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Summary

The area under the curve (AUC) statistic is a common measure of model performance

in a binary regression model. Nested models are used to ascertain whether the AUC

statistic increases when new factors enter the model. The regression coefficient esti-

mates used in the AUC statistics are computed using the maximum rank correlation

methodology. Typically, inference for the difference in AUC statistics from nested

models is derived under asymptotic normality. In this work, it is demonstrated that

the asymptotic normality is true only when at least one of the new factors is associ-

ated with the binary outcome. When none of the new factors are associated with the

binary outcome, the asymptotic distribution for the difference in AUC statistics is a

linear combination of chi-square random variables. Further, when at least one new

factor is associated with the outcome and the population difference is small, a vari-
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ance stabilizing reparameterization improves the asymptotic normality of the AUC

difference statistic. A confidence interval using this reparameterization is developed

and simulations are generated to determine their coverage properties. The derived

confidence interval provides information on the magnitude of the added value of new

factors and enables investigators to weigh the size of the improvement against poten-

tial costs associated with the new factors. A pancreatic cancer data example is used

to illustrate this approach.

Keywords: Area under the receiver operating characteristic curve; Confidence inter-

val; Incremental value; Maximum rank correlation; Nested models; Risk classification

model

1. Introduction

Receiver operating characteristic (ROC) curves and the areas under the ROC curves

(AUCs) are popular tools for assessing how well biomarkers and clinical risk prediction

models distinguish between patients with and without a health outcome of interest.

Historically, in cases where a new biomarker panel was developed and interest lies

in evaluating its ability to add information beyond that provided by established risk

factors, a three-step approach was taken. First, analysts would fit a binary regres-

sion model containing both the established factors and the new biomarkers and test

whether the association between the outcome and the new markers was statistically

significant. If the test of association was significant, using for example a Wald or

likelihood ratio test, then the linear predictor function from this model would be
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used to compute the AUC. Second, an additional statistical test would be carried

out to compare the difference in the AUC for this model and the AUC from a model

containing only the established risk factors. Third, if this direct test of AUC equality

was significant, a confidence interval was constructed to determine the magnitude of

this difference.

In recent years, this multi-step approach has come under criticism. Pepe et

al. (2013) demonstrate that the null hypothesis of no association between the new

biomarkers and the outcome, when established risk factors are included in the model,

is equivalent to the null hypothesis that the AUCs from the two models are equal.

Thus, it is redundant to perform both the association test and the difference in AUC

test. Further, Vickers, Cronin, and Begg (2011), Seshan, Gönen, and Begg (2013)

and Pepe et al. (2013) have illustrated through simulation that the null asymptotic

normal distribution assumption for the difference in AUC test does not provide accu-

rate operating characteristics. As a result of these findings, it is recommended that

only the test of association be used to infer if the difference in AUCs has improved

as a result of the inclusion of new markers.

However, tests of association are not sufficient for understanding the magnitude of

the population AUC increase. The new markers may be costly or require an invasive

procedure to obtain, and their introduction into a clinical risk prediction model may

be justified only if the AUC improvement is meaningful. Conversely, new markers that

are not costly and demonstrate no harm to the patient, may have a lower threshold

of AUC increase for acceptance. A point estimate for the population difference in

AUCs along with a confidence interval for this population difference often provides

this important additional information. An interval where the lower confidence bound
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is close to zero may indicate that the additional factors provide little benefit for use in

a clinical decision algorithm. To date, methodology to construct accurate confidence

intervals for the difference in AUCs from nested models is incomplete. This work fills

the gaps in the AUC methodology by developing a proper null asymptotic distribution

for the difference in AUCs and an accurate confidence interval for the population

difference when the new markers are associated with the binary outcome.

The outline of the paper is as follows. In Section 2, the nested binary regression

models are defined and maximum rank correlation methodology is used to estimate

the AUC. In Section 3, the asymptotic distribution for the difference in AUCs from

nested models is developed. The asymptotic distribution is differentially determined

based on whether any of the new factors are associated with the clinical outcome. A

confidence interval, derived from a reparameterized population difference in AUC, is

proposed in Section 4 and its coverage properties are estimated in Section 5 through

simulation. A pancreatic cancer data example is used to illustrate the methodology

in Section 6 and a discussion follows in Section 7.

2. The Difference in AUCs with Nested Models

A binary regression model

Pr(Y = 1|X) = G(βTX)

is used to create risk scores βTX that predict a binary classifier Y , with outcomes

referred to as response (Y = 1) and nonresponse (Y = 0). In this model, G is a

monotone link function. Common link functions for a binary outcome include the

logit and the probit.
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The model based performance in terms of classification is evaluated using the area

under the receiver operating characteristic curve (AUC). The area under the curve is

defined as

Pr(βTX1 > β
TX2|Y1 = 1, Y2 = 0),

which represents the probability that a responder’s risk score is greater than a non-

responder’s risk score.

