis ~ Liver Hematogenous 0.94 1.75 DIPLOID v polyclonal
PAM13 PAM13PT3 Metastasis  Liver Hematogenous 0.67 2.01 DIPLOID v polyclonal
PAMI3 PAM13PT4 Metastasis  Liver Hematogenous  0.88 1.58 DIPLOID v polyclonal
PAM135 PAMI35N Normal Skeletal Muscle v

PAM135 PAMI35PTI Metastasis  Pericardial Sac Unknown 0.25 2.77 DIPLOID v monoclonal
PAMI135 PAMI35PT2 Metastasis  Lung Hematogenous 0.27 3.45 TETRAPLOID IV monoclonal
PAM135 PAMI35PT3 Metastasis ~ Liver Hematogenous 0.35 2.87 DIPLOID v polyclonal
PAM135 PAMI35PT4 Metastasis Diaphragm Unknown 0.47 2.82 DIPLOID v monoclonal
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAM14 PAM14N Normal Spleen v

PAM14 PAMI14PT1 Metastasis  Lung Hematogenous 0.27 2.52 DIPLOID v monoclonal
PAM14 PAM14PT2 Primary Pancreas Primary 0.21 2.52 DIPLOID v monoclonal
PAM14 PAMI14PT3 Primary Pancreas Primary 0.33 2.52 DIPLOID v monoclonal
PAM15 PAMI15N Normal Spleen I

PAM15 PAM15PT1 Primary Pancreas Primary I

PAM15 PAMI15PT2 Primary Pancreas Primary I

PAM16 PAM16N Normal Pancreas v

PAM16 PAM16PT1 Primary Pancreas Primary 0.38 3.25 TETRAPLOID IV monoclonal
PAM16 PAM16PT2 Primary Pancreas Primary 0.44 3.25 TETRAPLOID IV monoclonal
PAM16 PAM16PT3 Metastasis  Liver Hematogenous 0.53 3.25 TETRAPLOID IV monoclonal
PAM16 PAM16PT4 Metastasis Lymph Node Lymphatic 0.54 3.25 TETRAPLOID IV monoclonal
PAM17 PAM17N Normal Pancreas v

PAM17 PAM17PT1 Primary Pancreas Primary 0.22 3.11 TETRAPLOID IV polyclonal
PAM17 PAM17PT2 Primary Pancreas Primary 0.41 3.14 TETRAPLOID IV polyclonal
PAM17 PAM17PT3 Metastasis ~ Liver Hematogenous 0.46 341 TETRAPLOID IV polyclonal
PAM17 PAM17PT4 Metastasis  Peritoneal Cavity Direct Seeding 0.33 321 TETRAPLOID IV polyclonal
PAM17 PAM17PTS Primary Pancreas Primary 0.27 3.13 TETRAPLOID IV polyclonal
PAM18 PAMI18N Normal Skeletal Muscle I

PAM18 PAMI18PT1 Metastasis ~ Liver Hematogenous 0.19 3.35 TETRAPLOID 1II monoclonal
PAM18 PAMI18PT2 Primary Pancreas Primary 0.31 3.35 TETRAPLOID 1II monoclonal
PAM19 PAMI9N Normal Liver v

