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Abstract

The performance of time-to-event models is frequently assessed in part by es-

timating the concordance probability, which evaluates the probabilistic pairwise

ordering of the model-based risk scores and survival times. The standard defini-

tion of this probability conditions on any survival time pair ordering, irrespective

of whether the times are meaningfully separated. Inclusion of survival times that

would be deemed clinically similar attenuates the concordance and moves the esti-

mate away from the contrast-of-interest: comparing the risk scores between individ-

uals with disparate survival times. In this manuscript, we propose a concordance
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definition and corresponding method to estimate the probability conditional on

survival times being separated by at least a minimum difference. The proposed es-

timate requires direct input from the analyst to identify a separable survival region,

and in doing so, is analogous to the clinically-defined subgroups used for binary

outcome area under the curve estimates. The method is illustrated in two cancer

examples: a prognostic score in clear cell renal cell carcinoma and two biomarkers

in metastatic prostate cancer.

1 Introduction

Discrimination is a common metric for time-to-event risk models to evaluate how separa-

ble the risk scores are relative to good and poor survival outcomes. A commonly applied

parameter of discrimination is the concordance probability, defined as

Pr[βTX2 > β
TX1|T1 > T2, T2 < τ ], (1)

where βTX represents a model-based risk score composed of a linear combination of risk

factors X, T denotes survival time, and τ indicates the maximum follow-up time of the

study.

Initially, an estimate of the concordance probability was developed by Harrell et al.,1,2

using a ratio statistic based on pairwise inequalities of the survival times and risk scores.

Over time, this estimate has been refined by incorporating inverse probability censoring

weights,3,4 assuming a proportional hazards risk model,5 and integrating estimates of the

true and false positive rates.6,7

An attractive feature of the survival-based concordance probability is that it is identi-

cal to the area under the receiver operating characteristic curve (AUC) when the outcome
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is binary, and thus provides an extension to the well-known binary outcome AUC liter-

ature.8,9 In the binary endpoint setting, risk scores are used to discriminate between

individuals with and without a disease, or those who do and do not achieve a com-

plete response to therapy. These binary endpoints are defined by clinically meaningful

subgroups, and the assessment of discrimination through the area under the curve cor-

responds to how well the risk scores segregate across these well-defined subgroups.

For the concordance probability with a survival endpoint defined in (1), the prob-

abilistic pairwise ordering of the risk scores are evaluated over the upper wedge of the

survival time pair space defined in Figure 1A. Importantly, survival pairs in the space

near but above the diagonal T1 = T2 with T2 < τ are included in the conditioning

argument, but are similar from a clinical viewpoint and thus their inclusion is not con-

structive for the concordance probability interpretation. A more natural extension of

the binary endpoint AUC methodology is to restrict the survival pair space to elements

where the survival times are at least ∆ months apart (Figure 1B). This, however, will

require input/expertise from the analyst as defining clinically meaningful survival time

subgroups depends on the scenario-at-hand. In cancer, for example, a survival difference

of 6 months may not be meaningful for certain localized diseases but may be significant

for advanced metastatic disease.

In this paper, we propose a method to evaluate the concordance probability condi-

tional on a meaningful difference in survival times. This probability is estimated within

the framework of a properly specified survival regression model. The model choice is

at the discretion of the analyst, but time-invariant risk scores are required. This pa-

per continues with Section 2, which provides the probability definition and proposed

methodology in this setting. Section 3 illustrates the use of the concordance probability
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by applying it to two biomarkers in metastatic prostate cancer and to a prognostic score

in clear cell renal cell carcinoma. Section 4 evaluates the operating characteristics of

the methodology. Lastly, the article concludes in Section 5 with a discussion of the key

results and implications for future use.

2 Methods

The clinical utility of a discrimination metric, applied to a survival model, is the ascer-

tainment of whether the survival experience is reflected in the model-based risk score.