Often a new set of markers are under consideration to improve risk classification.

This evaluation is based on the difference in AUCs from the nested models

Pr(Y = 1|X,Z) = G(βT0X + γT0Z)

Pr(Y = 1|X) = G(β0TX),

where the existing markers are denoted by the p-dimensional covariate vector X, the

new markers are represented by the q-dimensional covariate vector Z, and (β0,γ0,β
0)

represent the true parameter values from the respective models. The estimated area

under the curve for the nested models are:

Ãn(β̂, γ̂) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]I[β̂
T
xij + γ̂Tzij > 0]

Ãn(β̂
0
, 0) = (n0n1)

−1
∑
i

∑
j

I[yi > yj]I[β̂
0T

xij > 0]

where the notation xij is used to represent the pairwise difference xi − xj, nk =∑
i I[yi = k], and β̂

0
denotes the β parameter estimate when γ is set to 0. The

difference in the estimated AUCs, derived from the nested models, is written as

δ̃ = Ãn(β̂, γ̂)− Ãn(β̂0, 0).
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Note that the statistic of interest is a function of estimated regression coefficients.

The regression parameter estimates from these nested models are computed using

the maximum rank correlation (MRC) procedure (Han 1987). The use of MRC esti-

mates rather than the more commonly applied logistic or probit maximum likelihood

estimates results in a simplification in the asymptotic distribution theory, which will

be explained further in Section 3, comment 3. The MRC is a rank based estimation

procedure that maximizes the AUC. For the full model, the MRC estimates (β̂, γ̂)

are computed as

arg max
(β,γ)

(n0n1)
−1
∑
i

∑
j

I[yi > yj]I[βTxi + γTzi > β
Txj + γTzj].

These estimates are scale invariant (Han 1987), which creates an identifiability prob-

lem for the parameters (β,γ). To resolve the identifiability, the first component of

β is set to one, and hence β̂ = (1, η̂T )T , β̂
0

= (1, η̂0T )T and the corresponding pa-

rameters are denoted by β0 = (1,ηT0 )T , β0 = (1,η0T )T . Sherman (1993) proves that

(η̂, γ̂) and η̂0 are asymptotically normal and are consistent estimates of (η0,γ0) and

η0.

3. Asymptotic Distribution Theory

We denote the limiting values of the estimated AUC from the full model and re-

duced model as α(β0,γ0) and α(β0, 0), respectively. Han (1987) demonstrates that

these limiting forms represent the maximum population AUCs when the markers are

combined linearly. The difference in the limiting AUCs is denoted by

δ = α(β0,γ0)− α(β0, 0),
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and asymptotic distribution theory is derived for inference on this parameter.

A standard approach to derive the asymptotic distribution for a statistic with

estimated parameters is via a Taylor series expansion around the true parameter

vectors. This expansion, however, requires differentiation with respect to the unknown

parameters (β,γ), which is problematic due to the discontinuity induced by the

indicator function in the AUC statistic. As a result, the expansions utilized in this

paper use a smooth version of Ãn based on the asymptotic approximation

I[βTxij + γTzij > 0] ≈ Φ

(
βTxij + γTzij

hn

)
where Φ is the standard normal distribution function and hn is a bandwidth that goes

to 0 as the sample size n gets large (Horowitz 1992). The smoothed empirical AUCs

are written as

An(β̂, γ̂) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

(
β̂
T
xij + γ̂Tzij

hn

)

An(β̂0, 0) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

 β̂0
T

xij
hn

 .

The asymptotic normality of the smoothed AUC parameter estimates and the uni-

form consistency of the smoothed AUCs are derived in Ma and Huang (2007). As a

result, the smoothed versions of the AUC estimates are used to derive the asymptotic

distribution of

δ̂ = An(β̂, γ̂)− An(β̂0, 0).

The asymptotic distribution is derived under two separate conditions: (i) no new

factors are associated with the outcome (γ0 = 0) and (ii) at least one new factor is

associated with the outcome (γ0 6= 0).
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3.1. New factors provide no added value - γ0 = 0 (β0 = β0)

The new set of factors are not associated with the clinical outcome, and as a

result, the limiting AUCs are equal (Pepe et al. 2013). The derived distribution of

the difference in the AUC statistic under this condition is useful for deriving a direct

test of equality. An approach commonly used to test for the equality of population

AUCs from nested models is to apply an asymptotic normal reference distribution to

the studentized difference in empirical AUCs (Delong, DeLong, and Clarke-Pearson

1988). However, root-n normality is not the correct null reference distribution for this

difference. The theorem below provides the asymptotic distribution for the difference

in nested AUCs when the new factors are not associated with response. The proof of

this theorem is found in the appendix.