PAM19 PAMI9N Normal Skeletal Muscle v
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PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAM19 PAMI19PT1 Primary Pancreas Primary v
PAM19 PAMI19PT10 Metastasis  Lung Hematogenous v
PAM19 PAMI19PTI11 Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PT12 Metastasis Diaphragm Unknown v
PAMI19 PAMI19PT14 Metastasis  Liver Hematogenous v
PAM19 PAMI19PT15 Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PT16 Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PT17 Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PT2 Metastasis  Lung Hematogenous v
PAM19 PAMI19PT3 Metastasis  Lung Hematogenous v
PAM19 PAM19PT4 Metastasis Lymph Node Lymphatic v
PAMI19 PAMI9PTS Metastasis  Liver Hematogenous v
PAM19 PAMI19PT6 Metastasis  Lung Hematogenous v
PAM19 PAMI19PT7 Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PTR Metastasis  Peritoneal Cavity Direct Seeding v
PAM19 PAMI19PT9 Metastasis  Lung Hematogenous v
PAM20 PAM20N Normal Liver v
PAM20 PAM20PT1 Primary Pancreas Primary v
PAM20 PAM20PT2 Primary Pancreas Primary v
PAM20 PAM20PT3 Metastasis  Peritoneal Cavity Direct Seeding v
PAM20 PAM20PT4 Metastasis  Peritoneal Cavity Direct Seeding v
PAM20 PAM20PTS Metastasis Diaphragm Unknown v
PAM20 PAM20PT6 Metastasis  Peritoneal Cavity Direct Seeding v
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PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAM21 PAM2IN Normal Spleen I
PAM21 PAM21PT1 Primary Pancreas Primary I
PAM21 PAM21PT2 Primary Pancreas Primary I
PAM21 PAM21PT3 Primary Pancreas Primary I
PAM21 PAM2I1PTS Primary Pancreas Primary I
PAM21 PAM21PT6 Primary Pancreas Primary I
PAM22 PAM22N Normal Skeletal Muscle v
PAM22 PAM22PT1 Primary Pancreas Primary v
PAM22 PAM22PT2 Primary Pancreas Primary v
PAM22 PAM22PT3 Primary Pancreas Primary v
PAM22 PAM22PT4 Primary Pancreas Primary v
PAM22 PAM22PTS Primary Pancreas Primary v
PAM22 PAM22PT6 Primary Pancreas Primary v
PAM22 PAM22PT7 Primary Pancreas Primary v
PAM22 PAM22PTR Primary Pancreas Primary v
PAM22 PAM22PT9 Primary Pancreas Primary v
PAM23 PAM23N Normal Spleen v
PAM23 PAM23PT1 Primary Pancreas Primary v
PAM23 PAM23PT2 Primary Pancreas Primary v
PAM23 PAM23PT3 Primary Pancreas Primary v
PAM23 PAM23PT4 Metastasis  Peritoneal Cavity Direct Seeding v
PAM23 PAM23PTS5 Metastasis  Liver Hematogenous v
PAM24 PAM24N Normal Spleen v
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PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAM24 PAM24PT1 Primary Pancreas Primary 0.20 2.10 DIPLOID v polyclonal
PAM24 PAM24PT10 Metastasis ~ Liver Hematogenous 0.64 2.11 DIPLOID v polyclonal
PAM24 PAM24PT11 Metastasis ~ Liver Hematogenous  0.55 2.09 DIPLOID v polyclonal
PAM24 PAM24PT12 Metastasis  Liver Hematogenous 0.51 2.08 DIPLOID v polyclonal
PAM24 PAM24PT13 Metastasis ~ Liver Hematogenous 0.43 2.09 DIPLOID v polyclonal
PAM24 PAM24PT14 Metastasis  Liver Hematogenous 0.37 2.11 DIPLOID v polyclonal
PAM24 PAM24PT2 Primary Pancreas Primary 0.13 2.12 DIPLOID v monoclonal
PAM24 PAM24PT3 Primary Pancreas Primary 0.14 2.12 DIPLOID v monoclonal
PAM24 PAM24PT4 Primary Pancreas Primary 0.21 2.09 DIPLOID v polyclonal
PAM24 PAM24PTS5 Primary Pancreas Primary 0.11 2.12 DIPLOID v monoclonal
PAM24 PAM24PT6 Primary Pancreas Primary 0.22 2.10 DIPLOID v polyclonal
PAM24 PAM24PT7 Primary Pancreas Primary 0.29 2.12 DIPLOID v monoclonal
PAM24 PAM24PTR Primary Pancreas Primary 0.36 2.10 DIPLOID v polyclonal
PAM24 PAM24PT9 Metastasis  Liver Hematogenous  0.40 2.09 DIPLOID v polyclonal
PAM25 PAM25N Normal Spleen I

PAM25 PAM25PT1 Primary Pancreas Primary 0.33 1.74 DIPLOID I monoclonal
PAM25 PAM25PT2 Primary Pancreas Primary 0.31 1.74 DIPLOID I monoclonal
PAM25 PAM25PT3 Primary Pancreas Primary 0.33 1.74 DIPLOID I monoclonal
PAM26 PAM26N Normal Spleen v

PAM26 PAM26PT1 Primary Pancreas Primary 0.63 3.09 TETRAPLOID IV polyclonal
PAM26 PAM26PT2 Primary Pancreas Primary 0.58 3.17 TETRAPLOID IV polyclonal
PAM26 PAM26PT3 Primary Pancreas Primary 0.67 3.14 TETRAPLOID IV polyclonal
PAM26 PAM26PT4 Primary Pancreas Primary 0.62 3.25 TETRAPLOID IV polyclonal
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Metastatic
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Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAM26 PAM26PTS Primary Pancreas Primary 0.61 3.31 TETRAPLOID IV polyclonal
PAM26 PAM26PT6 Metastasis ~ Liver Hematogenous 0.78 3.22 TETRAPLOID IV polyclonal
PAM26 PAM26PT7 Metastasis ~ Liver Hematogenous 0.84 3.27 TETRAPLOID IV polyclonal
PAM27 PAM27N Normal Spleen I

PAM27 PAM27PT1 Primary Pancreas Primary 0.24 1.97 DIPLOID I monoclonal
PAM27 PAM27PT2 Primary Pancreas Primary 0.25 1.97 DIPLOID I monoclonal
PAM27 PAM27PT3 Primary Pancreas Primary 0.25 1.97 DIPLOID I monoclonal
PAM27 PAM27PT4 Primary Pancreas Primary 0.26 1.97 DIPLOID I monoclonal
PAM27 PAM27PTS Primary Pancreas Primary 0.25 1.97 DIPLOID I monoclonal
PAM27 PAM27PT6 Primary Pancreas Primary 0.14 1.97 DIPLOID I monoclonal
PAM28 PAM28N Normal Liver v