Strong model discrimination indicates that clinical decisions, such as the aggressiveness

of treatment, may in part be guided by the patient risk score. The concordance proba-

bility discrimination metric, as defined in (1), however, does not precisely address this

concept of risk score separation for clinically distinct survival times. The limitation of

the concordance probability is illustrated with two clinical examples that are further

evaluated in Section 3. The first consists of 271 patients with metastatic prostate cancer

who had a biomarker of tumor burden, circulating tumor cells (CTC), evaluated prior

to treatment. The second consists of 421 patients with clear cell renal cell carcinoma

(ccRCC) from The Cancer Genome Atlas; the risk score for two clinical features, SSIGN

and age, was estimated using the proportional odds model.

A scatter plot of survival times is depicted in Figure 2(A) for CTC in prostate cancer

and in Figure 2(B) for the risk score in ccRCC. There is evidence in both that high risk

scores indicate short survival (region 1) and low risk scores predict longer survival (region

2). However, an estimate of the concordance probability will be attenuated due to the
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evaluation of all data pairs within region 1, even though all patients in this region can

be classified as short-term survivors.

Our proposal is to extend the concordance probability definition by focusing on sur-

vival times T that are separated by at least ∆ units of time. The probability of interest

is defined by

Pr[βTX2 > β
TX1|T1 > T2 + ∆, T2 < τ ] ∆ > 0, (2)

which we call dCP, for a delta concordance probability based on a separation of ∆ units

of time.

It is assumed that the risk score βTx is derived from a semiparametric regression

model

m(t) = βTx+ ε,

where m(t) is a monotone transformation of the survival time and ε is the random

error. Examples of semiparametric models include when m is unknown and the error

distribution of ε is extreme value (proportional hazards) or logistic (proportional odds).

Alternatively, an accelerated failure time model is produced when the transformation is

specified as m(t) = log(t) and the error distribution is unknown.

Equation 2 for dCP may be rewritten as

K(β, S; ∆, τ) =

∫
βTx2>β

Tx1

∫ τ
t=0

S(t+ ∆|x1)dS(t|x2)dG(βTx1)dG(βTx2)∫ τ
t=0

S(t+ ∆)dS(t)
,

where G represents the distribution function of βTx and S denotes a survival function.

This probability can be estimated by

Kn(β̂, Ŝ; ∆, τ) =

∑
i

∑
j

∑
k I{β̂

T
xi > β̂

T
xj}I{t(k) < τ}Ŝ(t(k) + ∆|xj)

(
Ŝ(t(k)|xi)− Ŝ(t(k−1)|xi)

)
∑

i

∑
j

∑
k I{t(k) < τ}Ŝ(t(k) + ∆|xj)

(
Ŝ(t(k)|xi)− Ŝ(t(k−1)|xi)

) ,
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where Ŝ(t(k)|xi) represents the model based estimated survival function for the ordered

survival time t(k), where Ŝ(t(0)|x) = 1.

The estimated concordance probability Kn(β̂, Ŝ; ∆, τ) is a ratio statistic with its de-

nominator bounded away from zero. To develop its asymptotic distribution, the indica-

tor function I(βTx1 > β
Tx2) is approximated by a smooth local Gaussian distribution

function Φ(
βTx1−β

Tx2

h
), where the bandwidth h → 0 as n → ∞.15 To see this ap-

proximation, note that if βTx1 > βTx2, then Φ(
βTx1−β

Tx2

h
) → 1 as h → 0, and if

βTx1 < β
Tx2, then Φ(

βTx1−β
Tx2

h
) → 0, as h → 0. It follows that as n gets large and

h→ 0, Φ(
βTx1−β

Tx2

h
)→ I(βTx1 > β

Tx2).