Theorem 1: Assume the following standard conditions for MRC estimation (Han

1987):

(1) θ ∈ Θ a compact subspace of Rp−1+q.

(2) The domain of (x, z) is not contained in a linear subspace of Rp+q.

(3) The density of the first component of x conditional on all other covariates is

everywhere positive.

When the new factors are not associated with the response (γ = 0), as n→∞,

Pr
(

2n[An(β̂, γ̂)− An(β̂0, 0)] ≤ u
)

= Pr

(
q∑
j=1

λjχ
2
j ≤ u

)
,

where {χ2
j} are independent chi-square random variables each with one degree of

freedom and {λj} are the eigenvalues of the product matrix −Vγ [Dγγ ]−1. The matrix

Vγ is the asymptotic variance of the MRC estimate γ̂ and D is the second derivative
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matrix of An(β,γ). The partitioned forms of D and its inverse are represented as

D =

 Dηη Dηγ

Dγη Dγγ

 D−1 =

 Dηη Dηγ

Dγη Dγγ

 .

Comment 1: Although the distribution of a weighted sum of independent chi-

square random variables does not have a closed form, the distribution can be approx-

imated by generating q independent squared standard normal random variables {Z2
j },

computing the linear combination
∑
λjZ

2
j , and repeating a large number of times.

Comment 2: The result in Theorem 1 is a generalization of the asymptotic dis-

tribution theory for the likelihood ratio statistic. If An(β̂, γ̂) and An(β̂
0
, 0) were

replaced by the loglikelihoods from the full and constrained parametric regression

models, then D is the negative information matrix and from standard likelihood the-

ory −Dγγ approximates Vγ . It follows that the q eigenvalues of −Vγ [Dγγ ]−1 are each

equal to 1, and the result reduces to the standard result that the likelihood ratio test

statistic is a chi-square with q degrees of freedom. In addition, Vuong (1989) and

Fine (2002) present similar results to Theorem 1 for the likelihood ratio statistic from

misspecified nested parametric and semiparametric models.

Comment 3: The first derivative of the AUC, when evaluated at the MRC pa-

rameter estimate, is equal to zero. Thus, as a result of using MRC estimates, the

quadratic term is the lowest order nonzero term in the asymptotic expansion of the

difference in AUCs. Hence, the intrinsic MRC estimates produce a straightforward

asymptotic distribution for the difference in AUC statistics. In contrast, if the link

function G were specified and the maximum likelihood estimates were used to esti-

mate (β,γ), then the linear and quadratic terms in the Taylor series expansion are
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nonzero. As a result, maximum likelihood estimation significantly complicates the

asymptotic distribution.

Comment 4: Seshan et al. (2013) used maximum likelihood from a logistic model

to estimate the regression coefficients for the AUC calculations. Their results indi-

cated that a nontrivial percentage of the simulations produced a negative difference

in the nested AUCs, which was difficult to interpret. The MRC coefficient estimates,

derived through maximization of the AUCs from the constrained and unconstrained

models, result in a non-negative difference in AUCs up to the limitations of the algo-

rithmic maximization search.

3.2. New factors provide added value - γ0 6= 0

Theorem 2: When at least one of the new set of factors is associated with response

after controlling for the established risk factors, the difference in nested AUCs is

asymptotically represented as

n1/2[An(β̂, γ̂)−An(β̂
0
, 0)− δ] =

n1/2

[
(n0n1)

−1
∑
i

∑
j

I[yi > yj]

{
Φ

(
βT0 xij + γT0 zij

hn

)
− Φ

(
β0Txij
hn

)
− δ

}]
+op(1).

The asymptotic expression is the zero order term in the asymptotic expansion and

is a two-sample U-statistic of degree 2 with no estimated parameters. It follows from

asymptotic U-statistic theory that this expression is asymptotically normal with mean

0. The asymptotic variance estimate from this U-statistic is provided in the appendix.

We again note that if the maximum likelihood estimation for (β,γ) were used rather

than MRC estimation, the linear term in the asymptotic expansion would be nonzero

and would need to be incorporated into the asymptotic variance calculation.
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Although asymptotic normality is obtained when γ0 6= 0, statistics derived from

nested models (such as the likelihood ratio statistic) tend to be positively skewed

with finite samples. For the difference in AUC statistic, Figure 1a depicts a plot of

this difference [δ̂ = An(β̂, γ̂)−An(β̂
0
, 0)] and its estimated asymptotic variance [V̂ ] .

