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Abstract

In the time-to-event setting, the concordance probability assesses the relative

level of agreement between a model-based risk score and the survival time of a

patient. While it provides a measure of discrimination over the entire follow-up

period of a study, the probability does not provide information on the longitudinal

durability of a baseline risk score. It is possible that a baseline risk model is

able to segregate short-term from long-term survivors but unable to maintain its

discriminatory strength later in the follow-up period. As a consequence, this would

motivate clinicians to re-evaluate the risk score longitudinally. This longitudinal

re-evaluation may not, however, be feasible in many scenarios since a single baseline

evaluation may be the only data collectible due to treatment or other clinical or

ethical reasons. In these scenarios, an attenuation of the discriminatory power of

the patient risk score over time would indicate decreased clinical utility and call into

question whether this score should remain a prognostic tool at later time points.

Working within the concordance probability paradigm, we propose a method to

address this clinical scenario and evaluate the discriminatory power of a baseline

derived risk score over time. The methodology is illustrated with two examples: a

baseline risk score in colorectal cancer defined at the time of tumor resection, and

for circulating tumor cells in metastatic prostate cancer.

1 Introduction

Biomarker discovery has become an integral part of clinical research and the number of

potential biomarkers has grown exponentially with the advent of molecular technologies.

These developments have led to the need for specialized statistical methods focusing
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on the evaluation of novel markers and their utility within statistical models for the

prediction of clinical outcomes.

One common tool to assess the performance of a statistical model is the concordance

probability. For survival models, the concordance probability assesses the relative level

of agreement between the model-based risk scores and the survival times of patients. An

estimate of the concordance probability, however, does not provide information on the

durability of a baseline risk score over time. This is a critical component when integrating

new biomarkers into clinical care and patient surveillance.

If a model is able to segregate short-term from long-term survivors but unable to

maintain its discriminatory strength later in the follow-up period, this would motivate

re-evaluation of the risk score longitudinally. This re-evaluation may not, however, be

feasible for all biomarkers contained in the risk score; a single baseline measurement may

be the only possibility. For example, in patients whose tumors are completely resected, it

is not possible to obtain longitudinal measurements of tumor biomarkers, which require

pathological evaluation. Even when the tumor is not resected it may be unethical to

obtain post-baseline biopsies. Alternatively, cost considerations of novel technologies,

such as new imaging biomarkers, may render repeated measurements impractical. In

these scenarios, an attenuation of the discriminatory power of the patient risk score over

time would indicate decreased model clinical utility and call into question whether it

should remain part of the diagnostician’s armamentarium. The methodology proposed

in this manuscript addresses this clinical scenario. Working within the concordance

probability paradigm, we propose a method to evaluate the discriminatory power over

time of a baseline or peri-treatment derived risk score.

The proposed methodology outlined in this manuscript differs from the dynamic land-
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marking approach (for example, see Van Houwelingen 2007) as we focus on how the dis-

criminatory ability of a baseline risk score changes over time instead of assessing how

hazard ratio estimates of a biomarker change through repeated landmarks. The consid-

ered clinical setting is analogous to Heagerty and Zheng (2005) and Parast and Cai (2013)

as both evaluate discrimination of a baseline risk score either at a point in time or over

a time period. We review both approaches in the following section. The contribution

of this manuscript is how the discrimination over time can be derived as a model-based

concordance probability estimate, and we highlight scenarios when such an estimation

procedure is advantageous.

The methodology is illustrated in two examples. The first example estimates the

discrimination of a baseline risk score evaluated at the time of tumor resection in col-

orectal cancer. The risk score incorporates information of the surgically removed tumor,

and therefore cannot be longitudinally reassessed. The second example evaluates the

clinical utility of a relatively new diagnostic biomarker, circulating tumor cells (CTC),

in metastatic prostate cancer research. The introduction of CTC to assess prognosis

for patients with metastatic prostate cancer has improved the magnitude of the esti-

mated concordance probability (Scher et al. 2009; Heller et al. 2017). However, due to

cost considerations, CTC are not used throughout patient follow-up to monitor disease

progression. While baseline CTC has strong overall discriminatory power, it is unclear

whether the baseline CTC maintains its strength uniformly throughout the follow-up

period, and hence whether the early evaluation is sufficient for clinical decisions made

throughout the follow-up period.

The article continues with Section 2 providing concordance probability definitions,

modeling approaches, and the extension of the methodology to the clinical scenario under
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consideration. Section 3 presents various simulation scenarios to assess the operating

characteristics of the proposed approach. Section 4 illustrates the use of the methodology

by applying it to the evaluation of a surgical risk score in colorectal cancer and CTCs for

metastatic prostate cancer. The article concludes in Section 5 with a discussion of the

key results and implications for future use.

2 Methods

For a survival outcome, the concordance probability is defined as

Pr[βTX2 > β
TX1|T1 > T2, T2 < τ ], (1)

where βTX represents a model-based risk score composed of a linear combination of

risk factors X, patient survival time T , and τ denotes the maximum follow-up time

under consideration. The concordance probability ranges between 0.5 and 1.0, where

1.0 represents perfect concordance between the risk score and the survival time and 0.5

indicates no relationship between them. In this paper, it is assumed that the risk score

is derived using the proportional hazards model

h(t|x) = h0(t) exp[βTx],

although other models may be utilized, such as the proportional odds model (see Zhang

and Shao, 2018).

The most frequently applied estimate of the concordance probability is the c-index

C∗n(β̂; τ) =

∑
i

∑
j 6=i δjI(yj < yi, yj < τ)I(β̂

T
xi < β̂

T
xj)∑

i

∑
j 6=i δjI(yj < yi, yj < τ)

,

5



where for each individual, y represents the minimum of the survival time and censoring

time, δ is an indicator function denoting whether the observed time is the survival time,

and β̂ is the estimated regression coefficient from the proportional hazards model (Harrell

et al. 1996; Pencina and D’Agostino 2004) . This concordance measure is robust to model

misspecification in that it does not require a properly specified model, used to create the

risk score, for its interpretation. The c-index, however, does not consistently estimate

the concordance probability (1). As a result, the weighted c-index was developed

Cn(β̂; τ) =

∑
i

∑
j 6=i δjI(yj < yi, yj < τ)I(β̂

T
xi < β̂

T
xj){Ĝ(yj)}−2∑

i

∑
j 6=i δjI(yj < yi, yj < τ){Ĝ(yj)}−2,

.

where G is the survival function of the underlying censoring times. (Uno et al., 2011) The

weighted c-index is consistent and asymptotically normal, but utilizes inverse probability

censoring weights (IPCW), and as a result, may be sensitive to large failure times. In

addition, if the censoring distribution is a function of the covariates, then IPCW may

require a model based conditional survival function to specify this relationship (Gerds et

al. 2013).