A first order Taylor series expansion on the smoothed version of the concordance

probability statistic produces three sources of variation: the estimated regression coeffi-

cient β̂, the survival estimate Ŝ, and the covariates x. The asymptotic normality of the

estimated concordance probability stems from the convergence of n1/2[β̂−β] to normality

using either maximum partial likelihood or estimating equation theory, the convergence of

n1/2[Ŝ(t)−S(t)] to a Gaussian process using martingale arguments, and the convergence

of n1/2[Kn(β, S; ∆, τ) − κ(β, S; ∆, τ)] to a Gaussian process by applying the functional

central limit theorem for U processes, where κ(β, S; ∆, τ) = limn→∞Kn(β, S; ∆, τ). The

asymptotic normality of the concordance probability statistic follows from the three com-

ponents of the expansion. The specific arguments were established in a comparable statis-

tic.3 The asymptotic variance Kn(β̂, Ŝ; ∆, τ) and corresponding asymptotic confidence

interval are computed using the bootstrap. The validity of the bootstrap in semipara-

metric models was established in Kosorok et al.16
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3 Data Analysis

The concordance probability as defined in Equation (2) is illustrated in the two previ-

ously mentioned examples for varying degrees of separation in survival times. The first

evaluates dCP for two biomarkers in metastatic castration-resistant prostate cancer. The

second estimates dCP for a clinical risk score in clear cell renal cell carcinoma (ccRCC).

While the risk scores in both settings have been shown to have moderate discrimination,

the evaluations to date have conditioned on any survival time region (∆ = 0) when esti-

mating concordance. The analyses in this section aim to estimate dCP when the survival

times are separated by a clinically meaningful difference in time.

3.1 CTC and ALK in metastatic prostate cancer

Two biomarkers were evaluated on 271 patients with metastatic castration-resistant

prostate cancer at the time of treatment. The first biomarker was circulating tumor

cells (CTC), a blood based assay, used in metastatic prostate cancer to determine tumor

burden; the second biomarker, alkaline phosphatase (ALK), is also a measure of tumor

burden. Both markers have improved model discrimination in metastatic prostate can-

cer studies.19,20 In terms of the direction of effect, higher values of CTC and ALK are

associated with worse prognosis.

For this cohort of patients, the estimated survival curve is shown in Figure 3(A). A

total of 202 patients died during the follow-up period. Baseline CTC and ALK were

log-transformed for the analysis. Assessment of the separate proportional hazards mod-

els for CTC and ALK indicated no apparent deviation from proportional hazards: see

Supplemental Section A.1.
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The time scale for a meaningful improvement in survival for individuals with metastatic

prostate cancer is relatively small. In a randomized clinical trial designed by one of us, a

median survival improvement of 1.33 years has been conferred on an experimental treat-

ment relative to the conventional treatment. For baseline CTC and ALK, the dCP in

Equation (2) was evaluated over different values of ∆, ranging from 0 to 2 years. The

value of τ , used to define the concordance probability, was selected to be 2 years.

The results are shown in Figure 3(B). When ∆ = 0, CTC had a dCP of 0.64 (95%

CI: 0.60-0.67), which was marginally better than ALK, with a dCP of 0.60 (0.56-0.63).

Neither biomarker is distinguished in terms of prognostic utility. However, when ∆ = 2,

the dCP for CTC increased dramatically to 0.78 (0.73-0.82), indicating that CTC has

strong discriminatory power when comparing distinct survival time regions. In contrast,

the dCP for ALK was only 0.70 (0.64-0.76) at ∆ = 2. The difference in dCP between

markers was 0.08 (0.01-0.14).

3.2 SSIGN in clear cell renal cell carcinoma

This analysis includes 421 patients with clear cell renal cell carcinoma (ccRCC) from

The Cancer Genome Atlas cohort with complete data on overall survival and the clinical

components to calculate the Mayo Clinical Stage, Size, Grade, and Necrosis (SSIGN)

score, as previously described.10,11 A total of 144 (34%) patients died, with a Kaplan-

Meier median survival estimate of 6.4 years from diagnosis. The estimated survival curve

is shown in Figure 4(A).