The points are the realizations of a simulation where the true difference δ = 0.01, the

true baseline AUC is 0.70, and the sample size within each replication is 500. The

graph indicates a strong linear relationship between the estimated difference in AUCs

and its asymptotic variance, indicating that the normal approximation is inaccurate.

To remove this mean-variance linear relationship, a square root reparameterization

g(δ) =
√
δ is applied. The transformed estimate and its asymptotic variance are

τ̂ =
√
δ̂ v̂ar(τ̂) =

V̂

4δ̂
.

Stemming from comment 4, estimating the regression parameters by maximizing the

AUCs in the reduced and full models leads to a nonnegative δ̂ and removes a barrier

to applying the square root transformation. Figure 1b demonstrates the variance

stabilization after the square root transformation was applied, suggesting improved

accuracy for the normal approximation. Subsequently, we will explore the use of this

transformation for the development of accurate confidence intervals.

Finally we note that the asymptotic distribution theory in this section, including

the square root transformation, can be applied to develop an accurate test under the

null δ = δ0, with δ0 6= 0. The Wald test for γ0 is inappropriate for the nonzero null,

since the mapping f(δ0,β0,β
0) = γ0 for the inverse of the limiting difference in AUCs

is unknown and not 1-1.
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4. Confidence Intervals

An interval estimate for the magnitude of the improvement in the AUC due to the

inclusion of new factors is important. A confidence interval enables the investigator

to weigh this improvement relative to the potential costs in obtaining new markers.

An asymptotic 95% confidence interval, derived directly from Theorem 2, for the

population difference in AUCs is

DIFF =

(
δ̂ − 1.96

√
var(δ̂), δ̂ + 1.96

√
var(δ̂)

)
.

A variance stabilizing square root transformation should provide a more accurate

asymptotic confidence interval for the difference in the AUC parameters. The 95%

confidence interval is obtained by using the reparameterization τ =
√
δ, as described

above, and selecting the set of values not in the critical region of the asymptotic

normal test {
τ :

∣∣∣∣∣ τ̂ − τ√
var(τ̂)

∣∣∣∣∣ < 1.96

}
A back transformation of the upper and lower 95% confidence limits for τ leads to

the confidence interval for δ

DIFFvst =

({
τ̂ − 1.96

√
var(τ̂)

}2

,
{
τ̂ + 1.96

√
var(τ̂)

}2
)
.

If τ̂ − 1.96
√

var(τ̂) is negative, then the lower confidence bound is set to zero.

5. Simulations

A simulation study was performed to assess the operating characteristics of the direct

test of equality of AUCs from nested models and coverage properties of the confidence

interval for the difference in AUCs parameter. A binormal logistic risk model was
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generated with covariate correlation parameters {0, 0.5} and Pr(Y = 1) = 0.5. To

evaluate the robustness of the proposed method, a probit model with the same co-

variate structure was generated. Five hundred observations per replicate and 5000

replicates were run for each simulation. The range of population AUCs examined was

(0.55− 0.85).

For the test statistic, the normal density smooth φ was used to compute the

second derivative matrix D. Guidance from kernel density estimation led to the

bandwidth hn = ω̂n−0.20, where ω2 is the variance of βTx + γTz (Simonoff 1996).

However, when the AUC was near the 0.5 boundary, there were cases when D was

not negative definite. For those cases, ω̂n−φ (0.05 < φ < 0.50) were evaluated and

the exponent closest to 0.20 (if one existed) which produced a negative definite D was

chosen. If a bandwidth could not be found that enabled D to be negative definite,

then that replication used φ = 0.20. For confidence interval estimation, the normal

distribution function Φ was used to estimate the smooth AUCs and using the kernel

smoothing literature for distribution functions, hn = ω̂n−0.333 was chosen (Lloyd

1998). The choice of bandwidth used for smoothing in both cases is flexible, since the

only asymptotic constraint is that it goes to zero as the sample size gets large.

Tables 1 and 2 compare the size and power estimates for the AUCs test of equality

to the Wald test of association for the new factors. The results in Table 1 demonstrate

that the difference in AUCs test statistic, based on a linear combination of chi-square

random variables as the asymptotic null reference distribution, is a valid test under

the null. The results also confirm the validity of the Wald test under this scenario.