PAM28 PAM28PT1 Primary Pancreas Primary 0.52 3.05 TETRAPLOID IV polyclonal
PAM28 PAM28PT2 Primary Pancreas Primary 0.56 2.61 DIPLOID v polyclonal
PAM28 PAM28PT3 Primary Pancreas Primary 0.48 2.67 DIPLOID v polyclonal
PAM28 PAM28PT4 Metastasis  Liver Hematogenous 0.69 1.91 DIPLOID v monoclonal
PAM28 PAM28PTS Metastasis ~ Liver Hematogenous 0.59 2.02 DIPLOID v polyclonal
PAM29 PAM29N Normal Liver v

PAM29 PAM29PT1 Primary Pancreas Primary 0.20 1.90 DIPLOID v polyclonal
PAM29 PAM29PT2 Primary Pancreas Primary 0.17 1.84 DIPLOID v monoclonal
PAM29 PAM29PT3 Primary Pancreas Primary 0.26 1.88 DIPLOID v polyclonal
PAM29 PAM29PT4 Primary Pancreas Primary 0.38 1.91 DIPLOID v polyclonal
PAM29 PAM29PTS Metastasis  Peritoneal Cavity Direct Seeding 0.47 1.89 DIPLOID v monoclonal
PAM29 PAM29PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.36 1.96 DIPLOID v polyclonal
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PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAM29 PAM29PT7 Metastasis  Peritoneal Cavity Direct Seeding  0.34 1.95 DIPLOID v polyclonal
PAM29 PAM29PTS Metastasis  Peritoneal Cavity Direct Seeding 0.53 1.95 DIPLOID v polyclonal
PAM31 PAM3IN Normal Spleen v

PAM31 PAM31PT1 Primary Pancreas Primary 0.22 1.80 DIPLOID v monoclonal
PAM31 PAM31PT2 Metastasis  Peritoneal Cavity Direct Seeding 0.19 1.80 DIPLOID v monoclonal
PAM31 PAM3IPT3 Metastasis Lymph Node Lymphatic 0.51 1.80 DIPLOID v monoclonal
PAM32 PAM32N Normal Liver v

PAM32 PAM32PT1 Primary Pancreas Primary 0.28 4.10 TETRAPLOID IV polyclonal
PAM32 PAM32PT2 Primary Pancreas Primary 0.69 4.10 TETRAPLOID IV monoclonal
PAM32 PAM32PT3 Metastasis  Lung Hematogenous v

PAM32 PAM32PT4 Metastasis  Lung Hematogenous 0.32 3.90 TETRAPLOID IV monoclonal
PAM32 PAM32PTS5 Metastasis  Adrenal Unknown 0.54 3.92 TETRAPLOID IV polyclonal
PAM32 PAM32PT6 Metastasis  Liver Hematogenous v

PAM33 PAM33N Normal Liver v

PAM33 PAM33PT1 Primary Pancreas Primary v

PAM33 PAM33PT2 Primary Pancreas Primary v

PAM33 PAM33PT3 Metastasis  Liver Hematogenous v

PAM33 PAM33PT4 Metastasis  Liver Hematogenous v

PAM36 PAM36N Normal Breast v

PAM36 PAM36PT1 Primary Pancreas Primary v

PAM36 PAM36PT2 Primary Pancreas Primary v

PAM36 PAM36PT3 Metastasis  Lung Hematogenous v

PAM37 PAM37N Normal Lung v
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PAM37 PAM37PT1 Primary Pancreas Primary IIB

PAM37 PAM37PT3 Metastasis  Liver Hematogenous v

PAM37 PAM37PT4 Metastasis  Liver Hematogenous v

PAM37 PAM37PTS Metastasis  Peritoneal Cavity Direct Seeding v

PAM37 PAM37PT6 Metastasis  Liver Hematogenous v

PAM38 PAM38N Normal Kidney v

PAM38 PAM38PT1 Primary Pancreas Primary I
Locoregional

PAM38 PAM38PT2 Primary recurrence v

PAM38 PAM38PT3 Metastasis  Lung Hematogenous v

PAM38 PAM38PT4 Metastasis  Liver Hematogenous v

PAM39 PAM39N Normal Kidney v

PAM39 PAM39PT1 Primary Pancreas Primary 0.44 321 TETRAPLOID IIA polyclonal
Locoregional

PAM39 PAM39PT2 Primary recurrence 0.35 3.13 TETRAPLOID IV polyclonal
Locoregional

PAM39 PAM39PT3 Primary recurrence 0.19 3.52 TETRAPLOID IV polyclonal

PAM39 PAM39PT4 Metastasis Lymph Node Lymphatic v

PAM39 PAM39PTS Metastasis Lymph Node Lymphatic 0.50 2.98 DIPLOID v polyclonal

PAM39 PAM39PT6 Metastasis ~ Liver Hematogenous 0.64 3.66 TETRAPLOID IV polyclonal

PAM39 PAM39PT7 Metastasis Diaphragm Unknown 0.52 3.04 TETRAPLOID IV polyclonal

PAM39 PAM39PTR Metastasis  Peritoneal Cavity Direct Seeding 0.36 3.13 TETRAPLOID IV polyclonal

PAM39 PAM39PT9 Metastasis  Pelvis Direct Seeding 0.37 3.10 TETRAPLOID IV polyclonal

PAMA40 PAM40N Normal Kidney v

PAMA40 PAMA40PT1 Primary Pancreas Primary IIB
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Locoregional