The risk score was estimated using proportional odds regression for the covariates of

SSIGN and age. SSIGN, with observed values between 0 to 15, was modeled using a
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natural cubic spline due to observed non-linearity. Assessment of the proportional odds

assumption is provided in the Supplemental Section. The value of τ was set to be 4; at

this time point, the estimated survival was 0.67(95%: 0.63-0.73). dCP was estimated

over the range ∆ = 0 to 3.5 years.

The estimated dCP are shown in Figure 4(B). The estimate, based on ∆ = 0, pro-

duces a dCP of 0.79 (0.76-0.83). While overall strong, this estimate, as noted earlier,

penalizes the risk score for a lack of separation between patients with minimally different

survival times. Importantly, dCP increased to 0.83 (0.79-0.87) and 0.85(0.81-0.89) when

conditioning on at least a 2-year and 3-year survival difference, respectively. A separation

of ∆ = 3 is similar to the projected 2.6 year difference in median overall survival used in

the original design of a phase III study in non-metastatic RCC.18

While the risk score provides good discrimination when viewed within the traditional

definition of concordance probability with ∆ = 0, the analysis illustrates the true poten-

tial of the risk score as a standalone prognostic marker in ccRCC when dCP is reevaluated

for survival times meaningfully separated.

4 Operating Characteristics

Simulation scenarios evaluated the operating characteristics of the dCP estimation pro-

cedure. The first scenario mirrors the SSIGN risk score in ccRCC and evaluates the

procedure under a proportional odds model. The second scenario is consistent with the

CTC biomarker in metastatic prostate cancer under the proportional hazards model.

The final scenario evaluates dCP estimation under model misspecification. The operat-

ing characteristics were evaluated by the average bias and the square root of the mean
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square error (rMSE) calculated over 2,000 iterations. In addition, the estimated stan-

dard errors for the different values of ∆ were compared to their simulation standard

errors. Bootstrap resampling estimated the standard error for dCP, with 200 bootstrap

resamples used for each simulation iteration. The true underlying dCP values for the dif-

ferent ∆ values were approximated by the average of 2,000 iterations of 3,000 uncensored

observations.

4.1 Proportional Odds

The first scenario generated data under a proportional odds model motivated by the

ccRCC risk score, where dCP increased from good to excellent concordance as ∆ increased

from 0 to 3.75 years. Data were generated under the model ti = exp{7.4−1.15xi+εi}, with

independent and identically distributed εi from a logistic distribution. The distribution

of xi was N(µ = 4.24, σ = 1.452), following the estimated mean and standard deviation

of the risk score developed in Section 3. Censoring times were generated from a uniform

distribution Un(0, 12) to approximate the censoring proportion of 66% observed in the

data analysis. The value of τ was fixed at 4. Sample sizes of 225, 450, and 900 were

considered.

Simulation results are provided in Table 1 and Figure 5(A). Overall the average bias

across the simulation iterations was minimal; the average bias increased slightly as ∆

increased. rMSE similarly increased slightly as ∆ increased. As the sample size increased,

the average bias and rMSE decreased across all values of ∆. The average estimated

standard error aligned with the simulation standard error for all estimates.
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4.2 Proportional Hazards

This scenario was designed to reflect the CTC data analysis in Section 3. Data were

generated from a proportional hazards relationship using the regression model ti =

exp{2 − 0.4xi} × εi, and εi were generated from Weibull random variables with scale

parameter 0.668 and shape parameter 1. The distribution of marker xi followed a normal

distribution, N(µ = 2.33, σ = 1.76), corresponding to the mean and standard deviation of

the log-transformed CTC values in the data analysis. Similarly, the censoring times were

generated from a uniform distribution Un(0, 8.5) to approximate a censoring proportion

of 25% observed in Section 3. The value of τ was fixed at 2. The true concordance was

0.68 for ∆ = 0, which increased to 0.81 as ∆ increased. Sample sizes of 150, 300, and

600 were considered.