The power results in Table 2 illustrate that the parametric Wald test is more efficient

than the nonparametric difference in AUC test.
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The coverage properties of the proposed confidence interval are summarized in

Table 3. The simulations evaluated the standard asymptotic normal 95% confidence

interval for δ (DIFF) and the variance stabilized square root transformed confidence

interval for δ (DIFFvst). The variance stabilized confidence interval produced accu-

rate coverage across the simulations explored. In contrast, the untransformed con-

fidence interval was inaccurate. However, at the largest δ (0.05), the difference in

coverage between the two methods was small, indicating that as the true difference

in AUCs increase, the asymptotic normality of δ̂ improves.

Although the square root transformation produced accurate confidence interval

coverage in the simulations, a data-based transformation may prove useful on indi-

vidual datasets. One approach is to use the Box-Cox transformation

h(δ) = δλ−1
λ

λ 6= 0

ln(δ) λ = 0

and choose λ to minimize the correlation between h(δ̂) and var[h(δ̂)] (DiCiccio, Monti,

Young, 2006).

6. Application to pancreatic cancer

Intraductal papillary mucinous neoplasms (IPMN) are cystic lesions of the pan-

creas and present with difficult treatment decisions. Surgical removal is difficult and

morbid. It is essential if the lesions are high-risk (defined as malignant or high-grade)

but also a potential for harm to the patient for low-risk lesions (low-grade or benign).

Unfortunately lesion risk (malignancy and grade) can only be evaluated pathologi-

cally, leaving the clinician to use alternative clinical markers of risk such as main duct
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involvement. It is widely accepted that lesions involving the main pancreatic duct are

at higher risk of being malignant and current guidelines of the International Associ-

ation of Pancreatology recommend resection of all main-duct lesions (Tanaka et al.

2012). Using the data which supported these guidelines one can infer that 40 percent

of patients with main duct IPMN will undergo resection to remove low-risk lesions.

Therefore the search for markers that improve our ability to select patients for resec-

tion continues. Lesion size and presence of a solid component on imaging are recently

reported to be predictors of high-risk lesions (Correa-Gallego et al. 2013) although

they are not yet incorporated into the international gudielines. In this analysis we

evaluate whether a novel marker, recent weight loss, provides incremental improve-

ment in risk classification, when used in conjunction with main duct involvement,

lesion size and the presence of a solid component in imaging.

Two hundred and six patients at Memorial Sloan Kettering who were candidates

for surgical removal of IPMNs were evaluated. The Wald statistic, derived from a

logistic regression analysis, indicated that recent weight loss is positively associated

with high vs. low risk lesions (p = 0.006) in the presence of a solid component on

imaging, main duct involvement, and the logarithm of lesion size. The maximum

rank correlation AUC estimates from models without and with the weight loss factor

were 0.794 and 0.813, respectively. Thus, although the Wald statistic indicates that

weight loss is associated with resection, it is unclear whether its inclusion is sufficiently

helpful in terms of risk classification.

We examined the importance of weight loss, first confirming the logistic analysis

that weight loss is associated with high-risk lesions. The observed difference in model

AUCs was δ̂ = 0.019 and the test that the added factor increased the population
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AUC generated a p-value equal to 0.001. The 95% confidence interval for δ, using the

variance stabilizing square root transformation, was (0.0008, 0.052). Since the lower

bound is close to zero, it is unclear whether adding recent weight loss to the existing

clinical factors provides a meaningful benefit to the current surgical risk classification

algorithm.

7. Discussion

The complexity of human disease and response to treatment can only be captured by

the use of multiple clinical features and biomarkers. While most clinical features that

are in use for predictive purposes are well-established, new biomarkers (including ge-

nomic and proteomic ones) are rapidly being introduced into clinical research. These

novel markers are useful to the extent that they improve our ability to prognosticate

and predict response to therapy over and beyond what we can currently do using

clinical features and established biomarkers. This requires the development of a sta-

tistical model that includes both established and novel markers, and using this model

to assess the added predictive value of the novel components. This is typically done

comparing the AUCs from the full model (containing all variables) and the reduced

model (excluding the novel variables) resulting in nested models.

The current recommendation to establish an increase in the AUC for nested mod-

els is to perform a likelihood ratio or Wald test on the additional factors and if the

test is significant compute a confidence interval for the difference in AUCs parameter.

These parametric association test statistics are more sensitive than the nonparametric

difference in AUC statistic. Specifically, high odds ratios and small p-values corre-

sponding to new markers in a classification model can produce only modest increments
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in the observed difference in AUCs. Such seemingly incongruous results may lead to

dissonance when explaining the results to a collaborator not sufficiently versed in

statistical inference. In this article we develop the asymptotic theory nececesary for

the statistical comparison of two AUCs resulting from nested models and provide a

method to construct accurate confidence intervals for the difference in AUCs filling

another gap in the methodology.