An alternative measure of concordance with survival data, under proportional haz-

ards, is the concordance probability estimate (Gönen and Heller 2005). The concordance

probability estimate (CPE) defined under a maximum follow-up time (τ) is

Kn(β̂; τ) =∑
i

∑
j 6=i I(β̂

T
xi < β̂

T
xj)
[
1 + exp{β̂

T
(xi − xj)}

]−1 [
1− Ŝ(τ |xi)Ŝ(τ |xj)

]
0.5 ×

∑
i

∑
j 6=i

[
1− Ŝ(τ |xi)Ŝ(τ |xj)

] ,

where Ŝ(t|x) represents the estimated survival function from the Cox model.

When the proportional hazards assumption is correct and the risk score is continu-

ous, the CPE consistently estimates the concordance probability (1). Estimation of the
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concordance probability when the risk score is discrete has additionally been developed

(Heller and Mo, 2016). The consistency of the CPE is unaffected by the conditionally

independent censoring distribution and does not require an external inverse probability

weight to derive desirable asymptotic properties. The CPE, however, does require a

properly specified proportional hazards model for its consistency and interpretation.

The concordance probability parameter (1) is an evaluation of the baseline risk score

ordering relative to the ordered survival times. To assess the prognostic utility of the

risk scores for patients who survive beyond time s, when the risk score has not been

updated, the concordance probability is modified so that the evaluation occurs in a

bounded interval

Pr[βTX2 > β
TX1|T1 > T2, s < T2 < τ ].

The weighted c-index estimate of the concordance probability, evaluated within the

interval (s, τ), is

Cn(β̂; s, τ) =

∑
i

∑
j 6=i δjI(yj < yi, s < yj < τ)I(β̂

T
xi < β̂

T
xj){Ĝ(yj)}−2∑

i

∑
j 6=i δjI(yj < yi, s < yj < τ){Ĝ(yj)}−2

. (2)

This derivation is analogous to Parast and Cai (2013) where the performance of a risk

score is evaluated at a specific time point instead of a time interval.

The corresponding CPE is Kn(β̂; s, τ) =

∑
i

∑
j 6=i I(β̂

T
xi < β̂

T
xj)
[
1 + exp{β̂

T
(xi − xj)}

]−1 [
Ŝ(s|xi)Ŝ(s|xj)− Ŝ(τ |xi)Ŝ(τ |xj)

]
0.5 ×

∑
i

∑
j 6=i

[
Ŝ(s|xi)Ŝ(s|xj)− Ŝ(τ |xi)Ŝ(τ |xj)

]
(3)

A derivation of this estimate and its asymptotic normal distribution is provided in Sup-

plemental Section A.1.

An alternative approach to the measurement of post-baseline discrimination is the
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area under the curve (AUC) estimate developed by Heagerty and Zheng (2005). The

authors estimated the local AUC under proportional hazards using the model-derived

estimates of sensitivity and specificity proposed by Xu and O’Quigley (2005). This esti-

mate provides a measure of discrimination at a given point during follow-up, in contrast

to our approach, which is based on a follow-up time interval. However, using integration

of these estimates over time, the concordance probability can be estimated in the interval

(s, τ) using

An(β̂; s, τ) =

∫ τ

s

ÂUC(t) ŵ(t) dt, (4)

where the weight function w(t) is estimated using a discrete approximation to the survival

time density function, via the jumps in the Kaplan-Meier estimate. A necessary condition

for this estimation procedure is that the censoring time is independent of the survival

time and the covariate.

Throughout the manuscript, equations (2), (3), and (4) are referred to as the weighted

c-index, CPE, and the integrated AUC, respectively.

3 Simulations

3.1 Independent Censoring Under Proportional Hazards

Two simulation scenarios evaluated the performance of the weighted c-index, integrated

AUC, and CPE under proportional hazards when the censoring distribution is indepen-

dent of the survival time and the biomarker. Under the first scenario, the true concor-

dance remained high and near constant as the distance away from baseline s increased

and the evaluation interval moved away from baseline. Under the second scenario, the
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true concordance decreased from high to a level that indicates that while the marker is

associated with survival, its usefulness for risk stratification is unclear. The value of τ

was fixed in each scenario based on the underlying censoring distribution, as described

below.

Data under both scenarios were generated from a proportional hazards relationship

using the Weibull regression model ti = exp{1− 0.2xi} × εi, and εi were generated from

independent and identically distributed Weibull random variables with scale parameter 1

and shape parameter 4, which produced a true concordance probability from baseline risk

scores equal to approximately 0.70. The distribution of biomarker xi differed across the

two simulation scenarios: the first scenario used a standard normal distribution, N(0,1),

while the second used a log-normal distribution, LN(µ=0, σ=1). The latter distribution

is evaluated as its longer tail enables greater variability in the risk scores, producing a

greater range in the true concordance as s increases.

Censoring times were generated from a uniform distribution Un(0, b), and b varied

to correspond to censoring proportions of 25%, 50% and 75% in both scenarios. The

values of b were 3.18, 5.05, and 10.1 for the normal marker distribution. In this scenario,

τ = 3.18 and s varied across four equally spaced values between 0 and 3
5
× τ . When

xi was generated from a log-normal distribution, b=2.36, 3.75, and 7.5, and τ = 2.36.

If τ exceeded the maximum of the simulated survival times within an iteration, it was

truncated to the observed maximal event time.

The relative performance of the weighted c-index, integrated AUC, and CPE were

compared based on the average bias and the relative efficiency. In addition, the estimated

standard error of these estimates were evaluated relative to their simulation standard

errors. The CPE and the integrated AUC utilized bootstrap resampling to estimate the
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standard error, while the weighted c-index used a perturbation-resampling method as

previously described (Uno et al., 2011).