PAMA40 PAMA40PT2 Primary recurrence 0.29 1.98 DIPLOID v polyclonal
Locoregional

PAMA40 PAMA40PT3 Primary recurrence 0.44 1.99 DIPLOID v polyclonal

PAMA40 PAM40PT4 Metastasis ~ Liver Hematogenous 0.59 2.01 DIPLOID v polyclonal

PAMA40 PAMA40PTS Metastasis ~ Liver Hematogenous 0.18 1.98 DIPLOID v monoclonal

PAMA40 PAMA40PT6 Metastasis  Liver Hematogenous 0.25 1.99 DIPLOID v polyclonal

PAMA40 PAMA40PT7 Metastasis  Liver Hematogenous 0.40 1.98 DIPLOID v polyclonal

PAMA40 PAMA40PTg Metastasis  Liver Hematogenous 0.46 2.02 DIPLOID v monoclonal

PAMA41 PAM4IN Normal Heart v

PAMA41 PAMA41PT1 Primary Pancreas Primary v

PAM41 PAM41PT10 Metastasis  Liver Hematogenous 0.74 2.01 DIPLOID v polyclonal

PAM41 PAM41PT11 Metastasis  Liver Hematogenous 0.69 1.77 DIPLOID v polyclonal
Locoregional

PAM41 PAM41PT2 Primary recurrence 0.75 2.76 DIPLOID v polyclonal

PAM41 PAM41PT3 Metastasis ~ Liver Hematogenous 0.83 2.81 DIPLOID v polyclonal

PAMA41 PAM41PT4 Metastasis ~ Liver Hematogenous 0.92 2.12 DIPLOID v polyclonal

PAMA41 PAMA41PTS Metastasis  Lung Hematogenous 0.62 2.40 DIPLOID v polyclonal

PAMA41 PAMA41PT6 Metastasis  Lung Hematogenous 0.57 242 DIPLOID v polyclonal

PAM41 PAM41PT7 Metastasis  Peritoneal Cavity Direct Seeding 0.86 2.10 DIPLOID v polyclonal

PAMA41 PAMA41PTR8 Metastasis  Liver Hematogenous 0.71 2.47 DIPLOID v polyclonal

PAM41 PAM41PT9 Metastasis  Liver Hematogenous 0.59 2.13 DIPLOID v polyclonal

PAMA42 PAMA42N Normal Kidney v

PAMA42 PAMA42PT1 Primary Pancreas Primary 0.11 3.66 TETRAPLOID IIA monoclonal
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Sample . . Metastatic . . Stage Sample Clonal
PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
Locoregional
PAMA42 PAMA42PT2 Primary recurrence 0.14 3.66 TETRAPLOID IV monoclonal
Locoregional
PAMA42 PAMA42PT3 Primary recurrence 0.20 3.66 TETRAPLOID IV monoclonal
PAMA42 PAMA42PT4 Metastasis  Lung Hematogenous 0.30 3.66 TETRAPLOID IV monoclonal
PAMA42 PAMA42PTS5 Metastasis  Lung Hematogenous 0.28 3.66 TETRAPLOID IV monoclonal
PAMA42 PAMA42PT6 Metastasis  Pericardial Sac Unknown v
PAMA43 PAMA43N Normal Spleen v
PAMA43 PAMA43PT1 Primary Pancreas Primary 0.30 3.22 TETRAPLOID IIB polyclonal
Locoregional
PAMA43 PAM43PT2 Primary recurrence 0.32 3.00 DIPLOID v polyclonal
PAMA43 PAMA43PT3 Metastasis ~ Liver Hematogenous 0.51 2.85 DIPLOID v polyclonal
PAMA43 PAMA43PT4 Metastasis  Retroperitoneum Direct Seeding 0.52 2.86 DIPLOID v polyclonal
PAMA43 PAM43PTS5 Metastasis  Peritoneal Cavity Direct Seeding  0.50 2.88 DIPLOID v polyclonal
PAMA43 PAMA43PT6 Metastasis  Lung Hematogenous 0.44 2.99 DIPLOID v polyclonal
PAMA44 PAM44N Normal Heart v
PAM44 PAM44PT1 Primary Pancreas Primary IIB
Locoregional
PAM44 PAM44PT2 Primary recurrence 0.45 2.03 DIPLOID v polyclonal
Locoregional
PAM44 PAM44PT3 Primary recurrence 0.46 2.00 DIPLOID v polyclonal
PAM44 PAM44PT4 Metastasis ~ Liver Hematogenous 0.44 2.04 DIPLOID v polyclonal
PAM44 PAM44PTS5 Metastasis  Liver Hematogenous 0.38 2.00 DIPLOID v polyclonal
PAMA45 PAMA45N Normal Spleen v
PAMA45 PAMA45PT1 Primary Pancreas Primary 0.22 3.25 TETRAPLOID IIB polyclonal
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Supplemental Table 2 (continued)

Sample . . Metastatic . . Stage Sample Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
Locoregional

PAMA45 PAMA45PT2 Primary recurrence 0.27 3.25 TETRAPLOID IV polyclonal

PAMA45 PAMA45PT3 Metastasis  Peritoneal Cavity Direct Seeding 0.42 3.25 TETRAPLOID IV polyclonal