In addition to providing a direct test of equality for the difference in AUCs, the

development of the asymptotic distribution theory for the difference in AUCs (δ̂) when

its limiting difference (δ) is zero enables the analyst to assess how large δ̂ can be due

to sampling variability alone. An upper quantile of this null sampling distribution

may be useful when designing future studies to test for the incremental value of

new biomarkers. A further usage of this derivation occurs when the objective of the

analysis is model selection and the metric used to select variables is AUC. Here the

proposed methodology provides a coherent framework for model building and final

model selection.

There are other metrics for model performance such as sensitivity and specificity,

or more recently introduced metrics such as net benefit (Vickers and Elkin 2006), net

reclassification improvement and integrated discriminant improvement (Pencina et al.

2008), and proportion of cases followed and proportion needed to follow-up (Pfeiffer

and Gail 2011, Pfeiffer 2013). It is noted that the methodological framework, includ-

ing the smoothing approximation for indicator functions and the distribution theory

for nested models, is sufficiently general to be applied to assess the added value of

new markers using these metrics. The application of the proposed methodology to

these statistics will be explored in future work. These alternative metrics notwith-
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standing, the AUC remains the most popular measure of medical test performance. It

is ubiquitous in clinical, bioinformatic, and radiology journals, and many researchers

are familiar with it. The proposed methodology, which provides proper inferential

tools to assess the change in AUCs, will prove useful in multiple contexts.
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Appendix

The following notation and regularity conditions are used in this appendix.

Notation:

βT = (1, η1, . . . , ηp−1), γT = (γ1, . . . , γq), θ = (ηT ,γT )T

An(θ) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

(
βTxij + γTzij

hn

)

The second derivative matrix of An(θ) and its inverse are partitioned as

D(θ) =

 Dηη Dηγ

Dγη Dγγ

 D−1(θ) =

 Dηη Dηγ

Dγη Dγγ

 where Dηγ =
∂2An(θ)

∂η∂γ

Maximum Rank Correlation Regularity Conditions:

1. θ ∈ Θ a compact subspace of Rp−1+q.

2. The domain of (x, z) is not contained in a linear subspace of Rp+q.

3. The density of the first component of x conditional on all other covariates is

everywhere positive.

Theorem 1: The asymptotic distribution for the difference in AUCs when (θ̂, θ̂
0
) are

MRC estimates and γ0 = 0.

To derive the expansion when γ0 = 0 (θ0 = θ0), the difference in AUCs is divided

into two components

[An(θ̂)− An(θ0)]− [An(θ̂0)− An(θ0)].
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For the first component, a three term expansion of An(θ0) around θ̂ = (η̂, γ̂) is,

An(θ̂)−
{
An(θ̂) + 0 +

1

2
(θ0 − θ̂)TD(θ̂)(θ0 − θ̂)

}
,

where the first order term is zero since the MRC estimate θ̂ is obtained through

maximization of An(θ).

A similar argument produces a three term expansion of An(θ0) around θ̂0 = (η̂0, 0)

for the second component,

An(θ̂0)−
{
An(θ̂0) + 0 +

1

2
(η0 − η̂0)TDηη(θ̂

0
)(η0 − η̂0)

}
.

Therefore, the statistic 2n[An(θ̂)− An(θ̂
0
)] is asymptotically approximated by

n(θ0 − θ̂)T
[
−D(θ̂)

]
(θ0 − θ̂)− n(η0 − η̂0)T

[
−Dηη(θ̂

0
)
]

(η0 − η̂0) + op(1).

Further simplification may be achieved by relating the unrestricted and the restricted

MRC estimates η̂ and η̂0 when γ0 = 0 (Cox and Hinkley 1974, p.308),

(η0 − η̂0) = (η0 − η̂) +D−1ηη(θ̂
0
)Dηγ(θ̂

0
)(γ0 − γ̂) + op(n

−1/2).

Thus, the statistic is asymptotically approximated by

2n[An(θ̂)− An(θ̂0)] = n(γ0 − γ̂)T [−Dγγ(θ̂)]−1(γ0 − γ̂) + op(1).

The quadratic form on the right hand side asymptotically has a distribution which is

a weighted sum of independent chi-square random variables, each with one degree of

freedom. Therefore, as n→ ∞,

Pr
(

2n[An(θ̂)− An(θ̂0)] ≤ u
)

= Pr

(
q∑
j=1

λjχ
2
j ≤ u

)
,
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where the weights {λj} are the eigenvalues of the product matrix −Vγ [Dγγ ]−1, Vγ

is the asymptotic variance of the MRC estimate γ̂, and D is the second derivative

matrix of An(β,γ) (Baldessari 1967).