The sample size for all simulations was 300, and the simulation results were averaged

across 2,000 iterations. The values for the true underlying concordance probability for

various values of s were approximated by the average of 2,000 iterations with 3,000

uncensored observations.

The first row of Figure 1 provides a graphical summary of the results for the sim-

ulation using a standard normal marker distribution. The results are also presented in

Supplemental Table S1. All three approaches were minimally biased. The average esti-

mated standard error aligned closely with the simulation standard error for all estimates

in Table S1, except for the weighted c-index with 75% censoring. In any given sce-

nario, the standard error for the model-based CPE and integrated AUC were lower than

the weighted c-index; this translated into improved efficiency of CPE over the weighted

c-index. There were marginal gains in efficiency of CPE over the integrated AUC.

The results for the log-normal marker distribution are provided in the second row of

Figure 1 and Table S2. All approaches were again minimally biased across the various s

values; the bias increased slightly for the higher censoring proportions. There were larger

gains in relative efficiency of CPE over the weighted c-index due to the smaller standard

error for the CPE. This was most notable for higher degrees of censoring and larger

values of s. While smaller than the gains for CPE compared to the weighted c-index, the

relative efficacy improvement of CPE over the integrated AUC ranged from 21% to 61%

across the values of s.
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3.2 Conditionally Independent Censoring Under Proportional

Hazards

Data were generated under two scenarios where the censoring distribution depends on the

value of the biomarker, inducing survival times conditionally independent of censoring

times. Data were again generated using the Weibull regression model ti = exp{1 −

0.2xi} × εi and εi were generated from Weibull random variables with scale parameter

1 and shape parameter 4. The distribution of the biomarker xi was the same as the

previous scenarios: standard normal for the first scenario and log-normal for the second

scenario. However, the censoring times were now generated as exp{a− 0.2xi}× εi, where

a was selected to achieve censoring proportions of 25%, 50% and 75% and εi was similarly

from a Weibull distribution with scale parameter 1 and shape parameter 4. In the first

scenario, under a normal marker distribution, the values of a were 1.274, 1.0, and 0.726.

Under the log-normal marker distribution, the values were 1.275, 1.0, and 0.726.

Results are shown in Figure 2 and tables S3 and S4. As expected, the average bias

for the weighted c-index and integrated AUC were substantial, particularly under higher

degrees of censoring and under the lognormal marker distribution. CPE remains unbiased

under conditionally independent censoring. The large average bias difference across the

methods translated to considerable gains in efficiency for CPE compared to either the

weighted c-index or integrated AUC.

3.3 Non-proportional Hazards

Two simulation scenarios compared the relative performance of the three methods under

non-proportional hazards. The data generation process for both simulations used a stan-
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dard normal distribution for xi and a Weibull regression model ti = exp{1− 0.6xi} × εi.

However, now εi were generated from Weibull random variables with scale parameter of 1

and shape parameter that depends on xi to induce non-proportional hazards. In the first

simulation scenario, designed to represent a minor deviation from proportional hazards,

the shape was equal to 1− 0.1xi. In the second scenario, representing a larger deviation,

the shape was equal to 1− 0.175xi.

For each of the 2,000 simulated data sets with 300 observations, the deviation from

the proportional hazards assumption was evaluated using a score test of a time-varying

interaction with xi (Grambsch and Therneau 1994). In the first scenario, the test was

rejected in 18%, 14%, and 9% of the simulations when the censoring proportion was

25%, 50%, and 75%, respectively. Without censoring, the test is rejected in 22% of

the simulations. In the second scenario, the test was rejected in 52%, 39%, and 22%,

respectively, of the simulations; without censoring, the rejection rate was 62%.

Censoring times were similarly generated from a uniform distribution Un(0, b). The

values of b were 1.504, 4.5, and 12.04 in the first scenario and 1.51, 4.6, and 12.25 in the

second scenario.

Figure 3 along with tables S5 and S6 provide the average bias, standard error,

and relative efficiency for the two scenarios. As anticipated the biases for CPE and

integrated AUC were larger for the simulation with a larger deviation from proportional

hazards. For both scenarios, the bias decreased as the censoring proportion increased.

The weighted c-index maintained a minimal bias in both scenarios.

While having a large bias, the estimated standard error for CPE was notably smaller

than the weighted c-index across all scenarios. This translated to a gain in relative effi-

ciency when either s moved away from 0, where the weighted c-index has less information,
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or the censoring rate increased. There were minimal gains in efficiency for CPE compared

to the integrated AUC.

3.4 Summary

Under the evaluated scenarios, CPE performed as well or better than the integrated

AUC. The largest advantage to CPE was observed when the marker followed a long

tailed distribution and when the survival times were conditionally independent of the

censoring times. Therefore, CPE is advantageous to the integrated AUC as it is valid

under both independent censoring and conditionally independent censoring.

The improvement in efficiency for the model based CPE relative to the nonparametric

weighted c-index is expected, but requires that the proportional hazards specification is

correct. The gain in precision when using CPE translates in practice into tighter 95%

confidence bounds, so CPE will provide clearer evidence of the strength or weakness of

a model.

Finally, CPE may be considerably biased under non-proportional hazards. However,

the largest biases were observed under the scenarios when the score test had moderate-

to-high power to reject the hypothesis that there is no time-varying interaction with

xi. This highlights the importance of investigating the proportional hazards assumption

prior to any data analysis.

Therefore, if the analyst deems a data set to be well approximated by proportional

hazards, CPE would be an efficient and unbiased approach to estimate the temporal

discrimination of a baseline risk score.
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4 Data Analysis

4.1 Analysis of a Surgical Risk-score for Colorectal Cancer

Primary treatment for localized colorectal cancer is surgical resection of the tumor. In

this example we develop a risk score for 1,364 colorectal cancer patients at the time of the

surgical resection of the tumor. There are a number of important applications of this risk

score. Many of these patients recur and there is some evidence that post-operative (adju-

vant) chemotherapy is beneficial in reducing recurrence rates. This needs to be balanced

with the morbidity and costs of treatment. An accurate risk score helps physicians select

patients for adjuvant treatment. Some patients, however, are unable to start chemother-

apy shortly after resection, and hence it is important to determine whether the baseline

risk score remains informative 6-12 months post surgery. Another application for the

baseline risk score is to determine the intensity of surveillance. Patients at high risk are

evaluated with imaging, lab tests and clinical exams more often after the resection when

compared with low risk patients. Whether a particular surveillance schema, formulated

at baseline, is appropriate, is again a function of the accuracy of the risk score over time.

