The Science Behind the FDA’s Approval of an Immunotherapy for Mismatch Repair–Deficient Cancers

By Matthew Tontonoz,

MSK medical oncologist Luis Diaz, Jr.
Summary

The FDA’s approval, in May 2017, of an immunotherapy for cancers that share a genetic abnormality called mismatch repair deficiency was a watershed moment in oncology. MSK’s new division head for solid tumor oncology led the pivotal clinical trial.

Highlights
  • Cancers with more mutations typically respond better to certain immunotherapy drugs.
  • Mismatch repair–deficient tumors have hundreds to thousands of mutations.
  • The recent FDA approval of the immunotherapy drug pembrolizumab for cancers with this genetic abnormality represents a first in oncology.

Two years ago at the annual meeting of the American Society of Clinical Oncology, researchers from Johns Hopkins wowed an audience with results from a recent immunotherapy clinical trial. People with a type of colorectal cancer that bore a genetic abnormality called mismatch repair (MMR) deficiency fared surprisingly well when treated with the immunotherapy drug pembrolizumab (Keytruda®). In fact, 62% of them responded to the treatment.

The result was remarkable because colorectal cancer patients typically do not benefit from this type of immunotherapy, called an immune checkpoint inhibitor. None of the other colorectal cancer patients in the study responded at all.

Experts celebrated the findings as bolstering an emerging concept in the field of immuno-oncology, that the more DNA mutations a cancer cell has, the higher the likelihood it will be recognized by the immune system as foreign and killed.

MMR-deficient cells have lots of mutations — 1,700 on average compared with just 70 in a typical cancer cell. That’s because the mismatch repair pathway is a major way that cells fix DNA base-pair mistakes that occur during DNA replication, which cells must do each time they divide.

The Hopkins-led trial eventually enrolled people with a dozen different cancer types that all shared this genetic defect. Together, the results showed that the potential for an excellent response to immunotherapy was not unique to MMR-deficient colorectal cancer. It held true for all of the MMR-deficient cancers, regardless of their tissue origin.

So then it was off to the races. I knew we had to conduct a trial.
Luis Alberto Diaz, Jr.
Luis Alberto Diaz, Jr. medical oncologist

These striking results served as the basis for the Food and Drug Administration’s approval of pembrolizumab for advanced MMR-deficient cancers last month. This was a landmark event in oncology. It represents the first time that a drug has been approved on the basis of a specific genetic profile rather than where the cancer originated.

“It’s a shift in how we develop anti-cancer therapeutics,” says Luis Diaz, Jr., a medical oncologist at Memorial Sloan Kettering. Dr. Diaz was the principal investigator on this trial when he was a professor of medicine at Johns Hopkins. He recently moved from Hopkins to Memorial Sloan Kettering to assume a new role here as Head of the Division of Solid Tumor Oncology.

“It’s not only a pan-tumor approval for adult tumors, it also includes pediatric tumors. So it’s agnostic to both age and tumor type,” he says.

Science Behind the Study

In a new paper published in Science, Dr. Diaz and his colleagues report in detail on the results of the clinical trial. Among the 86 people in the trial, there were 12 different types of cancer. More than half of the participants (46 patients) had an objective response to pembrolizumab, a PD-1-blocking drug. That means their disease became smaller. Of these 46, 21% (18 patients) had a complete response, meaning the cancer vanished. The disease control rate, or the percentage of people whose disease either remained stable or improved, was 77% (66 patients). Responses were often durable.

These are impressive results for a cancer clinical trial, and even more impressive for an immunotherapy trial. Typically, a smaller fraction of people responds to a single-drug immunotherapy.

MMR-deficient cells have lots of mutations — 1,700 on average compared with just 70 in a typical cancer cell.

In fact, the number of people who had a complete response is probably higher than reported. This is because what looks like cancer on an imaging scan might actually be the battle scars left after the immune system has done its work.