Simulation results are provided in Table 2. The performance of the dCP method is

again, excellent. A slightly higher bias was observed for larger values of ∆, which atten-

uated for the larger sample size, and the estimated standard errors were approximately

equal to the simulation standard errors.

4.3 Non-proportional Hazards

Two simulation scenarios evaluated the performance of the method when a proportional

hazards model was fit to data that violated the proportional hazards assumption. Both

scenarios mirrored the simulations in Section 4.2. However, now εi were generated from

Weibull random variables with scale parameter 0.668 and shape parameter dependent on

the marker xi to induce non-proportional hazards. In the first scenario, representing a

minor deviation from proportional hazards, the shape parameter was equal to 1−0.04xi.
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The second scenario, representing a larger deviation, the shape equaled 1 − 0.09xi. All

other values remained the same as the previous section.

In terms of the assessment of the proportional hazards assumption, the goodness-of-

fit test was rejected in 8.2%, 12%, and 19% of the 2,000 simulation iterations in the first

scenario for the sample sizes of 150, 300, and 600, respectively, and 36%, 63%, and 91%

of the simulations in the second scenario for the same sample sizes.

Simulation results are provided in Figure 6 and Tables 3 and 4. As expected, the bias

of the dCP estimates depended on the degree of proportional hazards violation. For the

first scenario, the average estimated bias ranged from -0.005 to -0.010 across the different

sample sizes. For second scenario, the average bias increased substantially, ranging from

-0.033 to -0.055.

4.4 Summary

These results illustrate that the proposed dCP methodology performed well under simu-

lation scenarios motivated by the SSIGN risk score and the CTC biomarker data analyses

in Section 3 under correct specification of the regression model. The proposed bootstrap-

ping procedure for standard error estimation closely mirrored the simulation standard

error.

When the selected regression model is misspecified, the dCP and its estimated stan-

dard error may be biased. These results reiterate the importance of investigating all

modeling assumptions prior to data analysis. We note that the largest biases were ob-

served in Section 4.3 when the goodness-of-fit test had the highest power to reject the

null hypothesis of no time-varying effect.
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5 Discussion

In this paper, we propose a novel definition of concordance probability that focuses on

individuals with a clinically meaningful difference in survival. Conditioning on a separable

survival region orients the concordance probability, termed dCP, around the quantity we

care most about: how well the risk score segregates across individuals with disparate

survival times. Framed in this way, the probability aligns with the area under the curve

for binary outcomes, where outcomes are similarly based on clinically distinct groups.

The proposed dCP definition requires direct input the analyst; the minimum difference

in survival (∆) depends on the clinical scenario and data under consideration. While a

single value of ∆ may frequently be selected for reporting the discrimination of a model,

the probability can be estimated and visually displayed over a range of ∆ values. As

shown in Section 3, this visual representation is particularly useful when evaluating the

relative discrimination of two or more markers. The two markers, CTC and ALK, have

moderate concordance when contiguous survival regions are considered; however, focusing

on survival regions with a consequential separation highlights the prognostic utility of

each marker, particularly in the case of CTC.

The dCP definition requires an estimate of the conditional survival function. As out-

lined in Section 2, this can be estimated within various time-to-event models, including

the proportional hazards, the proportional odds, and the accelerated failure time mod-

els. It is left to the analyst to select the model most appropriate for the data under

consideration and first evaluate any modeling assumptions.

Discrimination is one measure frequently used to assess model performance. When

assessing the prognostic utility of a set of factors within a survival model, the evaluation
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of discrimination should be done in conjunction with calibration and explained variation.