The risk score was a weighted combination of the characteristics of the resected tumor

in addition to the patient’s age and comorbidity score. The tumor characteristics included

the tumor size (T-stage), whether the cancer cells were well or poorly differentiated, and

the number of positive lymph nodes removed during surgery. The weighted combination

for the risk score was generated under a proportional hazards model. The discriminatory

strength of the baseline risk score was evaluated over different time intervals. The lower

bound s of the time interval varied from 0 to 36 months. The upper bound τ was fixed at

50 months; the estimated survival probability at this time was 0.66 (95% CI: 0.63-0.68).
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A total of 139 patients died by 50 months following surgery.

To examine the appropriateness of the proposed estimation process to these data, the

proportional hazards assumption was examined. In Supplemental Figure S1, the loess

curve of the scaled Schoenfeld residuals + β̂ for each of the covariates was approximately

constant with respect to time. In addition, the global test of the proportional hazards

assumption had a corresponding p-value of 0.945; the p-value for each individual covariate

score test is shown in Supplemental Figure S1. Collectively, this suggests the data may

be suitably modeled by proportional hazards, leading to the use of the CPE to evaluate

the temporal prognostic utility of the surgical risk score.

The CPEs for the different values of s are provided in Figure 4. When the lower bound

started from the baseline at s = 0, indicating that the entire follow-up time up until τ

is used to compute the CPE, the estimated concordance was relatively high at 0.671

(95% CI: 0.650-0.692). Further, the estimated concordance only minimally decreased as

s moved away from 0. The estimated concordance was 0.666 (95% CI:0.646-0.686) when

estimated between 12 and 50 months, and 0.653 (0.632-0.674) between 36 and 50 months.

These results suggest that the risk score defined at the time of surgical resection of

the tumor is able to retain its discriminatory ability following the baseline evaluation.

At 12 months following resection, there has been only a minimal decrease of 0.005 in

the estimated concordance probability; therefore, the risk score continues to segregate

those at highest risk of death at this post-surgery landmark time. This may be useful

for patient surveillance in the year following surgery even though the risk score cannot

be updated over time.
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4.2 Analysis of CTC for Metastatic Prostate Cancer

The biomarker circulating tumor cells (CTC) was evaluated on 332 patients with metastatic

castration-resistant prostate cancer at the time of treatment. While the discriminatory

power of the baseline and peritreatment CTC have been previously described, the dura-

tion of time the baseline marker remains discriminatory for survival is unknown. This

information will inform the duration of time the CTC evaluation can be used as part

of clinical prognostication; currently the cost associated with the CTC assay precludes

long-term follow-up evaluation in many settings.

The concordance probabilities for baseline CTC were evaluated over the same inter-

vals as the previous example. The lower bound s of the time interval varied from 0 to

36 months and the upper bound τ was fixed at 50 months. The estimated survival prob-

ability at 50 months was 0.03 (95% CI: 0.01-0.09). A total of 243 patients died during

the follow-up period. Baseline CTC was log-transformed in the analysis.

The graphical examination of the proportional hazards assumption (Supplemental

Figure S2), and the score test for a time-varying interaction with CTC (p-value = 0.81),

suggested that the data may be suitably modeled by proportional hazards.

Figure 5(A) provides the CPEs for CTC. When the lower bound started from the

baseline at s = 0, indicating that the entire follow-up time up until τ is used to compute

the CPE, CTC has a high discriminatory ability: the estimated concordance for CTC was

0.693 (95% CI: 0.659-0.726). However, as the survival time conditioning set moved away

from baseline, the estimated concordance for baseline CTC dropped. For patients who

survived at least 36 months, the estimated concordance for CTC was 0.633 (0.544-0.722).

These results illustrate that while baseline CTC has strong overall discrimination, it
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loses its discriminatory power for patients surviving later in the follow up period. The

implication is that the removal of the earliest failures attenuates the CPE for baseline

CTC. To further demonstrate this finding, the CPE interval measure is reoriented to

assess the CPE in the follow-up interval (0, t), where 0 < t < 24 months. This conjecture

is corroborated in Figure 5(B), where by retaining the earliest failures in the conditioning

set (0, t), the CPE remains stable at approximately 0.70 for a follow-up period out to 24

months.

Therefore, while baseline CTC may have a high degree of prognostic utility when

evaluated, the drop in discrimination over time casts doubt on whether the baseline

marker should be used for disease management 12-24 months following evaluation. Due

to cost considerations, however, early evaluation is its primary usage.

5 Discussion

Commonly applied predictive accuracy methods for survival models include measures of

calibration and discrimination. Calibration computes how close the model predictions are

to the true survival times while discrimination calculates the models ability to distinguish

between long-term and short-term survivors. In this article we focus on discrimination

and present a novel method to evaluate the durability in the concordance probability

over time for a baseline risk score in the setting of a censored time-to-event outcome.

A decrease in the discriminatory power may indicate that the baseline biomarker has

diminishing clinical utility over time. This is an apposite consideration in oncology, as

there are many new prognostic biomarkers being integrated into cancer clinical care.
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We illustrated the proposed methodology with a risk score developed at the time of

surgical resection in colorectal cancer that retains its discrimination over a year following

surgery, and for a new marker in metastatic prostate cancer with high yet decreasing

discrimination.

In addition to the three methods evaluated in this manuscript, we additionally consid-

ered a landmark-based CPE approach, analogous to the weighted c-index in Equation (2).

In this approach, the concordance was estimated just among individuals who remained

at risk at the landmark time (denoted s in Section 2). While this landmark-based esti-

mate remained unbiased across the proportional hazards scenarios, higher variance was

observed as the landmark time s moved away from baseline, where there were fewer pa-

tients available for estimation. In contrast, the proposed CPE measure in Equation (3)

was able to more efficiently borrow information to estimate the concordance probability

for larger values of s in the bounded interval T1 > T2, s < T2 < τ . As the landmark-

based CPE had minimal gains over the main three methods, it was omitted from the

manuscript.