“We biopsied patients at 20 weeks who appeared to have residual disease on their scans. What we found was that the majority of these ‘tumors’ were just scar tissue,” Dr. Diaz explains.

In addition to reporting on the trial’s results, Dr. Diaz and colleagues delve into the underlying cause of immune responses to MMR-deficient cancers. For three patients who had a good response to pembrolizumab, the team analyzed the genetic attributes of both the tumor tissue (which had been removed prior to treatment and archived) and the immune cells circulating in the blood. They found that T cells specific for particular neoantigens — the fragments of altered proteins produced from mutated DNA — were present in the tumor before treatment, and these cells rapidly and dramatically increased in the blood following treatment.

As the authors note, these results support the hypothesis that the large number of neoantigens present in MMR-deficient tumors makes them responsive to immune checkpoint blockade therapy. This approach is often likened to releasing the brakes on immune cells, allowing them to attack cancer. Side effects of these drugs can include autoimmune reactions, caused when the immune system attacks normal tissues in the body.  

Immunotherapy at MSK
Immunotherapy at MSK
Cancer is smart, but your immune system is smarter. Discover how Memorial Sloan Kettering is deploying immunotherapy to fight cancer.
Learn more
Back to top Arrow (up) icon.Icon pointing upwards. Usually means that the containing element can be opened and closed.

A Telling Observation

Dr. Diaz notes that the inspiration for the MMR study goes back to a clinical trial that his Hopkins colleagues Suzanne Topalian and Drew Pardoll conducted. The results of that study were published in 2012. In the trial, a single colorectal cancer patient had a dramatic response to the PD-1-blocking drug nivolumab (Opdivo®). The patient was subsequently found to have Lynch syndrome, an inherited form of mismatch repair deficiency. Dr. Diaz surmised that the high mutational burden in this patient made the cancer more recognizable to his immune system.

“So then it was off to the races,” Dr. Diaz says. “I knew we had to conduct a trial.”

They did, and based on the trial’s early results, the FDA granted the approach a Breakthrough Therapy designation in October 2015. Final approval of pembrolizumab for MMR-deficient tumors came in May 2017.

Dr. Diaz notes that the trial never would have happened without the groundbreaking work of many researchers, including several at MSK, who established the promise of immunotherapy as a cancer treatment. “Jedd Wolchok and his colleagues really helped define that immune checkpoint inhibitors could be a potent class of anticancer drugs,” Dr. Diaz says. “We wouldn’t be here today without his work.”

Around the same time that Dr. Diaz and his group were conducting their study, Dr. Wolchok and MSK researchers Timothy Chan and Alexandra Snyder Charen showed that mutational burden was an important variable influencing immunotherapy responses in lung cancer and melanoma.

And in 2008, it was work by immunologist James Allison (then at MSK) and MSK physician-scientist Neil Segal, in collaboration with cancer biologist Bert Vogelstein at Hopkins, that established mutant proteins could create neoantigens recognizable by the immune system.

Back to top Arrow (up) icon.Icon pointing upwards. Usually means that the containing element can be opened and closed.

A Big Impact

Dr. Diaz notes that about 60,000 people a year will be eligible for this immunotherapy on the basis on their mutation profile. He estimates that about 4% of all cancers are likely to be MMR deficient.

Witnessing the dramatic effect of immunotherapy on people with MMR-deficient tumors who had otherwise run out of options has made him optimistic about the power of this approach to make a profound difference in people’s lives. He notes that a couple of the patients were in hospice when they enrolled in the study and are still alive today.

“I feel lucky to be a part of this breakthrough,” he says.

Back to top Arrow (up) icon.Icon pointing upwards. Usually means that the containing element can be opened and closed.