PAMA45 PAMA45PT4 Metastasis  Peritoneal Cavity Direct Seeding 0.52 3.25 TETRAPLOID IV monoclonal

PAMA45 PAMA45PTS Metastasis Lymph Node Lymphatic 0.20 3.25 TETRAPLOID IV monoclonal

PAMA45 PAMA45PT6 Metastasis Lymph Node Lymphatic 0.18 3.25 TETRAPLOID IV monoclonal

PAMA45 PAMA45PT7 Metastasis Diaphragm Unknown 0.29 3.25 TETRAPLOID IV polyclonal

PAMA45 PAMA45PTR Metastasis  Pelvis Direct Seeding 0.14 3.25 TETRAPLOID IV monoclonal

PAM46 PAM46N Normal Spleen v

PAM46 PAMA46PT1 Primary Pancreas Primary IIB
Locoregional

PAM46 PAM46PT2 Metastasis  recurrence 0.55 3.11 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAMA46PT3 Metastasis  recurrence 0.33 3.08 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAM46PT4 Metastasis  recurrence 0.57 3.02 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAMA46PT5 Metastasis  recurrence 0.71 3.11 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAM46PT6 Metastasis  recurrence 0.70 3.00 DIPLOID v polyclonal
Locoregional

PAM46 PAMA46PT7 Metastasis  recurrence 0.43 3.07 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAMA46PTg8 Metastasis  recurrence 0.42 3.07 TETRAPLOID IV polyclonal
Locoregional

PAM46 PAM46PT9 Metastasis  recurrence 0.53 3.05 TETRAPLOID IV polyclonal

PAMA47 PAMA47N Normal Pancreas v

PAMA47 PAMA47PT1 Metastasis  Liver Hematogenous 0.42 3.16 TETRAPLOID IV polyclonal



S0l

Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMA47 PAMA47PT2 Metastasis  Liver Hematogenous 0.44 3.16 TETRAPLOID IV polyclonal
PAMA47 PAMA47PT3 Metastasis ~ Liver Hematogenous 0.28 3.18 TETRAPLOID IV monoclonal
PAMA47 PAMA47PT4 Primary Pancreas Primary 0.29 3.11 TETRAPLOID IV polyclonal
PAMA47 PAMA47PTS Primary Pancreas Primary 0.32 3.23 TETRAPLOID IV monoclonal
PAMA47 PAMA47PT6 Primary Pancreas Primary 0.24 3.14 TETRAPLOID IV polyclonal
PAMA47 PAMA47PT7 Primary Pancreas Primary 0.42 3.08 TETRAPLOID IV polyclonal
PAM48 PAM48N Normal Heart v

PAM48 PAM48PT]1 Metastasis  Liver Hematogenous 0.67 2.98 DIPLOID v polyclonal
PAM48 PAM48PT2 Metastasis  Liver Hematogenous v

PAMA48 PAMA48PT3 Metastasis  Liver Hematogenous 0.54 2.75 DIPLOID v polyclonal
PAMA48 PAMA48PT4 Metastasis  Liver Hematogenous 0.28 3.10 TETRAPLOID IV polyclonal
PAMA48 PAMA48PTS Metastasis  Liver Hematogenous 0.52 2.52 DIPLOID v polyclonal
PAMA48 PAMA48PT6 Primary Pancreas Primary 0.27 3.12 TETRAPLOID IV polyclonal
PAMA48 PAMA48PT7 Primary Pancreas Primary 0.20 3.03 TETRAPLOID IV polyclonal
PAMA48 PAMA48PTS Primary Pancreas Primary 0.58 2.63 DIPLOID v polyclonal
PAM49 PAM49N Normal Heart v

PAM49 PAM49PT1 Metastasis  Liver Hematogenous 0.53 1.96 DIPLOID v polyclonal
PAMA49 PAMA49PT2 Metastasis  Liver Hematogenous 0.35 1.95 DIPLOID v monoclonal
PAMA49 PAMA49PT3 Metastasis  Peritoneal Cavity Direct Seeding 0.56 2.07 DIPLOID v monoclonal
PAMA49 PAM49PT4 Metastasis Diaphragm Unknown 0.35 2.03 DIPLOID v polyclonal
PAMA49 PAMA49PTS5 Primary Pancreas Primary 0.53 2.06 DIPLOID v polyclonal
PAMA49 PAMA49PT6 Primary Pancreas Primary 0.38 1.95 DIPLOID v polyclonal
PAMA49 PAMA49PT7 Primary Pancreas Primary 0.38 1.97 DIPLOID v polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMS0 PAMS50N Normal Skeletal Muscle v

PAMS0 PAMS0PT1 Metastasis Lymph Node Lymphatic 0.07 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS0PT2 Primary Pancreas Primary 0.12 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS50PT3 Primary Pancreas Primary 0.09 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS50PT4 Primary Pancreas Primary 0.06 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS50PTS Metastasis  Peritoneal Cavity Direct Seeding 0.12 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS50PT6 Metastasis  Peritoneal Cavity Direct Seeding v