As mentioned throughout the manuscript, the estimation framework proposed here

relies on the assumption that the data are well approximated by a proportional hazards

model. Blanche, Kattan, and Gerds (2019) note that in general, concordance estimates

are not proper scores and hence their population values are not maximized at the true

regression parameter values (β). The implication is that one can choose an unorthodox

estimator for β that would create a more optimistic value for the concordance probability

estimate. The proper scoring issue aligns with our warning that suitable diagnostics need

to be employed to provide assurance that the proportional hazards model specification

is appropriate, leading to the use of conventional maximum partial likelihood estimates
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( ˆbeta) to estimate the concordance probability.

Under the proportional hazards specification, there can be large efficiency gains, as

shown in the simulation scenarios in Section 3, from using a concordance measure derived

directly from the properly specified model. However, it is important to investigate the

proportional hazards assumption prior to using the proposed methods. In the event this

assumption does not hold, the estimated CPE may be biased. When either proportional

hazards is violated or the clinical interest is in t-year survival, alternative modeling strate-

gies, such as a nonparametric estimate of ÂUC(t) in Equation (4), should be considered

and further evaluated.

While the current methodology does not accommodate non-proportional hazards,

extensions of the model may be able to accommodate certain deviations. A direct exten-

sion occurs for the proportional odds model, where the work of Zhang and Shao (2018)

can be extended to compute the concordance probability estimate in the interval (s, τ).

In addition, future work will investigate local CPE estimation approaches under time-

varying coefficient models, where the concordance probability changes over time due to

a post-baseline change in the covariate effect. Alternatively, when there are multiple

biomarkers and a subset do not satisfy proportional hazards, a stratified proportional

hazards model can be implemented; the strata could be defined based on a categoriza-

tion of the biomarkers not satisfying the proportional hazards assumption. Additional

research is warranted in these settings for methodology development and evaluation of

the corresponding operating characteristics.
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Figure 4: The estimated CPE in the time interval (s, τ) with a 95% confidence band for

surgical-based risk score among 1,364 patients with colorectal cancer.
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Figure 5: (A) The estimated CPE with a 95% confidence band in the time interval (s, τ)

for CTC among 332 patients with metastatic castration-resistant prostate cancer. (B)

The CPE values when estimated in the time interval (0, t).
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A Supplementary Web Material

A.1 Asymptotic distribution of CPE(s,τ)

Assumptions and notation

For each subject, denote the observed time Y as the minimum of the failure time (T ) and

censoring time (C), δ = I(T ≤ C) is the censoring indicator, and X the covariate vector.

It is assumed that the individual copies of the random vector (T,C,X) are independent

and identically distributed. In addition, define N(t) = I(T ≤ t, δ = 1) as the counting

process, ψ(t) = I(Y ≥ t) as the at risk process.

It is assumed that the failure times are generated from a proportional hazards model

h(t|x) = h0(t) exp[βTx].

The estimated conditional survival function from the proportional hazards model Ŝ(t|x),

may be written in terms of the estimated baseline cumulative hazard function Ĥ0(t) and

the estimated regression coefficients β̂

Ŝ(t|x) = exp

[
−Ĥ0(t)e

ˆβ
T

x
]

and Ĥ0(t) =

∫
u<t

∑
i dNi(u)∑

i ψi(u) exp[β̂
T
xi]

.

The CPE evaluated in the interval (s, τ) is written as

Kn(β̂, Ĥ0; s, τ) =
[n(n− 1)]−1

∑
i

∑
j 6=iwij(β̂, Ĥ0; s, τ)I(β̂

T
xi < β̂

T
xj)
[
1 + exp{β̂

T
(xi − xj)}

]−1

0.5× [n(n− 1)]−1
∑

i

∑
j 6=iwij(β̂, Ĥ0; s, τ)

where wij(β̂, Ĥ0; s, τ) = Ŝ(s|xi)Ŝ(s|xj)− Ŝ(τ |xi)Ŝ(τ |xj).

1



To show that the concordance probability Pr[βTX1 < βTX2|T1 > T2, s < T2 < τ ]

may be consistently estimated by Kn(β̂, Ĥ0; s, τ), apply Bayes theorem to rewrite the

concordance probability as

Pr[βTX1 < β
TX2|T1 > T2, s < T2 < τ ] =

Pr[T1 > T2, s < T2 < τ |βTX1 < β
TX2]× Pr[βTX1 < β

TX2]

Pr[T1 > T2, s < T2 < τ ]

Evaluation of the three terms on the right hand side proceeds as follows.

Under the proportional hazards model,

Pr[T1 > T2, s < T2 < τ |βTX1 < β
TX2] =

2
∫ ∫

θ1<θ2

θ2
θ1+θ2

[exp {−αs(θ1 + θ2)} − exp {−ατ (θ1 + θ2)}] dG(θ1)dG(θ2),

where θj = exp[βTXj] and αr =
∫ r
u=0

h0(u)du.

Under the assumption that the risk score is continuous, Pr[βTX1 < β
TX2] = 1

2
, and a

straightforward calculation provides

Pr[T1 > T2, s < T2 < τ ] =
S2(s)− S2(τ)

2
,

where S(·) are the marginal survival functions.

It follows that substituting the consistent estimates β̂ and Ŝ(t|x) for the proportional

hazards regression coefficient and conditional survival function produces the proposed

estimate.

2



To compute the asymptotic distribution of the CPE, an asymptotically equivalent smooth

version of Kn is used

K̃n(β̂, Ĥ0; s, τ) =

[n(n− 1)]−1
∑

i

∑
j 6=iwij(β̂, Ĥ0; s, τ)Φ

(
ˆβ

T

(xj−xi)

h

)[
1 + exp{β̂

T
(xi − xj)}

]−1

ξ(s, τ)

where ξ(s, τ) = limn→∞ 0.5 × [n(n − 1)]−1
∑

i

∑
j 6=iwij(β̂, Ĥ0; s, τ) and h is the scale

parameter of the local distribution function Φ(·), and is chosen so that nh4 → 0 as

n→∞ (Heller, 2004).