This work was funded by the Swim Across America Laboratory at Johns Hopkins, the Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, the Howard Hughes Medical Institute, the Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, the 2017 Stand Up To Cancer Colorectal Cancer Dream Team, the Commonwealth Fund, the Banyan Gate Foundation, the Lustgarten Foundation, the Bloomberg Foundation, the Sol Goldman Pancreatic Cancer Research Center, Merck & Co., a SPORE grant, and the National Institutes of Health. Dr. Diaz is an inventor on patent applications submitted by Johns Hopkins University that cover checkpoint blockade and microsatellite instability. Dr. Diaz is a consultant for Merck, Illumina, Personal Genomics Diagnostics (PGDx), and Cell Design Labs.

Comments

WILL THIS WORK IN A CANCER CALLED THYMOMA THAT HAS SPREAD TO MY LUNGS. tHE ORIGINAL TUMOR THAT WAS 85% RESECTED HAS SHOWN NO SIGNS OF LIFE BUT THERE ARE SEVERAL NODULES THAT HAVE STARTED TO GROW IN MY LUNGS. ALSO MY GYNOME REPORT SHOWED A HIGH MUTATION RATE

Dear Robert, if your genomic analysis shows that your tumor has a mismatch repair deficiency then this may be an appropriate treatment for you. We recommend that you discuss it with your oncologist. If you'd like to have an consultation with an expert at MSK, you can call 800-525-2225 or go to https://www.mskcc.org/experience/become-patient/appointment for more information on making an appointment. Thank you for your comment, and best wishes to you.

Would keytruda work on pancreatic cancers?
Were any pancreatic cancers in the initial study?
Regards: D. Redwine

Dear Donald, Keytruda is now FDA approved for pancreatic tumors that have the MMR (mismatch repair) mutation. Thank you for your comment.

My 30 year old nephew has stage 4 colon cancer... His MSI panel is MLH-1 positive, MSH-2 positive, MSH-6 positive and PMS-2 positive...Does that mean he has Lynch Syndrome?

Dear Karen, we're sorry to hear about your nephew's diagnosis. We recommend that he discuss this with his healthcare team, or ask for a referral to a genetic counselor. Thank you for your comment, and best wishes to you and your family.

Would this be an option for high-grade
mixed adenoneuroendocrine carcinoma (MANEC), poorly differentiated, pT4a, pN2b also MMR
deficient with loss of PMS2?

I have signet ring cancer, started in appendix.Had surgery in 2012 And started chemo in 2013 to present.I have KARAS mutation--NOT wild.Do you know of anything NEW for me--maybe TRK or something else? Thank you for all you do.

Dear Carl, we're sorry to hear about your diagnosis. If you would like to speak to an MSK expert to find out what treatments may be available, you can call 800-525-2225 or go to https://www.mskcc.org/experience/become-patient/appointment for more information on making an appointment. Thank you for your comment, and best wishes to you.

A friend from the UK has been diagnosed with a fairly advanced (multiple sites) neuroendocrine cancer. T A colon biopsy has shown poorly differentiated neuroendocrine cancer that is fast proliferating (K67 index exceeds 75%) and high grade and her docs think is a MANEC type. Do you think she should get the analysis done to determine if it has mismatch repair deficiency and therefore a candidate for PD-1 based therapy?

I sent a comment on Oct 14,2017 and said I have a KRAS mutated gene.Now after 5 years of being misdiagnosed I find out I DO NOT have the mutated gene! I do have signet ring.Do you have anything new ? Thank you for all you do

Dear Carl, we're sorry to hear about your misdiagnosis. We do not have any trials specifically for signet ring cell carcinoma, but depending on the mutations in your tumor, you may qualify for immunotherapy or targeted therapy. If you would like to make an appointment to learn more, you can call 800-525-2225 or go to https://www.mskcc.org/experience/become-patient/appointment for more information. Thank you for your comment, and best wishes to you.

Add new comment

We welcome your questions and comments. While we share many of them with our world-class doctors and researchers, we regret that in order to protect your privacy, we are not able to make personal medical recommendations on this forum, nor do we publish comments that contain your personal information. If you would like to consult with an MSK doctor, we encourage you to make an appointment at 800-525-2225 or request an appointment online.

Your email address is kept private and will not be shown publicly.