PAMS0 PAMS0PT7 Metastasis  Peritoneal Cavity Direct Seeding 0.26 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS50PTS Metastasis  Peritoneal Cavity Direct Seeding 0.33 3.10 TETRAPLOID IV monoclonal
PAMS0 PAMS0PT9 Metastasis  Peritoneal Cavity Direct Seeding 0.28 3.10 TETRAPLOID IV monoclonal
PAMS1 PAMSIN Normal Heart v

PAMS1 PAMSIPTI1 Metastasis Diaphragm Unknown 0.21 1.92 DIPLOID v polyclonal
PAMS1 PAMSIPTI10 Primary Pancreas Primary 0.54 1.88 DIPLOID v polyclonal
PAMS1 PAMSIPTI1 Primary Pancreas Primary 0.34 1.93 DIPLOID v polyclonal
PAMS1 PAMS1PT12 Primary Pancreas Primary v

PAMS1 PAMSI1PT13 Primary Pancreas Primary v

PAMS1 PAMS1PT2 Metastasis  Peritoneal Cavity Direct Seeding 0.34 1.86 DIPLOID v polyclonal
PAMS1 PAMSIPT3 Metastasis  Lung Hematogenous v

PAMS1 PAMS1PT4 Metastasis  Pelvis Direct Seeding 0.37 1.88 DIPLOID v polyclonal
PAMS1 PAMSIPTS Primary Pancreas Primary 0.49 1.86 DIPLOID v polyclonal
PAMS1 PAMSI1PT6 Primary Pancreas Primary 0.27 1.88 DIPLOID v polyclonal
PAMS1 PAMSIPT7 Primary Pancreas Primary 0.51 1.89 DIPLOID v polyclonal
PAMS1 PAMSIPTS Primary Pancreas Primary 0.57 1.87 DIPLOID v polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMS1 PAMSI1PTY9 Primary Pancreas Primary 0.52 1.86 DIPLOID v polyclonal
PAMS2 PAMS52N Normal Kidney v

PAMS2 PAMS2PT1 Metastasis ~ Liver Hematogenous 0.40 3.05 TETRAPLOID IV polyclonal
PAMS2 PAMS52PTI10 Metastasis  Liver Hematogenous  0.68 3.19 TETRAPLOID IV polyclonal
PAMS2 PAMS52PTI11 Metastasis  Lung Hematogenous 0.16 3.01 TETRAPLOID IV polyclonal
PAMS2 PAMS2PT12 Metastasis  unknown Unknown 0.16 3.22 TETRAPLOID IV monoclonal
PAMS2 PAMS52PT13 Primary Pancreas Primary 0.26 2.99 DIPLOID v polyclonal
PAMS2 PAMS52PT14 Primary Pancreas Primary 0.10 2.80 DIPLOID v monoclonal
PAMS2 PAMS52PT15 Primary Pancreas Primary 0.19 2.89 DIPLOID v polyclonal
PAMS2 PAMS52PT16 Primary Pancreas Primary 0.14 2.99 DIPLOID v polyclonal
PAMS2 PAMS2PT17 Primary Pancreas Primary 0.15 2.80 DIPLOID v polyclonal
PAMS2 PAMS2PT18 Primary Pancreas Primary 0.19 3.07 TETRAPLOID IV polyclonal
PAMS2 PAMS52PTI19 Primary Pancreas Primary 0.10 2.80 DIPLOID v monoclonal
PAMS2 PAMS2PT2 Metastasis  Liver Hematogenous 0.47 2.99 DIPLOID v polyclonal
PAMS2 PAMS52PT20 Primary Pancreas Primary 0.12 3.00 TETRAPLOID IV polyclonal
PAMS2 PAMS52PT21 Primary Pancreas Primary 0.28 3.01 TETRAPLOID IV polyclonal
PAMS2 PAMS52PT3 Metastasis  Liver Hematogenous 0.51 3.23 TETRAPLOID IV polyclonal
PAMS2 PAMS52PT4 Metastasis  Liver Hematogenous  0.68 3.10 TETRAPLOID IV polyclonal
PAMS2 PAMS52PTS Metastasis ~ Liver Hematogenous 0.57 3.18 TETRAPLOID IV polyclonal
PAMS2 PAMS52PT6 Metastasis ~ Liver Hematogenous 0.57 3.23 TETRAPLOID IV polyclonal
PAMS2 PAMS2PT7 Metastasis  Adrenal Unknown 0.12 2.80 DIPLOID v polyclonal
PAMS2 PAMS52PTR Metastasis Diaphragm Unknown 0.20 2.97 DIPLOID v polyclonal
PAMS2 PAMS52PT9 Metastasis  Peritoneal Cavity Direct Seeding 0.13 3.20 TETRAPLOID IV polyclonal
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMS3 PAMS3N Normal Heart v

PAMS3 PAMS3PT1 Metastasis ~ Liver Hematogenous 0.33 2.77 DIPLOID v polyclonal
PAMS3 PAMS53PT2 Metastasis ~ Liver Hematogenous 0.73 2.77 DIPLOID v polyclonal
PAMS3 PAMS53PT3 Metastasis  Peritoneal Cavity Direct Seeding 0.26 3.12 TETRAPLOID IV polyclonal
PAMS3 PAMS53PT4 Primary Pancreas Primary 0.54 2.65 DIPLOID v polyclonal
PAMS3 PAMS3PTS Primary Pancreas Primary 0.51 2.44 DIPLOID v polyclonal
PAMS54 PAMS4N Normal Heart v