Thus, to derive the asymptotic distribution of the interval constrained CPE, we evaluate

n1/2
[
K̃n(β̂, Ĥ0; s, τ)− κ(β0, H0; s, τ)

]
(1)

where κ(β0, H0; s, τ) = limn→∞ K̃n(β̂, Ĥ0; s, τ).

To simplify the notation for the derivation, denote the baseline cumulative hazard func-

tion at times {s, τ} as ηT0 = {H0(s), H0(τ)}.

To demonstrate the asymptotic distribution of (1), we decompose it into three terms

n1/2[K̃n(β̂, η̂)− K̃n(β0, η̂)] +n1/2[K̃n(β0, η̂)− K̃n(β0,η0)] +n1/2[K̃n(β0,η0)−κ(β0,η0)].

For the first two terms, Taylor expand around β̂ = β0 and η̂ = η0, respectively,[
∂

∂β
K̃n(β, η̂)

∣∣∣∣
β=β0

]T [
n1/2(β̂ − β0)

]
+

[
∂

∂η
K̃n(β0,η)

∣∣∣∣
η=η0

]T [
n1/2(η̂ − η0)

]

and note that

[
∂

∂β
K̃n(β, η̂)

∣∣∣∣
β=β0

]
and

[
∂

∂η
K̃n(β0,η)

∣∣∣∣
η=η0

]
converge in probability.

3



In addition,

n1/2(β̂ − β0) = [n−1I(β0)]−1n−1/2
∑
i

ui(β0) + op(1)

n1/2(η̂ − η0) = n−1/2
∑
i

∫
u<t

g(u;β0)dMi(u) + op(1) t = {s, τ},

where I is the information matrix and ui(β) is the score vector for subject i from the

partial likelihood,

M(t) = N(t)−
∫
u<t

ψ(u)h0(u) exp[βT0 x]du is a martingale, and

g(u;β) = lim
n→∞

n−1
∑
i

ψ(u) exp(βTxi).

Therefore, the first two terms in the expansion can be asymptotically represented as the

sum of independent identically distributed (iid) mean zero random variables.

The third term

n1/2
[
K̃n(β0,η0)− κ(β0,η0)

]
is a degree 2 U-statistic, and using Hajek’s projection lemma, it too may be asymptoti-

cally represented as the sum of iid mean zero random variables.

Therefore, combining the three terms

n1/2
[
K̃n(β̂, η̂)− κ(β0,η0)

]
is asymptotically equivalent to the sum of iid mean zero random variables and appli-

cation of the central limit theorem demonstrates that the interval constrained CPE is

asymptotically normal with mean zero and an asymptotic variance that can be estimated

using the empirical bootstrap.
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A.2 Supplemental Tables for Simulations
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Table S1: Independent censoring: estimated bias, standard error, and relative efficiency

for the normal marker distribution. The rows represent the three estimation approaches

under varying degrees of censoring in terms of bias, standard error, and relative efficiency.

The columns represent the four increasing values of s from 0 to 3
5
× τ , which represent

the post-baseline follow-up times used to evaluate the estimates.

Censoring s1 s2 s3 s4

Concordance Probability 0.6941 0.694 0.6928 0.6884

Bias

CPE 25% 0.0001 0.0001 0.0001 0.0001

Integrated AUC 25% 0.0001 0.0001 0.0002 0.0001

Weighted C 25% -0.0004 -0.0004 -0.0003 -0.0001

CPE 50% 0.0003 0.0003 0.0004 0.0004

Integrated AUC 50% 0.0006 0.0006 0.0006 0.0006

Weighted C 50% 0.0003 0.0003 0.0005 0.0008

CPE 75% 0.001 0.001 0.001 0.001

Integrated AUC 75% 0.0011 0.0011 0.0011 0.001

Weighted C 75% 0.001 0.001 0.0011 0.0013

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.016/0.0166 0.016/0.0165 0.0157/0.0163 0.0149/0.0155

Integrated AUC 25% 0.017/0.017 0.0169/0.017 0.0168/0.0168 0.0163/0.0162

Weighted C 25% 0.0195/0.0193 0.0195/0.0193 0.02/0.0199 0.022/0.0215

CPE 50% 0.0188/0.0192 0.0187/0.0192 0.0184/0.0188 0.0175/0.0179

Integrated AUC 50% 0.0202/0.0201 0.0201/0.0201 0.02/0.0199 0.0195/0.0193

Weighted C 50% 0.0225/0.0223 0.0226/0.0224 0.0233/0.023 0.0262/0.0261

CPE 75% 0.0251/0.0256 0.0251/0.0255 0.0247/0.0251 0.0234/0.0239

Integrated AUC 75% 0.028/0.0274 0.028/0.0274 0.0279/0.0272 0.028/0.0271

Weighted C 75% 0.0342/0.0314 0.0342/0.0315 0.0357/0.033 0.0427/0.0396

Relative Efficiency (rMSE)

Integrated AUC /CPE 25% 1.026 1.0263 1.0307 1.0469

Weighted C/CPE 25% 1.1643 1.1657 1.221 1.3912

Integrated AUC/CPE 50% 1.0494 1.0499 1.0555 1.0769

Weighted C/CPE 50% 1.1635 1.167 1.2223 1.4547

Integrated AUC/CPE 75% 1.0728 1.0734 1.0839 1.1368

Weighted C/CPE 75% 1.2275 1.2325 1.3136 1.6603
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Table S2: Independent censoring: Estimated bias, standard error, and relative efficiency

for the log-normal marker distribution.