The formulation of dCP in this manuscript is for a continuous risk score. Future work

will extend the methodology to a discrete risk score, analogous to the work developed

for the c-index and CPE.21 In addition, methodology will be developed to evaluate the

added value of new biomarkers to an existing risk model within the context of the dCP

estimate.
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Figure 1: (A) The survival space T1 > T2 with T2 < τ used as the conditioning argument

in a standard concordance probability definition. (B) The space reoriented around a

survival difference of ∆ units of time.
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Figure 2: (A) Values of log CTC for the survival times in the metastatic prostate cancer

example. (B) The estimated risk score in the clear cell renal cell carcinoma example.

(A)

Survival Time (Years)

Lo
g 

C
T

C

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

1

2

3

4

5

6

●●

● ●●● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●●

● ●●

●

●●

●

●

●

●●

●●

●●

●

●

● ●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

T2 T1
Region 1

Region 2

●

●

Event
Censored

(B)

Survival Times (Years)

R
is

k 
S

co
re

0 2 4 6 8 10

2

3

4

5

6

7

8

●

●

●

●

●
● ●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

T2 T1

Region 1

Region 2

●

●

Event
Censored

19



Figure 3: (A) Estimated overall survival for the 271 patients with metastatic prostate

cancer starting from the time of treatment. (B) Estimated dCP for ALK and CTC for

various degrees of separation in survival times (∆).
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Figure 4: (A) Estimated overall survival for the 421 patients with clear cell renal cell

carcinoma starting from the date of diagnosis. (B) Estimated dCP for the risk score

based on SSIGN and age for various degrees of separation in survival times (∆).
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Figure 5: (A) The simulation results for 225, 450 and 900 observations in the proportional

odds simulation. The value of τ was fixed at 4. (B) The average estimated dCP for 150,

300 and 600 observations across the values of ∆ in the proportional hazards simulation.

The value of τ was fixed at 2.
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Figure 6: Simulation results for two scenarios evaluating different degrees of deviation

from proportional hazards. (A) The average estimated dCP when survival times were

generated using a Weibull random variable with shape equal to 1 − 0.04X, dependent

on the underlying marker X. (B) The average estimated dCP when survival times were

generated using a Weibull random variable with shape equal to 1− 0.09X.
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Table 1: Proportional Odds: estimated bias, root mean square error, and the estimated

standard error compared to the simulation standard error averaged over 2,000 simulation

iterations. The columns represent the increasing values of ∆ from 0 to 3.75. The value

of τ was set to 4.

N ∆ = 0 0.75 1.5 2.25 3.0 3.75

True Probability

0.7954 0.8143 0.8261 0.8349 0.8421 0.8480

Average Bias

225 -0.0002 -0.0011 -0.0014 -0.0017 -0.0019 -0.0019

450 -0.0004 -0.0008 -0.0011 -0.0012 -0.0014 -0.0015

900 0.0001 -0.0001 -0.0002 -0.0003 -0.0003 -0.0004

Square-root Mean Square Error (rMSE)

225 0.0230 0.0238 0.0241 0.0242 0.0243 0.0244

450 0.0163 0.0168 0.0169 0.0170 0.0171 0.0172

900 0.0114 0.0118 0.0119 0.0119 0.0119 0.0119

Estimated Standard Error/Simulation Standard Error

225 0.9962 0.9916 0.9895 0.9905 0.9936 1.0008

450 0.9931 0.9955 0.9953 0.9943 0.9948 0.9963

900 0.9981 1.0002 1.0003 1.0019 1.0043 1.0059
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Table 2: Proportional Hazards: estimated bias, root mean square error, and the estimated

standard error compared to the simulation standard error averaged over 2,000 simulation

iterations. The columns represent the increasing values of ∆ from 0 to 2. The value of τ

was set to 2.