Theorem 2: The asymptotic distribution of the difference in AUCs when γ0 6= 0.

Consider the first order asymptotic approximation

n1/2[An(θ̂)− An(θ̂
0
)− δ] = n1/2[An(θ0)− An(θ0)− δ]+[

∂An(θ)

∂θ

∣∣∣∣
θ=θ̂

]T
n1/2(θ̂ − θ0)−

[
∂An(η, 0)

∂η

∣∣∣∣
η=η̂0

]T
n1/2(η̂0 − η0) + op(1).

Because θ̂ and η̂0 maximize their respective smooth AUCs, it follows that

n1/2[An(θ̂)− An(θ̂
0
)− δ] = n1/2[An(θ0)− An(θ0)− δ] + op(1).

Since,

n1/2[An(θ0)− An(θ0)− δ] =

n1/2

[
(n0n1)

−1
∑
i

∑
j

I[yi > yj]

{
Φ

(
βT0 xij + γT0 zij

hn

)
− Φ

(
β0Txij
hn

)
− δ

}]
is a two-sample U-statistic of degree 2 with no estimated parameters, the asymptotic

normality for the difference in AUCs follows from U-statistic theory. Its asymptotic

variance is (Wei and Johnson, 1985)

V =
n

n0

σ2
1 +

n

n1

σ2
2,

which may be estimated with the following components

σ̂2
1 = [n0n1(n0 − 1)]−1

n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

I[yi = 1]I[yj = 0]I[yk = 0](eij − δ̂)(eik − δ̂)
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σ̂2
2 = [n0n1(n1 − 1)]−1

n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

I[yi = 1]I[yj = 0]I[yk = 1](eij − δ̂)(ekj − δ̂)

and eij = Φ

[
β̂
T
xij + γ̂Tzij

hn

]
− Φ

 β̂0
T

xij
hn

 .
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Table 1: Size simulations (γ0 = 0). All entries multiplied by 100

Logistic Probit

AUCf AUCr ρ LCCS WALD LCCS WALD

0.55 0.55 0 5.30 4.42 5.34 5.42

0.5 5.34 4.50 5.40 5.34

0.60 0.60 0 4.38 6.02 3.92 5.84

0.5 4.42 5.94 3.88 5.68

0.65 0.65 0 4.34 5.00 4.00 4.68

0.5 4.34 5.06 4.00 4.60

0.70 0.70 0 4.70 5.22 4.44 4.78

0.5 4.70 5.28 4.44 4.74

0.75 0.75 0 4.52 4.64 4.92 5.22

0.5 4.52 4.62 4.94 5.22

0.80 0.80 0 4.68 4.94 4.56 4.32

0.5 4.68 4.70 4.56 4.38

0.85 0.85 0 5.60 4.88 4.68 4.76

0.5 5.62 4.94 4.68 4.76

AUCf = Area under the curve for full model with covariates (X,Z)

AUCr = Area under the curve for reduced model with covariate X

ρ = Correlation between the covariates (X,Z)

LCCS = Linear combination of chi-square random variables

WALD = Wald statistic
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Table 2: Power simulations (γ0 6= 0). All entries multiplied by 100

Logistic Probit

δ AUCr ρ LCCS WALD LCCS WALD

0.02 0.55 0 28.80 50.48 30.18 50.12

0.5 28.00 51.60 29.80 50.24

0.02 0.60 0 63.70 74.68 63.06 74.14

0.5 65.40 73.40 62.90 74.10

0.01 0.65 0 54.34 61.02 60.56 67.76

0.5 54.20 60.20 60.38 67.50

0.01 0.70 0 68.46 73.18 75.88 80.82

0.5 65.00 69.80 75.96 80.72

0.01 0.75 0 81.30 84.38 88.34 91.72

0.5 80.60 83.40 88.32 91.94

0.005 0.80 0 62.86 65.60 81.68 85.14

0.5 63.60 65.20 81.66 85.02

0.005 0.85 0 75.14 75.76 96.74 97.82

0.5 75.60 77.80 96.70 97.70

AUCf = Area under the curve for full model with covariates (X,Z)

AUCr = Area under the curve for reduced model with covariate X

δ = AUCf - AUCr

ρ = Correlation between the covariates (X,Z)

LCCS = Linear combination of chi-square random variables

WALD = Wald statistic
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Table 3: Coverage estimates for 95% confidence intervals for δ. Average length

of intervals in parentheses. All entries multiplied by 100.
δ AUCr ρ DIFF DIFFvst ρ DIFF DIFFvst