PAMS54 PAMS54PT1 Metastasis  Lung Hematogenous  0.45 2.62 DIPLOID v polyclonal
PAMS54 PAMS54PT10 Primary Pancreas Primary 0.60 2.63 DIPLOID v polyclonal
PAMS54 PAMS54PT11 Primary Pancreas Primary 0.58 2.61 DIPLOID v polyclonal
PAMS54 PAMS54PT12 Primary Pancreas Primary 0.61 2.61 DIPLOID v polyclonal
PAMS54 PAMS54PT13 Primary Pancreas Primary 0.50 2.61 DIPLOID v polyclonal
PAMS54 PAMS54PT14 Primary Pancreas Primary v

PAMS54 PAMS54PT15 Primary Pancreas Primary 0.24 2.57 DIPLOID v polyclonal
PAMS54 PAMS54PT2 Metastasis  Liver Hematogenous 0.57 2.62 DIPLOID v polyclonal
PAMS54 PAMS4PT3 Metastasis ~ Liver Hematogenous 0.35 2.58 DIPLOID v polyclonal
PAMS54 PAMS54PT4 Metastasis  Liver Hematogenous 0.31 2.57 DIPLOID v polyclonal
PAMS54 PAMS54PTS Metastasis  Liver Hematogenous 0.72 2.57 DIPLOID v monoclonal
PAMS54 PAMS54PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.59 2.57 DIPLOID v polyclonal
PAMS54 PAMS54PT7 Primary Pancreas Primary 0.56 2.62 DIPLOID v polyclonal
PAMS54 PAMS54PTR Primary Pancreas Primary 0.41 2.59 DIPLOID v polyclonal
PAMS54 PAMS54PT9 Primary Pancreas Primary 0.54 2.59 DIPLOID v polyclonal
PAMSS PAMSSN Normal Heart v
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMSS PAMSSPTI1 Metastasis  Liver Hematogenous 0.34 3.51 TETRAPLOID IV polyclonal
PAMSS PAMS5S5PTI10 Primary Pancreas Primary 0.20 3.45 TETRAPLOID IV polyclonal
PAMSS PAMS5S5PTI11 Primary Pancreas Primary 0.25 3.53 TETRAPLOID IV polyclonal
PAMSS PAMSS5PT12 Primary Pancreas Primary v

PAMSS PAMS55PT2 Metastasis  Retroperitoneum Direct Seeding 0.62 3.56 TETRAPLOID IV polyclonal
PAMSS PAMS5S5PT3 Metastasis  Retroperitoneum Direct Seeding 0.52 3.55 TETRAPLOID IV polyclonal
PAMSS PAMS55PT4 Metastasis  Retroperitoneum Direct Seeding  0.65 3.56 TETRAPLOID IV polyclonal
PAMSS PAMS5SPTS Primary Pancreas Primary 0.29 3.50 TETRAPLOID IV polyclonal
PAMSS PAMS55PT6 Primary Pancreas Primary 0.81 3.54 TETRAPLOID IV polyclonal
PAMSS PAMSSPT7 Primary Pancreas Primary 0.16 3.53 TETRAPLOID IV polyclonal
PAMSS PAMS5S5PTR Primary Pancreas Primary 0.18 3.53 TETRAPLOID IV polyclonal
PAMSS PAMS55PT9 Primary Pancreas Primary 0.28 3.49 TETRAPLOID IV polyclonal
PAMS56 PAMS56N Normal Skeletal Muscle v

PAMS56 PAMS6PT1 Metastasis  Lung Hematogenous v

PAMS56 PAMS6PT2 Metastasis  Liver Hematogenous 0.58 2.52 DIPLOID v monoclonal
PAMS56 PAMS56PT3 Metastasis ~ Liver Hematogenous 0.51 2.73 DIPLOID v polyclonal
PAMS56 PAMS56PT4 Metastasis  Liver Hematogenous 0.61 2.71 DIPLOID v polyclonal
PAMS56 PAMS56PTS Primary Pancreas Primary 0.52 2.74 DIPLOID v polyclonal
PAMS56 PAMS56PT6 Primary Pancreas Primary 0.53 2.72 DIPLOID v polyclonal
PAMS56 PAMS6PT7 Primary Pancreas Primary 0.59 2.60 DIPLOID v polyclonal
PAMS56 PAMS56PTS Primary Pancreas Primary 0.61 2.64 DIPLOID v polyclonal
PAMS7 PAMS5TN Normal Skeletal Muscle v

PAMS7 PAMS7PT1 Metastasis Lymph Node Lymphatic 0.44 1.78 DIPLOID v polyclonal
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Supplemental Table 2 (continued)

PAMID PAM Sample ID 2?:;5“ Tissue Site i‘f:;i‘ztaﬁc Purity Ploidy WGD status zt;%:cfj;“ple g:ﬁ::;tsi ion
PAMS57 PAMS7PT2 Metastasis  Lung Hematogenous v