N ∆ = 0 0.5 1 1.5 2

True Probability

0.6779 0.7208 0.7546 0.7821 0.8052

Average Bias

150 0.0016 0.0006 -0.0003 -0.001 -0.0017

300 0.0004 -0.0001 -0.0005 -0.0008 -0.0012

600 <0.0001 -0.0003 -0.0005 -0.0007 -0.0009

Square-root Mean Square Error (rMSE)

150 0.025 0.0291 0.0313 0.0324 0.033

300 0.0174 0.0203 0.0218 0.0226 0.0231

600 0.0119 0.0138 0.0149 0.0154 0.0157

Estimated Standard Error/Simulation Standard Error

150 0.9555 0.9486 0.9477 0.9479 0.9496

300 0.9633 0.9606 0.9588 0.9598 0.9572

600 0.9946 0.9954 0.9960 0.9955 0.9942
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Table 3: Non-proportional Hazards Scenario 1: estimated bias, root mean square error,

and the estimated standard error compared to the simulation standard error when sur-

vival times were generated using a Weibull random variable with shape equal to 1−0.04X,

dependent on the underlying marker X. The columns represent the increasing values of

∆ from 0 to 2. The value of τ was set to 2.

N ∆ = 0 0.5 1 1.5 2

True Probability

0.6723 0.7102 0.7383 0.7616 0.7816

Average Bias

150 -0.0077 -0.0076 -0.0066 -0.0057 -0.005

300 -0.0093 -0.0088 -0.0074 -0.0062 -0.0052

600 -0.0100 -0.0094 -0.0079 -0.0066 -0.0055

Square-root Mean Square Error (rMSE)

150 0.0274 0.0321 0.0346 0.0361 0.0371

300 0.0205 0.0234 0.0248 0.0255 0.0261

600 0.0161 0.0176 0.0180 0.0183 0.0185

Estimated Standard Error/Simulation Standard Error

150 0.9401 0.9316 0.9289 0.9283 0.9279

300 0.9562 0.9532 0.9511 0.9515 0.9491

600 0.9870 0.9872 0.9866 0.9856 0.9833
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Table 4: Non-proportional Hazards Scenario 2: estimated bias, root mean square error,

and the estimated standard error compared to the simulation standard error when sur-

vival times were generated using a Weibull random variable with shape equal to 1−0.09X,

dependent on the underlying marker X. The columns represent the increasing values of

∆ from 0 to 2. The value of τ was set to 2.

N ∆ = 0 0.5 1 1.5 2

True Probability

0.6737 0.713 0.7427 0.7672 0.7882

Average Bias

150 -0.0327 -0.0387 -0.0438 -0.0478 -0.0509

300 -0.0355 -0.0413 -0.0462 -0.05 -0.0529

600 -0.0372 -0.0432 -0.0481 -0.0518 -0.0547

Square-root Mean Square Error (rMSE)

150 0.0444 0.0531 0.0593 0.0641 0.0678

300 0.0414 0.0488 0.0544 0.0587 0.0619

600 0.0401 0.0469 0.0522 0.0562 0.0593

Estimated Standard Error/Simulation Standard Error

150 0.9139 0.9053 0.901 0.8982 0.8953

300 0.9303 0.9259 0.921 0.9197 0.918

600 0.9504 0.9483 0.9464 0.9443 0.9414
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A.1 Assessment of the proportional hazards assumption in Section 3.1

Figure S1: Assessment of model fit for the two proportional hazards regression models in

metastatic prostate cancer in Section 3.1. Both the goodness-of-fit tests and the estimated

martingale residuals indicate no apparent deviation from proportional hazards for either

model. Model estimates, the goodness-of-fit statistics, and residuals were estimated using

the timereg package in R.
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 Goodness−of−fit test: p = 0.325
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A.2 Assessment of the proportional odds assumption in Section 3.2

3



Figure S2: Assessment of model fit for the proportional odds regression model of SSIGN

and age in clear cell renal cell carcinoma in Section 3.2. SSIGN was modeled using a

natural cubic spline. Both the goodness-of-fit test and the estimated martingale residuals

indicate no apparent deviation from proportional odds. Model estimates, the goodness-

of-fit statistics, and residuals were estimated using the timereg package in R.
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 Goodness−of−fit test: p = 0.651
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