0.002 0.55 0 94.60 (3.4) 93.62 (6.4) 0.5 94.52 (3.4) 93.68 (6.5)
0.60 0 91.92 (2.0) 95.70 (4.0) 0.5 92.00 (2.0) 95.72 (4.1)
0.65 0 89.04 (1.5) 96.54 (3.1) 0.5 88.92 (1.5) 96.48 (3.0)
0.70 0 87.66 (1.2) 96.28 (2.5) 0.5 87.48 (1.7) 96.18 (2.5)
0.75 0 86.32 (1.0) 96.20 (2.0) 0.5 86.12 (1.0) 96.16 (2.0)
0.80 0 86.26 (0.9) 95.88 (1.8) 0.5 86.00 (0.9) 95.76 (1.9)
0.85 0 85.84 (0.8) 95.80 (1.5) 0.5 85.80 (0.8) 95.68 (1.5)

0.005 0.55 0 89.54 (3.9) 94.06 (6.5) 0.5 89.52 (3.9) 94.12 (6.6)
0.60 0 86.56 (2.6) 95.34 (4.3) 0.5 86.44 (2.6) 95.46 (4.2)
0.65 0 86.10 (2.1) 95.92 (3.2) 0.5 86.08 (2.1) 95.90 (3.2)
0.70 0 85.96 (1.8) 95.54 (2.6) 0.5 85.92 (1.8) 95.42 (2.6)
0.75 0 87.64 (1.6) 95.48 (2.1) 0.5 87.44 (1.6) 95.52 (2.1)
0.80 0 89.40 (1.5) 95.10 (1.9) 0.5 89.40 (1.5) 95.22 (1.9)
0.85 0 89.02 (1.3) 94.18 (1.6) 0.5 89.16 (1.3) 94.20 (1.5)

0.01 0.55 0 86.10 (4.7) 93.74 (7.1) 0.5 86.00 (4.7) 93.72 (7.1)
0.60 0 86.18 (3.6) 94.52 (4.8) 0.5 86.16 (3.6) 94.46 (4.8)
0.65 0 88.88 (3.0) 95.14 (3.9) 0.5 88.74 (3.0) 95.16 (3.9)
0.70 0 88.90 (2.7) 93.90 (3.2) 0.5 89.08 (2.7) 93.88 (3.2)
0.75 0 90.92 (2.4) 94.16 (2.7) 0.5 90.78 (2.4) 94.20 (2.7)
0.80 0 92.06 (2.2) 94.40 (2.4) 0.5 91.98 (2.2) 94.38 (2.4)
0.85 0 91.48 (2.0) 93.90 (2.1) 0.5 91.56 (2.0) 93.96 (2.1)

0.02 0.55 0 86.12 (6.2) 92.04 (8.0) 0.5 86.32 (6.2) 91.94 (8.0)
0.60 0 88.96 (5.1) 92.86 (6.0) 0.5 88.86 (5.1) 92.96 (6.0)
0.65 0 90.92 (4.5) 94.32 (4.9) 0.5 91.12 (4.5) 94.38 (4.9)
0.70 0 91.66 (4.0) 93.70 (4.2) 0.5 91.70 (4.0) 93.78 (4.2)
0.75 0 92.80 (3.6) 94.42 (3.7) 0.5 92.64 (3.6) 94.44 (3.7)
0.80 0 93.44 (3.2) 94.38 (3.3) 0.5 93.54 (3.2) 94.42 (3.3)
0.85 0 92.60 (2.8) 94.06 (2.8) 0.5 92.56 (2.8) 94.08 (2.8)

0.05 0.55 0 90.14 (9.2) 91.40 (9.6) 0.5 90.06 (9.2) 91.34 (9.7)
0.60 0 92.00 (8.0) 93.20 (8.1) 0.5 92.00 (8.0) 93.32 (8.1)
0.65 0 93.44 (7.0) 93.90 (7.0) 0.5 93.46 (7.0) 93.86 (7.0)
0.70 0 93.34 (6.1) 93.82 (6.1) 0.5 93.36 (6.1) 93.86 (6.1)
0.75 0 93.52 (5.4) 93.90 (5.4) 0.5 93.54 (5.4) 93.84 (5.4)
0.80 0 94.02 (4.7) 94.02 (4.7) 0.5 94.06 (4.8) 94.04 (4.8)
0.85 0 93.30 (4.2) 93.54 (4.2) 0.5 93.38 (4.2) 93.58 (4.2)

δ = AUCf - AUCr

AUCr = Area under the curve for reduced model with covariate X

ρ = Correlation between the covariates (X,Z)

DIFF = Conventional confidence interval

DIFFvst = Confidence interval using variance stabilizing transformation
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