Censoring s1 s2 s3 s4

Concordance Probability 0.7209 0.709 0.6864 0.6582

Bias

CPE 25% 0.0007 0.0013 0.001 0.0008

Integrated AUC 25% 0.0008 0.001 0.001 0.0007

Weighted C 25% -0.0001 0.0001 <0.0001 0.0005

CPE 50% 0.0011 0.0017 0.0014 0.0012

Integrated AUC 50% 0.0013 0.0016 0.0014 0.0011

Weighted C 50% 0.0008 0.001 0.0009 0.0015

CPE 75% 0.0039 0.0045 0.0039 0.0036

Integrated AUC 75% 0.005 0.0051 0.0045 0.0038

Weighted C 75% 0.0074 0.0072 0.0064 0.006

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.0138/0.0141 0.014/0.0138 0.0128/0.0124 0.0111/0.0106

Integrated AUC 25% 0.0155/0.0148 0.0153/0.0146 0.0145/0.0136 0.0134/0.0129

Weighted C 25% 0.0205/0.0203 0.0208/0.0208 0.0223/0.0225 0.0262/0.0265

CPE 50% 0.0148/0.015 0.0149/0.0148 0.0138/0.0134 0.012/0.0116

Integrated AUC 50% 0.0173/0.0163 0.0172/0.0163 0.0165/0.0156 0.0158/0.0151

Weighted C 50% 0.0237/0.0234 0.0242/0.0242 0.0264/0.0263 0.0319/0.032

CPE 75% 0.0174/0.0176 0.0176/0.0172 0.0163/0.0157 0.0143/0.0139

Integrated AUC 75% 0.0224/0.0205 0.0227/0.0207 0.0229/0.0208 0.0249/0.0228

Weighted C 75% 0.0369/0.0344 0.0382/0.0357 0.0429/0.0406 0.0567/0.0551

Relative Efficiency

Integrated AUC/CPE 25% 1.0452 1.0592 1.0984 1.2077

Weighted C/CPE 25% 1.4356 1.5048 1.815 2.4869

Integrated AUC/CPE 50% 1.0873 1.1005 1.1573 1.3014

Weighted C/CPE 50% 1.554 1.6284 1.9509 2.7448

Integrated AUC/CPE 75% 1.175 1.1968 1.3105 1.6077

Weighted C/CPE 75% 1.9527 2.0468 2.5336 3.8586
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Table S3: Independent censoring conditional on marker: estimated bias, standard error,

and relative efficiency for the normal marker distribution.

Censoring s1 s2 s3 s4

Concordance Probability 0.6941 0.694 0.6928 0.6884

Bias

CPE 25% 0.0002 0.0002 0.0002 0.0002

Integrated AUC 25% -0.0037 -0.0037 -0.0039 -0.0045

Weighted C 25% -0.0039 -0.0039 -0.0041 -0.0045

CPE 50% -0.0005 -0.0005 -0.0005 -0.0005

Integrated AUC 50% -0.0096 -0.0096 -0.0101 -0.0115

Weighted C 50% -0.0099 -0.0099 -0.0104 -0.0117

CPE 75% -0.0012 -0.0012 -0.0012 -0.0012

Integrated AUC 75% -0.02 -0.0201 -0.0212 -0.0238

Weighted C 75% -0.0192 -0.0192 -0.0204 -0.0223

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.0162/0.0164 0.0162/0.0163 0.016/0.0161 0.0151/0.0153

Integrated AUC 25% 0.017/0.017 0.017/0.017 0.0168/0.0168 0.0163/0.0162

Weighted C 25% 0.019/0.0188 0.019/0.0188 0.0195/0.0194 0.0216/0.0215

CPE 50% 0.0194/0.0197 0.0194/0.0196 0.0191/0.0193 0.0181/0.0183

Integrated AUC 50% 0.0205/0.0204 0.0206/0.0204 0.0203/0.0202 0.0198/0.0196

Weighted C 50% 0.0224/0.0222 0.0224/0.0222 0.0233/0.0231 0.0267/0.0267

CPE 75% 0.027/0.0277 0.027/0.0277 0.0266/0.0272 0.025/0.0257

Integrated AUC 75% 0.0291/0.0287 0.0291/0.0287 0.0289/0.0284 0.0289/0.028

Weighted C 75% 0.0394/0.037 0.0396/0.0371 0.0417/0.0392 0.0508/0.0479

Relative Efficiency (rMSE)

Integrated AUC/CPE 25% 1.0638 1.0643 1.0723 1.1048

Weighted C/CPE 25% 1.1728 1.1763 1.2353 1.4428

Integrated AUC/CPE 50% 1.146 1.1474 1.1682 1.2439

Weighted C/CPE 50% 1.236 1.2386 1.3134 1.5961

Integrated AUC/CPE 75% 1.2625 1.2651 1.3032 1.4292

Weighted C/CPE 75% 1.5025 1.5085 1.6227 2.0572
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Table S4: Independent censoring conditional on marker: estimated bias, standard error,

and relative efficiency for the log-normal marker distribution.

Censoring s1 s2 s3 s4

Concordance Probability 0.7209 0.709 0.6864 0.6582

Bias

CPE 25% 0.0007 0.0013 0.001 0.0008

Integrated AUC 25% -0.0179 -0.0166 -0.0152 -0.0139

Weighted C 25% -0.0182 -0.0169 -0.0155 -0.0134

CPE 50% 0.0005 0.0013 0.0009 0.0008

Integrated AUC 50% -0.0431 -0.0405 -0.0372 -0.0335

Weighted C 50% -0.0436 -0.041 -0.0378 -0.0333

CPE 75% 0.0012 0.0024 0.0017 0.0016

Integrated AUC 75% -0.0809 -0.0762 -0.0701 -0.0628

Weighted C 75% -0.0798 -0.0752 -0.0689 -0.0606

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.0142/0.0144 0.0143/0.0141 0.013/0.0126 0.0111/0.0107

Integrated AUC 25% 0.0158/0.0151 0.0154/0.0148 0.0143/0.0136 0.0129/0.0125

Weighted C 25% 0.0205/0.0202 0.0207/0.0206 0.022/0.0221 0.0256/0.026

CPE 50% 0.0159/0.0161 0.0159/0.0157 0.0143/0.0139 0.012/0.0117

Integrated AUC 50% 0.0179/0.0172 0.0175/0.0167 0.0159/0.0151 0.0141/0.0134

Weighted C 50% 0.0245/0.0243 0.0248/0.0248 0.0265/0.0267 0.0317/0.0318

CPE 75% 0.0208/0.0207 0.0206/0.0202 0.018/0.0175 0.0148/0.0147

Integrated AUC 75% 0.0228/0.021 0.0222/0.0203 0.0205/0.0181 0.0193/0.0162

Weighted C 75% 0.0439/0.0398 0.0445/0.0406 0.0484/0.0442 0.06/0.0559

Relative Efficiency

Integrated AUC/CPE 25% 1.6208 1.572 1.6187 1.7341

Weighted C/CPE 25% 1.8805 1.8873 2.1383 2.7177

Integrated AUC/CPE 50% 2.8882 2.7853 2.8938 3.0694

Weighted C/CPE 50% 3.1054 3.0468 3.3319 3.9172

Integrated AUC/CPE 75% 4.0343 3.879 4.1257 4.3934

Weighted C/CPE 75% 4.3051 4.2025 4.6645 5.5848
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Table S5: Non-proportional hazards: estimated bias, standard error, and relative effi-

ciency when censoring times were generated from a Weibull random variable with shape

parameter equal to 1− 0.1X, dependent on the underlying marker X.