PAMS7 PAMS57PT3 Metastasis  Lung Hematogenous 0.17 1.81 DIPLOID v monoclonal
PAMS57 PAMS57PT4 Metastasis ~ Liver Hematogenous 0.40 1.85 DIPLOID v polyclonal
PAMS57 PAMS57PTS Metastasis  Liver Hematogenous 0.31 1.80 DIPLOID v polyclonal
PAMS7 PAMS57PT6 Metastasis ~ Liver Hematogenous 0.23 1.84 DIPLOID v polyclonal
PAMS57 PAMS7PT7 Primary Pancreas Primary 0.21 1.86 DIPLOID v polyclonal
PAM66 PAM66N Normal Liver v

PAM66 PAM66PT1 Primary Pancreas Primary v

PAM66 PAM66PT2 Primary Pancreas Primary 0.49 4.20 TETRAPLOID IV monoclonal
PAM66 PAM66PT3 Metastasis ~ Pelvis Direct Seeding v

PAM66 PAM66PT4 Metastasis  Peritoneal Cavity Direct Seeding v

PAM66 PAMG66PTS Primary Pancreas Primary v

PAM66 PAM66PT6 Primary Pancreas Primary v

PAM66 PAM66PT7 Primary Pancreas Primary v

PAM66 PAM66PTS Primary Pancreas Primary v

PAMG67 PAM67N Normal Kidney v

PAMG67 PAM67PT1 Metastasis  Peritoneal Cavity Direct Seeding v

PAMG67 PAM67PT2 Primary Pancreas Primary 0.26 291 DIPLOID v polyclonal
PAMG67 PAM67PT3 Metastasis Diaphragm Unknown v

PAMG67 PAM67PT4 Metastasis  Lung Hematogenous 0.15 2.88 DIPLOID v polyclonal
PAMG67 PAMG67PTS Metastasis  Liver Hematogenous v

PAMG67 PAM67PT6 Metastasis  Peritoneal Cavity Direct Seeding 0.23 2.71 DIPLOID v polyclonal
PAMSS PAMSESN Normal Skeletal Muscle v
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Supplemental Table 2 (continued)

Sample

Metastatic

Stage Sample

Clonal

PAMID PAM Sample ID Class Tissue Site Route Purity Ploidy WGD status Collected Composition
PAMSS PAMSSPT1 Primary Pancreas Primary v

PAMSS PAMSSPT2 Primary Pancreas Primary 0.27 3.35 TETRAPLOID IV polyclonal
PAMSS PAMSSPT3 Primary Pancreas Primary 0.29 3.33 TETRAPLOID IV polyclonal
PAMSS PAMS88PT4 Metastasis  Liver Hematogenous 0.82 3.43 TETRAPLOID IV polyclonal
PAMSS PAMSSPTS Metastasis ~ Liver Hematogenous 0.69 3.29 TETRAPLOID IV polyclonal
PAMSS PAMS8SPT6 Metastasis  Liver Hematogenous 0.53 3.32 TETRAPLOID IV polyclonal
PAM97 PAMO97N Normal Liver v

PAM97 PAMO97PT1 Metastasis  Peritoneal Cavity Direct Seeding 0.25 1.85 DIPLOID v monoclonal
PAM97 PAMO97PT2 Metastasis  Peritoneal Cavity Direct Seeding v

PAM97 PAMO97PT3 Primary Pancreas Primary v

PAM97 PAMO97PT4 Metastasis  Peritoneal Cavity Direct Seeding 0.23 1.85 DIPLOID v monoclonal
PAM97 PAMO97PTS Metastasis  Peritoneal Cavity Direct Seeding 0.22 1.85 DIPLOID v monoclonal
PAM97 PAMO97PT6 Metastasis  Peritoneal Cavity Direct Seeding v

PAMO98 PAMOSN Normal Heart v

PAMOS PAMOISPT1 Metastasis Lymph Node Lymphatic 0.44 3.65 TETRAPLOID IV monoclonal
PAMOS PAMO98PT2 Metastasis Lymph Node Lymphatic 0.38 3.63 TETRAPLOID IV polyclonal
PAMOS PAMO9SPT3 Metastasis  Diaphragm Unknown 0.52 3.66 TETRAPLOID IV polyclonal
PAMOS PAMO98PT4 Metastasis ~ Peritoneal Cavity Direct Seeding 0.59 3.67 TETRAPLOID IV polyclonal
PAMOS PAMOSPTS Metastasis  Peritoneal Cavity Direct Seeding 0.47 3.69 TETRAPLOID IV polyclonal
PAMOS PAMO98PT6 Metastasis  Peritoneal Cavity Direct Seeding  0.61 3.63 TETRAPLOID IV polyclonal
PAMOS PAMO9SPT7 Metastasis ~ Liver Hematogenous 0.72 3.63 TETRAPLOID IV polyclonal
PAMOS PAMO9SPTS Metastasis  Peritoneal Cavity Direct Seeding 0.48 3.62 TETRAPLOID IV polyclonal

Patients with a ploidy value > 3 were considered tetraploid. Cells without purity, ploidy, or a WGD status indicate samples that could not be analyzed by

HATCHet.