Censoring s1 s2 s3 s4

Concordance Probability 0.674 0.6585 0.6522 0.6481

Bias

CPE 25% -0.0188 -0.0054 -0.0007 0.0021

Integrated AUC 25% -0.0186 -0.0049 0.0004 0.0036

Weighted C 25% -0.0003 0.0004 0.0005 0.0008

CPE 50% -0.0115 0.0015 0.006 0.0086

Integrated AUC 50% -0.0108 0.0028 0.008 0.0113

Weighted C 50% 0.0001 0.0008 0.0012 0.0014

CPE 75% 0.0012 0.0136 0.0177 0.02

Integrated AUC 75% 0.0028 0.016 0.0209 0.0239

Weighted C 75% 0.0017 0.0013 0.0007 -0.0013

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.0184/0.0193 0.0177/0.0185 0.0172/0.018 0.0168/0.0176

Integrated AUC 25% 0.0188/0.0193 0.0182/0.0187 0.0179/0.0183 0.0178/0.0181

Weighted C 25% 0.0238/0.0238 0.0286/0.029 0.0344/0.0354 0.043/0.044

CPE 50% 0.0211/0.0217 0.0201/0.0208 0.0196/0.0202 0.0191/0.0198

Integrated AUC 50% 0.0215/0.0217 0.0208/0.021 0.0206/0.0206 0.0205/0.0205

Weighted C 50% 0.0249/0.0246 0.0305/0.0304 0.0374/0.0379 0.0474/0.0481

CPE 75% 0.0273/0.0274 0.026/0.0262 0.0252/0.0254 0.0246/0.0249

Integrated AUC 75% 0.029/0.0284 0.0291/0.0283 0.0303/0.0294 0.038/0.0323

Weighted C 75% 0.0335/0.0323 0.0456/0.0445 0.063/0.0626 0.0947/0.0968

Relative Efficiency (rMSE)

Integrated AUC /CPE 25% 0.9961 1.0022 1.0187 1.0406

Weighted C/CPE 25% 0.8862 1.5036 1.9667 2.4798

Integrated AUC/CPE 50% 0.9869 1.0165 1.0491 1.0825

Weighted C/CPE 50% 1.0007 1.4588 1.7949 2.2306

Integrated AUC/CPE 75% 1.0377 1.103 1.1646 1.2596

Weighted C/CPE 75% 1.1785 1.5101 2.0223 3.0366
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Table S6: Non-proportional hazards: estimated bias, standard error, and relative effi-

ciency when censoring times were generated from a Weibull random variable with shape

parameter equal to 1− 0.175X, dependent on the underlying marker X.

Censoring s1 s2 s3 s4

Concordance Probability 0.6846 0.6587 0.6496 0.6439

Bias

CPE 25% -0.0359 -0.012 -0.0043 0.0003

Integrated AUC 25% -0.0362 -0.0117 -0.0031 0.0023

Weighted C 25% -0.0003 0.0002 0.0002 0.0003

CPE 50% -0.0216 0.0016 0.0089 0.0133

Integrated AUC 50% -0.021 0.0034 0.012 0.0174

Weighted C 50% 0.0002 0.0011 0.0013 0.0017

CPE 75% 0.002 0.024 0.0306 0.0344

Integrated AUC 75% 0.0043 0.028 0.0359 0.0406

Weighted C 75% 0.004 0.0037 0.0035 0.0036

Estimated Standard Error/Simulation Standard Error

CPE 25% 0.0196/0.0211 0.0188/0.0203 0.0183/0.0198 0.018/0.0194

Integrated AUC 25% 0.0198/0.0209 0.0192/0.0203 0.0189/0.0199 0.0188/0.0197

Weighted C 25% 0.0236/0.0236 0.0289/0.0292 0.0347/0.0357 0.0434/0.0448

CPE 50% 0.0218/0.0228 0.0207/0.0218 0.0202/0.0212 0.0197/0.0208

Integrated AUC 50% 0.022/0.0225 0.0212/0.0217 0.021/0.0214 0.0209/0.0212

Weighted C 50% 0.0247/0.0244 0.0308/0.0307 0.0377/0.0382 0.0477/0.0488

CPE 75% 0.027/0.0275 0.0255/0.0261 0.0247/0.0253 0.0242/0.0248

Integrated AUC 75% 0.0285/0.028 0.0285/0.0278 0.03/0.0291 0.0389/0.0319

Weighted C 75% 0.0328/0.0324 0.0456/0.0459 0.0631/0.0636 0.0935/0.0994

Relative Efficiency

Integrated AUC/CPE 25% 1.0032 0.9912 0.9951 1.0204

Weighted C/CPE 25% 0.5654 1.2372 1.76 2.3029

Integrated AUC/CPE 50% 0.9783 1.0088 1.0662 1.1154

Weighted C/CPE 50% 0.7776 1.41 1.6619 1.9805

Integrated AUC/CPE 75% 1.0262 1.1146 1.1628 1.2183

Weighted C/CPE 75% 1.1822 1.2989 1.6038 2.345
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A.3 Scaled Schoenfeld residuals for the prostate cancer and colorectal

surgery data examples.

The baseline risk scores for the colorectal and prostate cancer examples were both estimated

in a proportional hazards regression model. To assess the proportional hazards assumption

for both models, loess curves were fit to the scaled Schoenfeld residuals. As shown in Figures

S1 and S2, the curves are approximately constant over time for all covariates, indicating no

observed deviation from the proportion hazards assumption.
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Figure S1: Scaled Schoenfeld residuals for colorectal surgery risk score when estimated

from a proportional hazard regression model.
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Figure S2: Scaled Schoenfeld residuals for CTC when estimated from a proportional

hazard regression model.
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